
REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for the collection ol information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank, 2. REPORT DATE

Nov 5-8, 1990 Proceedings of a Workshop
4. TITLE AND SUBTITLE

INNOVATIVE APPROACHES TO PLANNING,
CONTROL

SCHEDULING AND

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CARNEGIE MELLON UNIVERSITY

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

ADVANCE RESEARCH PROJECT AGENCY
3701 FAIRFAX DRIVE
ARLINGTON, VA 2203

5. FUNDING NUMBERS

B. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The purpose of this workshop is to bring together researchers, concerned
with large, real-world Planning, Scheduling and Control problems, to
review the latest research results in the field, to keep the government
research community abreast of current technology, and to discuss future
directions.

B V<*
"~ £» il-a i« **> I *i p fr|

H?

14. SUBJECT TERMS

Scheduling
Control Problems
Planning

17. SECURITY CLASSIFICATION
OF REPORT

SAR

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR
NSN 754001-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Workshop on Innovative Approaches to

Planning, Scheduling and Control

November 1990

Sponsored by:

DARHV
9950426 05'

Defense Advanced Research Projects Agency
Information Science and Technology Office

Innovative Approaches to Planning,
Scheduling and Control

Proceedings of a Workshop
Held at

San Diego, California
November 5-8, 1990

Accession For

Edited by Katia P. Sycara

HfXS SRA&I S"
mic TAB D
Unannounced D
Justification

By_

Sponsored by:

Dlst^tmtlop/
Availability Cedes

Bist
Avail and/or

Special..

A
Defense Advanced Research Projects Agency
Information Science and Technology Office

This document contains copies of reports prepared for the DARPA
Innovative Approaches to Planning, Scheduling and Control Workshop.
Included are Principal Investigator Reports and technical papers from the
DARPA sponsored programs.

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the United States Government.

Distributed by

Morgan Kaufmann Publishers, Inc.

2929 Campus Drive

San Mateo, CA 94403

ISBN 1-55860-164-3

Printed in the United States of America

ABCDEFGHIJK-EB-93210

WORKSHOP ON INNOVATIVE APPROACHES
TO PLANNING, SCHEDULING AND CONTROL

TABLE OF CONTENTS

PAGE

AUTHOR INDEX ix

FOREWORD x

PLANNING

Robotic Manipulation Planning with Stochastic Action 3
Alan D. Christiansen, Kenneth Y. Goldberg, Carnegie Mellon University

Designing and Analysing Strategies for Phot ix from Models 9
Paul R. Cohen, University of Massachusetts

Analogical Planning 22
Diane J. Cook, University of Illinois

Rational Distributed Reason Maintenance for Planning and 28
Replanning of Large-Scale Activities (Preliminary Report)
Jon Doyle, MIT Laboratory for Computer Science
Michael P. Well man, USAF Wright R&D Center

Computational Considerations in Reasoning about Action 3 7
Matthew L. Ginsberg, Stanford University

Issues in Decision-Theoretic Planning: Symbolic Goals and 48
Numeric Utilities
Peter Haddawy, University of Illinois
Steve Hanks, University of Washington

Issues and Architectures for Planning and Execution 5 9
Steve Hanks, University of Washington
R. James Firby, Jet Propulsion Laboratory

Envelopes as a Vehicle for Improving the Efficiency of Plan 71
Execution
David M. Hart, Scott D. Anderson, Paul R. Cohen
University of Massachusetts

in

PAGE

Mission Critical Planning: AI on the MARUTI Real-Time 7 7
Operating System
James Hendler, Ashok Agrawala, University of Maryland

Responding to Environmental Change 8 5
Adele E. Howe, Paul R. Cohen, University of Massachusetts

Planning in Concurrent Domains 9 3
Subbarao Kambhampati, Jay M. Tenenbaum, Stanford University

Deadline-Coupled Real-Time Planning 100
Saht Kraus, Madhura Nirkhe, Donald Perlis, University of Maryland

Toward an Experimental Science of Planning 109
Pat Langley, Mark Drummond, Ames Research Center

Localized Search for Controlling Automated Reasoning 115
Amy L. Lansky, NASA Sterling Federal Systems

Transformational Synthesis: An Approach to Large-Scale 126
Planning Applications
Theodore A. Linden, Advanced Decision Systems

Combining Reactive and Strategic Planning through 137
Decomposition Abstraction
Nathaniel G. Martin, James F. Allen, University of Rochester

Cooperative Planning and Decentralized Negotiation in 144
Multi-Fireboss Phoenix
Theresa Moehlman, Victor Lesser, University of Massachusetts

Optimization of Multiple-Goal Plans with Limited Interaction 160
Dana S. Nau, James Hendler, University of Maryland
Qiang Yang, University of Waterloo

Deferred Planning and Sensor Use 166
Duane Olawsky, Maria Gini, University of Minnesota

Exploiting Plans as Resources for Action 175
David Payton, Hughes Research Laboratories

IV

PAGE
Responding to Impasses in Memory-Driven Behavior: A 181
Framework for Planning
Paul S. Rosenbloom, Soowon Lee, University of Southern California
Amy Unruh, Stanford University

0-Plan2: Choice Ordering Mechanisms in an Al Planning 192
Architecture
Austin Täte, University of Edinburgh

Hypergames and Al in Automated Adversarial Planning 198
Russell R. Vane, III, The Young Guard Company
Paul E. Lehner, George Mason University

Nonlinear Planning with Parallel Resource Allocation 207
Manuela M. Veloso, M. Alicia Perez, Jaime G. Carbonell
Carnegie Mellon University

SCHEDULING

Applying a Heuristic Repair Method to the HST Scheduling 215
Problem
Steve Minton, Andrew B. Philips, Sterling Federal Systems

Integrating Planning and Scheduling To Solve Space Mission 220
Scheduling Problems
Nicola Muscettola, Stephen F. Smith, Carnegie Mellon University

Solution of Time Constrained Scheduling Problems with 231
Parallel Tabu Search
E. L. Perry, Ford Aerospace

Managing Resource Allocation in Multi-Agent Time-Constrained 240
Domains
Katia Sycara, Steve Roth, Norman Sadeh, Mark S. Fox
Carnegie Mellon University

Anytime Rescheduling 251
Monte Zweben, NASA Ames Research Center
Micheal Deale, Robert Gargan, Lockheed Al Center

V

PAGE

Becoming Increasingly Reactive 459
Tom M. Mitchell, Carnegie-Mellon University

A Preliminary Analysis of the Soar Architecture as a Basis 468
for General Intelligence
Paul S. Rosenbloom, University of Southern California
John E. Laird, Robert McCarl, University of Michigan
Allen Newell, Carnegie Mellon University

An Implementation of Indexical/Functional Reference for 490
Embedded Execution of Symbolic Plans
Marcel Schoppers, Richard Shu, Advanced Decision Systems

OPIS: An Integrated Framework for Generating and Revising 497
Factory Schedules
Stephen F. Smith, Peng Si Ow, Nicola Muscettola, Jean-Yves Potvin,
Dirk C. Matthys, Carnegie Mellon University

Vlll

WORKSHOP ON INNOVATIVE APPROACHES
TO PLANNING, SCHEDULING AND CONTROL

Agrawala, A.
Allen, J. F.
Allen, J. A.
Anderson, S. D.
Basye, K.
Bennett, S.
Bonissone, P.
Carbonell, J. G.
Christiansen, A. D.
Cohen, P. R.
Converse, T.
Collinot, A.
Cook, D. J.
Deale, M.
Dean, T.
Decker, K.
DeJong, G. F.
Doyle, J.
Drummond, M.
Durfee, E. H.
Dutta, S.
Firby, R. J.
Fox, M.
Gargan, R.
Georgeff, M. P.
Gini, M.
Ginsberg, M. L.
Goldberg, K. Y.
Gratch, J. M.
Grenfenstette, J. J.
Haddawy, P.
Hammond, K.
Hanks, S.
Hart, D. M.
Hayes-Roth, B.
Hendler, J.
Howe, A. E.
Ingrand, F. F.
Kaelbling, L. P.
Kambhampati, S.
Kibler, D.
Kraus, S.
Laird, J. E.
Langley, P.
Lansky, A. L.
Lee, S.
Lehner, P. E.

AUTHOR INDEX

77
137

Lejter, M.
Lesser, V.

301 Linden, T. A.
71 Lowrance, J. D.

271 McCarl, R.
313 McDermott, D.
379 Marks, M.
207 Martin, N. G.

3
9,71,85

Matthys, D. C.
Minton, Steve

354 Mitchell, T. M.
263 Moehlman, T.

22 Muscettola, N.
251 Nirkhe, M.

271, 290 Nau, D. S.
396 Newell, A.

325, 337
28

Olawsky, D.
Ow, P. S.

109, 408
277

Payton, D.
Perez, M. A.

379 Perlis, D.
59

240, 412
251

Perry, E. L.
Philips, A. B.
Rosenbloom, P. S

284 Roth, S.
166
37

3

Ruby, D.
Schoppers, M.
Shu, R.

337 Simmons, R.
348 Smith, S. F.

48 Sadeh, N.
354

48, 59
Sycara, K.
Täte, A.

71 Tenenbaum, J. M.
263, 422 Unruh, A.

77, 160 Vane, R. R III
85 Veloso, M. M.

284 Wellman, M. P.
408, 483

93
Yang, Q.
Zweben, M.

366
100
468

109, 301
115
181
198

271
144, 396

126
439
468
450
354
137
497
215
459
144

220, 497
100
160

377, 468
166
497
175
207
100
231
215

181, 468
240
366
490
490
292

220, 497
240

240, 412
192
93

181
198
207
28
160
251

FOREWORD

This workshop was organized at the direction of Major Stephen Cross, Program Manager for Research
in Planning at the Information Science and Technology Office of the Defense Advanced Research
Projects Agency (DARPA). The purpose of the workshop is to bring together researchers concerned with
large, real-world Planning, Scheduling and Control problems, to review the latest research results in the
field, to keep the government research community abreast of current technology, and to discuss future
directions.

All submitted papers were subject to a stringent refereeing process. Each paper was reviewed by three
Program committee members or additional selected reviewers. Any variations among reviewers were
thoughtfully discussed by program committee members. The Proceedings contains the accepted papers
plus invited reports of DARPA Principal Investigators summarizing their work.

The technical chair for the workshop responsible for coordination of the reviewing process, the setting
of the workshop program and general organization of the workshop was Dr. Katia P. Sycara of Carnegie
Mellon University. Dr. Sycara was assisted by a program committee consisting of:

Pierro Bonissone, General Electric
Tom Dean, Brown University
Northrup Fowler III, Rome Air Development Center
Barbara Hayes-Roth, Stanford University
Phyllis Koton, MITRE
Amy Lansky, NASA/AMES
Drew McDermott, Yale University
Tom Mitchell, Carnegie Mellon University
David Tseng, Hughes AI Research Center

Special thanks are due Dr. Paul Cohen and Dr. Jim Hendler for their assistance with the refereeing
process. Local arrangements were coordinated by Ms. Romina Fincher who worked tirelessly for the
success of the workshop. The cover was designed by Ms. Mary Jo Dowling of Carnegie Mellon
University. Arrangement and editing of these proceedings was done by Katia Sycara of Carnegie Mellon
University.

XI

PLANNING

Robotic Manipulation Planning with Stochastic Actions

Alan D. Christiansen Kenneth Y. Goldberg

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
This paper addresses automatic planning for task
domains with stochastic actions. When actions
are viewed as stochastic, the conventional planning
paradigm must be modified to search for plans that
achieve a goal with high probability. We identify
two properties of stochastic actions: state diver-
gence and state convergence. Considering these
properties leads to two planning methods. One
method, based on the control of Markov chains, uses
exhaustive forward search to find optimal length-
bounded plans. The second method uses a heuristic
search method to find good but not necessarily opti-
mal plans. We evaluate the planners on a particular
robotic manipulation task called tray-tilting. The
stochastic model for our actions is derived from
physical experiments performed by a real robot. In
addition to comparisons of estimated plan quality,
we report on actual success rates observed when our
robot carried out the computed plans.

1 Introduction
To plan, a robot must be able to predict the outcome of its
actions. In many physical manipulation tasks, it is not rea-
sonable to model actions as deterministic mappings from one
state to another. Non-determinism can arise from any of a
number of sources: A robot may have imperfect effectory
and sensory capabilities, or it may have an imperfect model
of the task (such as the effects of friction or impact dynamics).
A reasonable approach in such cases is to develop stochastic
action models. In such models, when an action is applied
to a particular world state, any of a number of world states
may occur. The probability that a particular world state will
occur is governed by a probability mapping associated with
the action.

Stochastic transition models can be developed either ana-
lytically, as in [Erdmann, 1989, Goldberg and Mason, 1990],
or empirically, as in [Christiansen et dl., 1990]. In the present
paper, we focus on the planning problem: given a stochastic
model of actions, a known initial state and desired final state,
find a sequence of actions—a plan—to reach the desired fi-
nal state. In this paper, we consider only open-loop plans,
where there is no plan execution monitoring. If we start with
a known world state, and then execute one or more stochastic
actions, the predicted result is not a single state. Instead, the

result is a hyperstate that assigns "probability mass" to each
state such that the mass sums to one. The notion of prediction
can be extended so that given a particular hyperstate, we can
predict what the "resulting" hyperstate will be when an action
is applied. We can think of planning as finding a sequence of
actions that transfer probability mass from the initial state to
the desired final state.

Planning is affected by two contrasting properties of
stochastic actions. Some actions have the property that a
single initial state can map onto more than one final state.
We say that the action exhibits state divergence when, in exe-
cuting the action, there is a tendency to distribute probability
mass. Alternatively, some actions have the property that mul-
tiple initial states map into a single final state. In these cases,
we say that an action exhibits state convergence—it tends
to focus distributed probability mass into a state. An action
can exhibit both divergence and convergence if it spreads out
probability mass from one state while combining mass from
other states. Of course, an action may exhibit neither state
divergence nor state convergence.

A stochastic planner evaluates plans by tracking probability
mass as each plan proceeds. The objective is to find a plan
that transfers a maximal amount of probability mass into the
desired final state. This can be accomplished in different
ways. One way is to use actions that cause state divergence
followed by actions that cause convergence toward the desired
state. Another way to plan is to avoid actions that cause
state divergence. These two ways of transferring probability
mass suggest two planning methods: Method I propagates
hyperstates, using a forward exhaustive search (to a fixed
plan length) to find a plan most likely to produce the desired
goal. Method II propagates only the most likely state, using
a backward best-first search to find a plan that maximizes a
lower bound on the probability of reaching the goal.

Planning with stochastic actions has been considered by
several researchers previously. Stochastic approaches to
domain-independent planning have been described in the AI
literature [Feldman and Sproull, 1977, Cheeseman, 1988,
Russell and Wefald, 1988, Pearl, 1988, Drummond and
Bresina, 1990, Hansson et al., 1990], in texts on stochas-
tic control [Bertsekas, 1987] and in texts on decision theory
[Berger, 1985]. The present paper focuses on the stochas-
tic properties of physical actions and the demands that these
properties place on the planning problem.

In this paper, we describe our experiences with applying
two planning methods to a particular manipulation task: tray-

Figure 1: The tray (viewed from above), its states, and exam-
ples of tilt azimuths.

tilting. By using a concrete example, we hope to illustrate
characteristics that are common in robot manipulation. We
use a real robot system to generate the stochastic action model
and to test the resulting plans. We describe the two planning
methods in detail and analyze the computational complexity
of each method. We compare the plans produced by each
method and the planning time required by each planner. We
conclude the paper by revisiting the concepts of state diver-
gence and state convergence and their importance to planning
with stochastic actions.

2 The Manipulation Task

The physical task that is considered in this paper is called tray-
tilting. The object of the task is to manipulate planar objects
in a walled tray by tilting the tray so that the objects slide to a
desired position and orientation. The physics of this task are
subtle and include frictional and impact effects. Tray-tilting
has been studied before, both analytically [Erdmann and Ma-
son, 1988, Taylor et al., 1987] and empirically [Christiansen
etal., 1990].

Our robot arm has been programmed to perform tilts in any
desired direction. As the tray is tilted by the robot, gravity
acts on the object and causes it to slide. For the purposes
of this paper, we define tilts by a parameter which we call
the tilt azimuth. This angle is the direction, in the plane of
the tray bottom, of the force of gravity on the object during
the tilt. (See Figure 1.) Other parameters of the tilt, such as
steepness of the tilt and tilt speed, have constant values during
all tilts. Although there is a an infinite number of possible tilt
azimuths, and therefore an infinite number of tilts, we sampled
this space of azimuths at 30 degree intervals. In all cases, the
robot restricted its actions to one of these 12 tilts.

In addition to defining tilts by a single parameter, we have
simplified the description of task state by discretizing the ob-
ject's position and orientation. As indicated in Figure 1, we
have divided the tray (conceptually) into nine regions, corre-
sponding to the four corners, the four sides, and the middle
of the tray. We have given each of these regions symbolic
names, as shown in Figure 1. We describe an object's posi-
tion by one of these names—the name of the region in which
the object's center is located. A camera above the tray and an
industrial image processor provide this position information.
We describe orientations by a similar discretization—our ob-

jects are described as being either horizontal (h) or vertical
(v), depending on the orientation of the object's major axis,
as reported by our vision system. The rectangular tile of Fig-
ure 1 would be classified as (sw h). This discretization is
coarse and somewhat arbitrary. However, states defined by
this decomposition correspond to qualitatively distinct phys-
ical configurations.

3 Developing a Stochastic Model from
Observations

Given a set of observations from physical experiments, what is
an appropriate stochastic model of actions? If the probabilities
of future states depend only on the current state, then we can
use a Markov chain to represent the actions. We represented
each tilting action u with a stochastic transition matrix, P„,
where pij is the (conditional) probability that the system will
be in state j after action u is applied to state i. We assume
that the set of states and the set of actions are finite.

In the physical experiments, each observation consists of an
initial state, a tilting action, and a final state. For each tilting
action u, consider the matrix X„, where «^ is the number
of observations with initial state i and final state j. Given
an observation matrix X„, how do we generate a stochastic
transition matrix Pu?

One possible approach is to use the observed frequencies.
The difficulty is that some observed transition frequencies
may be zero. For such a transition, it isn't clear whether the
transition is truly impossible—maybe the transition just has
a low probability and hasn't yet been observed. A standard
approach from statistical estimation is to use the following
estimator for each action u,

«>W (1)

where the numbers a^- for i = 1,2, ...,k are Dirichlet pa-
rameters based on a priori assumptions. This is equivalent
to a Bayes' estimator using a squared error loss criterion, see
[DeGroot, 1970].

We could set otij = 1.0 to represent the prior assumption
that the conditional probability distribution is uniform: af-
ter an action is applied, the system is as likely to be in any
one state as in any other. For the tray tilting problem, we
set a,j = .01 to represent our prior assumption that the con-
ditional probability distribution for each action will not be
uniformly distributed, but will in fact be skewed toward some
subset of states.

We generated 2000 tilt azimuths by random selection (with
replacement) from the set of twelve azimuths described pre-
viously. Our robot performed the corresponding tilts of the
tray, and observed the outcome of each tilt. The X„ matrices
were defined by this data and we used equation 1 to generate
the corresponding stochastic transition matrices.

4 Planning with Method I

We now turn to the planning problem: given a stochastic
model of actions, a known initial state and desired final state,
find a sequence of open-loop tilting actions—a plan—to reach
the desired final state. We will present two planning methods
and their resulting plans. In this section we describe a method

that maximizes the probability of reaching the desired final
state.

Method I is based on the control of Markov chains. Con-
sider a system with finite state space. Let us refer to a probabil-
ity distribution on this state space as a hyper state. Each action
is a mapping between hyperstates. A plan is a sequence of
actions and hence is also a mapping between hyperstates. For
a given initial hyperstate, each plan generates a final hyper-
state. To compare plans, we compare their final hyperstates.
To rank hyperstates, we introduce a function that maps each
hyperstate into a real number called its cost. The best plan
is the plan with the lowest cost. See [Goldberg, 1990] for
details on Method I and its application to programming parts
feeders.

Let the vector A refer to a hyperstate. In a Markov chain,
the hyperstate that results from applying action u to A is given
by post-multiplying A by P„,

A' = AP„.

A plan is a sequence of actions. The outcome of a plan is the
composite effect of its inputs; the transition matrix for a plan is
the product of the transition matrices of its actions. That is, for
a plan consisting of the sequence of actions < ui, «4, «2 >»
the final hyperstate is

A' AirUi ir U4 iu2 •

For the tray tilting task we are given a known initial state and
desired final state. In this case the initial hyperstate is a vector
with a 1 corresponding to the initial state and zeros elsewhere.
Each action (and hence plan) defines a final hyperstate using
the stochastic transition matrices described in Section 3. The
cost function depends on the desired final state. If we want to
reach state i, let

C(A) = -Pi,
so that the minimum cost hyperstate corresponds to the highest
probability that the system is in state i. Note that there may
be more than one minimum-cost hyperstate.

To find the best plan, we consider all plans and find one
with minimum cost. The difficulty is that there is an infinite
number of plans to consider. So finding the best plan can
take a long time, even on a supercomputer. We compromise
and ignore plans longer than some cutoff threshold. This
threshold depends on how much time we have and how fast
we can evaluate plans, which in turn depends on how fast we
can multiply matrices. In our case we considered all plans
with length < 3 to find a plan with minimal cost.

5 Planning with Method II

An alternative planning method is based on heuristic graph
search. The transition probability matrices described in Sec-
tion 3 define a graph, or more correctly, a multi-graph. The
vertices of the graph are the states that were defined previ-
ously (the object configurations) and the graph's edges are the
actions that cause one state to be changed to another. Associ-
ated with each edge is an estimate of the probability that the
action will provide the indicated state change. The graph is
a multi-graph because there may be multiple edges possible
between a single pair of vertices.

Figure 2 shows a portion of the graph defined by our data.
Above each edge is a tilt azimuth. Below each edge is the

Figure 2: A portion of the robot's task model.

associated transition probability. Note that when the object
is in state (ne v), and a tilt of azimuth 300 is applied, the
object's new state is uncertain. It is estimated that it has a
61% chance of achieving the (nw h) configuration, and a 38%
chance of moving to the (n h) configuration. Of course, not all
transitions are shown in Figure 2. The sum of the probabilities
for a particular action executed from a particular state must
be equal to one.

The planning problem of finding a sequence of actions that
will transform a given current state to a desired goal state can
now be viewed as finding a path in the graph that links the two
states. Since our model of state transitions is stochastic, we
naturally wish to find a plan (path) with high probability of
achieving the goal. When a plan is executed, several actions
are performed in succession. The action probabilities for
the plan steps must be combined to give an estimate of the
probability of success for the whole plan.

A lower bound on the probability that a plan will reach a
desired state can be computed by multiplying the probabilities
along one path between initial and desired states. Such a
computation produces only a lower bound because there can
exist multiple paths between the initial and desired states that
share the same sequence of actions. We can find a plan
that maximizes this lower bound by using shortest-path graph
search. This leads to an efficient algorithm for finding plans
that we will call Method II.

Method II is an example of uniform-cost search [Pearl,
1984]. While uniform-cost search is usually cast as finding a
minimum cost path in a graph (where the cost of a path is the
sum of the costs of the edges in the path), it is easy to adapt the
algorithm to our problem by changing the evaluation function.
In finding a minimum cost path in a graph, one desires to find
a sequence of edges linking the start and goal vertices such
that the sum of the costs of those edges is as small as that of
any other such sequence. Our problem is to find a sequence of
edges linking the start and goal vertices such that the, product
of the probabilities is as large as any other such sequence. It
is possible to map our problem exactly onto a shortest path
problem by transforming the values associated with edges.
For each edge probability p, we consider a new edge value
(-logp). In this way, we guarantee that finding a shortest
path in the transformed graph will correspond exactly to a
maximum product probability path in the original graph.

Since Method II only considers single paths, it sometimes

misses good plans. Consider when Method II is applied to the
problem of getting from state (ne v) to (ne h), and its stochastic
action model is defined by Figure 2. Method II returns the
plan (180 330 90). This path's product of action probability
estimates is larger than any other path in the graph. Method II
has found a good plan, but note that the plan (300 90) would
be better. Under this plan, the configuration achieved after
the first tilt is very likely to be either (n h) or (nw h), and
the second tilt is highly likely to achieve the goal no matter
which intermediate configuration was actually achieved. The
combination of paths yields a high probability even though
neither single path has higher probability than the path (180
330 90). Note that Method I would return the better plan in
this case but we shall show that Method I requires significantly
more computational effort to achieve this rigor.

6 Computational Complexity

Finding optimal open-loop plans with stochastic actions has
been shown to be NP-Complete [Papadimitriou and Tsitsiklis,
1987]. This suggests that an algorithm with good worst-case
running time may not exist.

Recall that Method I considers all plans up to some length
limit, k. Let n be the number of states and m be the number
of actions. There are TO* fc-step plans. We can visualize the
search for an optimal strategy as proceeding through a tree,
where the root node contains the initial hyperstate and has a
branch for each action in the action space. Each branch leads
to a new hyperstate which in turn has branches for each action.
We expand the tree to some fixed depth (horizon) and select
the optimal path. To generate each node in the tree we must
perform 0(n2) multiplications. The total time for finding the
best fe-step plan is o{n2mk).

Recall that Method II is based on uniform-cost graph search.
Because the edge values (- logp) are nonnegative, uniform
cost search on this problem has a monotone heuristic, which
implies that whenever a node is expanded, a best path to that
node has been found. This means that nodes will never have
to be re-expanded, and in a finite graph of n vertices, there can
be no more than n node expansions. If there are TO actions
available at each state, then TO is the maximum number of
edges that can be between any pair of vertices. Therefore,
the maximum amount of work that will have to be done at
each node expansion is 0(nm), and the complexity of the
algorithm is 0(n2m). The implemented algorithm deals with
probabilities and products directly instead of transforming the
problem to a shortest path problem, but it performs analogous
steps to those of uniform cost search on the transformed graph.
So, the complexity of Method II is also 0(n2m).

7 Empirical Comparisons of the Planners

The two planning methods were implemented in Common
Lisp. To explore performance tradeoffs, we performed several
experiments with the tray-tilting task. In all experiments
reported in this paper, we used an 11 inch square tray and a 1
by 3 inch rectangular tile (Figure 1).

In Section 2, we described the state space of possible tile
configurations for the tray-tilting tasks. There are nine possi-
ble discrete positions and two discrete orientations, making a
total of eighteen possible configurations. It turns out that only
twelve of these configurations occur in practice. When the tile

Problem Method I Method II
Start Goal Plan P Plan P

(nh) (neh) (90) .98 (90) .98
(nh) (nev) (24018060) .97 (240180 60) .96
(nh) (ev) (120) .97 (120) .97
(nh) (seh) (9018090) .98 (270150) .96
(nh) (sev) (15030180) .98 (2400120) .97
(nh) (sh) (240 ISO) .97 (240150) .97
(nh) (swh) (270270180) .97 (270180) .96
(nh) (swv) (240180) .98 (240180) .97
(nh) (wv) (240) .99 (240) .99
(nh) (nwh) (27030270) .97 (270) .97
(nh) (nwv) (2400) .98 (2400) .98

(swv) (nh) || (12030030) .62 || (60180 24030030) .75

(nev) (nh)
(neh) |

(27030 60) .67 | (180240300 30) .75
(nev) (30090) .98 (18033090) .87

Table 1: Comparison of plans generated by the two methods.

I

1 1
180

300 90

I
\
330

I.....1 tiiii

90

Figure 3: Two tray-tilting plans. The plans are read from left
to right, with intermediate states shown as views from above
the tray. Tray tilt directions are shown between the states that
they link. The problem is to re-orient the object from vertical
to horizontal, leaving the object in the upper right corner of
the tray. Above: Method I's plan. Below: Method IPs plan.

is in one of the four corners, both orientations are possible,
for a total of eight configurations. The two configurations
in the middle of the tray are impossible. For the remaining
positions—where the rectangular tile is against a side of the
tray—only the orientation where the tile's major axis parallels
the tray wall occurs in practice. This adds four more possible
configurations, for the total of twelve.

For twelve possible tile configurations, there are 144 pairs
of configurations defining start state and goal state. Let us
refer to each of these pairs as a problem. There are 132 non-
trivial problems for our tray domain. (The twelve problems
with start state and goal state equal to each other are trivial,
since a null plan always solves the problem.) We ran the two
planners on each of the 132 non-trivial problems. Table 1 lists
some of the resulting plans.

For 51 (39%) of the problems, the two planners produced
identical plans. In many other cases, the two planners pro-
duced similar or symmetrically equivalent plans. In nearly
every case, the estimated success ratios of the two methods
were within a few percentage points of each other. Note
that for plans of length < 3, the estimated success ratio for
Method II is less than or equal to that for Method I, since
in those cases, Method II's estimate is a lower bound on the
Method I estimate.

On some problems, the planners did not agree. In Table

Start
State

Goal
State

Planning
Approach

Best
Plan

Estimated
Successes

Measured
Successes

(ncv)
(nev)

(nh)
(nh)

Method I
Method II

(27030 60)
(180240300 30)

134(0.67)
150(0.75)

170(0.85)
192(0.96)

(ncv)
(nev)

(neh)
(neh)

Method I
Method n

(30090)
(18033090)

196(0.98)
174(0.87)

198 (0.99)
171 (0.855)

Table 2: Summary of execution trials for four plans. The
estimated and measured success columns show the number of
successful plan executions (out of 200 trials) along with the
corresponding decimal fractions.

1 we have listed three such problems (the last three entries).
Since Method I was limited to searching for plans of three
steps or shorter, there were occasions when Method II was
able to search deeper and find a superior plan. The four and
five step plans listed in the table are two such examples. On
some problems Method I was able to find a superior plan
within its length bound by taking advantage of state conver-
gence. The plan (300 90) is an example. In this problem,
the initial state is the northeast corner of the tray in a ver-
tical configuration, and the desired goal is the same corner,
but in a horizontal configuration. Figure 3 shows a trace of
the anticipated object locations as each of the plans proceeds.
Method II (below) finds an adequate plan: It tilts the tray at
180, moving the object to the (se v) configuration. Then it
tilts at 330, moving the object nominally to (n h). Finally,
it tilts at 90, moving the object to (ne h). This plan is good,
but it can fail by (for example) the tilt 330 not aligning the
object horizontally. Method I's plan (above) is better since
its intermediate hyperstate aligns the object horizontally but
causes divergence of its position. The second tilt of the plan
causes all such intermediate states to converge to (ne h).

Both planners were implemented as compiled Common
Lisp programs and were tested on the same computer, a Sun
3/280. Method I's search was truncated at depth three, and
so all of its plans were between one and three steps in length.
Method IPs plans were all between one and six steps in length.
Over the 132 problems, Method I took an average of 62 sec-
onds real time per problem, with a standard deviation of 2.8
seconds. The average time for Method II on the same prob-
lems was 0.46 seconds, with a standard deviation of 0.62
seconds. The minimum planning time for Method I was 59
seconds and the maximum was 87 seconds. The minimum
planning time for Method II was 0.040 seconds and the max-
imum was 6.5 seconds. The average length of plans found by
Method I was 2.4 tilts with a standard deviation of 0.75 tilts.
The average plan length for the Method II planner was also
2.4 tilts, but with a standard deviation of 1.2 tilts.

7.1 Physical Test of Resulting Plans
We tested the last two problems of Table 1 with the robot.
These two problems represented cases where the methods
produced significantly different plans. In terms of predicted
success ratios (probability of reaching the goal), Method II
found a better plan for the first problem because it was able
to search deeper. In the second problem, Method I found a
better plan because it considered state divergence and state
convergence.

Table 2 summarizes the head-to-head competition. Each
of the four plans was executed 200 times. In the first prob-

lem, the estimated success ratio was lower than the observed
success ratio. Evidently the estimates for these plans were
low because insufficient data had been collected to predict the
true outcomes of the actions comprising the plans. In the sec-
ond problem, the estimated and observed success rates were
nearly equal. In both cases, the plan with higher estimated
success rate performed better.

8 Discussion
We began this paper by acknowledging that it is not always
possible to predict the exact outcome of actions in robotic
manipulation due to factors such as control error, friction, and
dynamics. In response, we considered stochastic models of
action. When actions are viewed as stochastic, the conven-
tional planning paradigm must be modified to search for plans
that achieve a goal with high probability. We can view plan-
ning as finding a sequence of actions that transfer probability
mass from the initial state to the desired final state.

Planning is affected by two contrasting properties of
stochastic actions. We say that an action exhibits state di-
vergence when it distributes probability mass. We say that an
action exhibits state convergence when it focuses probability
mass. These properties affect the choice of planning method.
We considered two methods.

Method I, based on the theory of Markov chains, uses a
forward exhaustive search (to a fixed plan length) to find a
plan most likely to produce the desired goal. Method II uses
a backward best-first search to find a plan that maximizes a
lower bound on the probability of reaching the goal. Method
I keeps track of all probability mass as it evaluates plans,
monitoring both state divergence and state convergence as the
plan progresses. However, keeping track of all probability
mass requires substantial computation; Method I can only
consider short plans. Method II keeps track of only the most
probable trajectory, monitoring state divergence and ignoring
state convergence. Accordingly, Method II is faster and can
consider longer plans, but it sometimes misses good plans.

Which method is better? It depends on the available plan-
ning time and the degree of state divergence in the available
actions. Method I is generally much slower than Method II.
The exponential factor in Method I's complexity makes it im-
practical when a large number of actions are available at each
state. If we are not concerned with computation time, Method
I is to be preferred. Method II is faster, and is preferable when
we can avoid or minimize divergence.

Sometimes divergence is unavoidable. For example, con-
sider a tray-tilting problem where we want to achieve a par-
ticular object configuration but the initial configuration is un-
known. This is equivalent to a highly divergent action oc-
curing before plan execution. It is as if someone randomly
shook the tray prior to the robot carrying out its plan. Con-
sider a case where the initial hyperstate reflects a uniformly
distributed state probability. Method I can find the best plan
for getting the tile into the northeast corner. Method II can't
solve this problem. As another example, consider program-
ming a robot to pick up parts on an assembly line. Each time
a part arrives, its initial position and orientation relative to the
robot will be slightly different. This results from a divergent
action earlier in the assembly line.

Sometimes state divergence is desirable. For example, it
may be be more efficient to allow divergence followed by ef-

fective convergence. Consider a typical plan for causing two
gears to mesh: we jiggle the gears at random (divergence),
until the gears fall into alignment (convergence). This plan
is more efficient than trying to avoid divergence by carefully
aligning the gears. The process of deliberately incurring di-
vergence is known as randomization, and has been recently
identified as an important component of manipulation [Erd-
mann, 1989].

For most problems in the tray-tilting domain, Method II
worked as well as Method I. Studying the resulting plans,
we discovered it was often possible to avoid significant state
divergence. For a few problems, it was better to incur state
divergence followed by state convergence. An example of
such a problem was given in Figure 3. On a problem like this,
Method I is superior.

We believe that the study of planning with stochastic actions
is a research area that will become increasingly important as
AI planning techniques are employed in robotics. It seems
possible to build an efficient planner that considers some state
convergence. Instead of tracking the probabilities for every
state, as Method I does, or tracking the probability of only
the most likely state, as Method II does, maybe the hypothet-
ical planner could track the probabilities of the two or three
most likely states. Like Method II, the hypothetical plan-
ner would, in most cases, find a plan of near-optimal quality.
Even more desirable would be an approximation algorithm,
where we might be able to guarantee, for all problems, that
the plans produced would be suboptimal by no more than a
fixed constant factor.

Acknowledgements

This work was supported by the National Science Foundation
under grant DMC-8520475 and by an AT&T Bell Laboratories
Ph.D. Scholarship supporting the first author. We thank Matt
Mason for suggesting this collaboration. We also thank Matt,
Rob Kass, Kevin Lynch, Tom Mitchell, Steve Shreve, and
Manuela Veloso for helpful comments.

References

[Berger, 1985] James O. Berger. Statistical Decision Theory
and Bayesian Analysis. Springer-Verlag, 1985.

[Bertsekas, 1987] Dimitri P. Bertsekas. Dynamic Program-
ming: Deterministic and Stochastic Models. Prentice-Hall,
1987.

[Cheeseman, 1988] Peter Cheeseman. An inquiry into com-
puter understanding. Computational Intelligence, 4(1),
February 1988.

[Christiansen et al., 1990] Alan D. Christiansen, Matthew T.
Mason, and Tom M. Mitchell. Learning reliable manipula-
tion strategies without initial physical models. In IEEE In-
ternational Conference onRobotics and Automation, pages
1224-1230, May 1990.

[DeGroot, 1970] Morris H. DeGroot. Optimal Statistical De-
cisions. McGraw-Hill, 1970.

[Drummond and Bresina, 1990] Mark Drummond and John
Bresina. Anytime synthetic projection: Maximizing the
probability of goal satisfaction. lnAAAI-90,1990.

[Erdmann and Mason, 1988] Michael A. Erdmann and
Matthew T. Mason. An exploration of sensorless ma-
nipulation. IEEE Journal of Robotics and Automation,
4(4):369-379, August 1988. Originally appeared in 1986
IEEE International Conference on Robotics and Automa-
tion.

[Erdmann, 1989] Mike A. Erdmann. On Probabilistic Robot
Strategies. PhD thesis, MIT, 1989.

[Feldman and Sproull, 1977] J. A.Feldman andR. F. Sproull.
Decision theory and artificial intelligence ii: The hungry
monkey. Cognitive Science, 1:158-192,1977.

[Goldberg and Mason, 1990] K. Y. Goldberg and M. T. Ma-
son. Bayesian grasping. In International Conference on
Robotics and Automation. IEEE, pages 1264-1269, May
1990.

[Goldberg, 1990] Kenneth Yigal Goldberg. Stochastic Plans
for Open-Loop Manipulation. PhD thesis, CMU School of
Computer Science, 1990. To appear.

[Hansson et al., 1990] Othar Hansson, Andrew Mayer, and
Stuart Rüssel. Decision-theoretic planning in bps. In AAAI
Symposium on Planning, 1990.

[Papadimitriou and Tsitsiklis, 1987] Christos H. Papadim-
itriou and John N. Tsitsiklis. The complexity of markov
decision processes. Mathematics of Operations Research,
12(3), August 1987.

[Pearl, 1984] Judea Pearl. Heuristics: Intelligent Search
Strategies for Computer Problem Solving. Addison-
Wesley, 1984.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intel-
ligent Systems. Morgan Kaufmann, 1988.

[Russell and Wefald, 1988] Stuart Russell and Eric Wefald.
Decision-theoretic control of reasoning: General theory
and an application to game playing. Technical Report
UCB/CSD 88/435, UC Berkeley, October 1988.

[Taylors al., 1987] Russell H. Taylor, Matthew T. Mason,
and Kenneth Y. Goldberg. Sensor-based manipulation
planning as a game with nature. In International Sympo-
sium on Robotics Research, pages 421-429, August 1987.

Designing and Analysing Strategies for Phoenix from Models
Paul R. Cohen

Experimental Knowledge Systems Lab
Department of Computer and Information Science

University of Massachusetts, Amherst, Mass 01003
email: cohen@cs.umass.edu

Abstract

This paper illustrates how aspects of the design of a

planner can be derived from a formal model of the

planner's environment and the desired planner

behaviors. Specifically, I show how the order of
execution of multiple fire-fighting plans is determined
by a model of the dynamics of the Phoenix

environment. More generally, I introduce an
ecological approach to the design and analysis of
intelligent agents. Some tenets of this approach are

familiar; for example, the behavior of an agent arises

from its interactions with its environment (e.g., [12,
11, 6, 1, 8]); and some agent designs are better
adapted to particular environments than others (e.g.,
[9, 7, 3, 10]). My purpose here is not to discuss
these foundations, but to demonstrate how models of

the interactions between an agent and its environment
can facilitate design and analysis.

1. An Ecological View

Our goal is to understand the functional relationships

between three complex structures: the architecture and
knowledge of agents, the structure and dynamics of
environments, and the behaviors that result from the
interactions between agents and their environments

(Fig. 1). Borrowing from the literature on animal

behavior, we call these relationships the behavioral

ecology of an agent.

The terms agent, architecture, environment, and
behavior are open to interpretation. Without implying

that our interpretations are consensual, our view is

that agents sense their environments and decide
autonomously how to act, and that these actions,

moderated by the environment over time, produce

behavior. The agent's architecture is a collection of

sensors, effectors, and internal data structures and
processes. The ecological view in Figure 1 suggests

seven research activities that AI researchers currently

engage in or would like to engage in:

Environment assessment: Determining
which aspects of the environment must be
represented in a model for design and analysis

Modelling: Formally specifying the functional
relationships from which to predict behavior,
given the architecture and environment of an
agent

Design: Inventing or adapting architectures that
are predicted to behave as desired in particular
environments. In addition, redesign involves
modifying a design when it is shown, by way
of a model, to perform less well than it might

Prediction: Inferring from the functional
relationships in a model how behavior will be
affected by changing the architecture of the
agent or its environment.

Experiments: Testing the veracity of
predictions by running the agent in its
environment

Explanation: Finding the source of incorrect
predictions in a model, and revising the model,
when unexpected behaviors emerge from the
interactions between an agent and its
environment.

Generalization: Whenever we predict the
behavior of one agent in one environment, we
should ideally be predicting similar behaviors
for agents with related architectures in related
environments. In other words, our models
should generalize over architectures,
environmental conditions and behaviors.

In the following sections I will illustrate each of
these activities. But first, some disclaimers, an

opportunity to say what this paper is not about. This

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

agent's
architecture
and knowledge

environment
structure and
dynamics

agent's
behavior

Figure 1. Three components of an agent's behavioral ecology

is not a collection of formal models from which to

derive the design of the entire Phoenix planner,
complete with predictions and experiments. Such
models are the long term goal of the Phoenix project.

Nor does this paper present models of the "innards" of
the Phoenix planner—the "fixed part," or the

"architecture" of the planner. The Phoenix planner

relies on stored skeletal plans for rough guidance

about how to fight fires.These plans—the "flexible
part" or "knowledge" of Phoenix planners—are the

subject of this paper. I show how to determine the

order in which to fight several simulated forest fires.
While this question is not intrinsically interesting, it

has provided an opportunity to develop the design
methodology represented by the seven steps, above.
And the methodology itself is interesting, or so it

seems to me, because it bases design decisions on
formal models from which specific predictions about
performance can be derived. This is qualitatively
different (and better, it seems to me) than the modal

AI design methodology of basing design decisions on
the intuitions of the designer and making no specific
predictions about performance.

This paper has been written as a record (and a

demonstration) of this model-based design

methodology, as it is applied to a single design
decision for the Phoenix planner. In the following

sections, I describe the decision, derive a model, prove
that the correct decision for an arbitrary number of

simulated forest fires is to fight the youngest fire

first, predict how the Phoenix planner will actually

perform, explain why the predictions are incorrect in

some cases, and describe how the design of the

Phoenix planner has been modified (and improved) as

a result. This final step has involved modifying the
architecture, or fixed part of the Phoenix planner.

2 A Design Problem in Phoenix

Phoenix is an environment—a simulation of forest

fires—and a collection of simulated agents [4]. Many
factors that affect forest fires also affect the fires in
the Phoenix environment, including wind speed and

direction, elevation gradients, fire temperature and

flame height, ground cover, and natural and artificial
boundaries such as rivers and roads. Fires, which are

implemented as cellular automata, "burn" an array

that represents the topographical features of
Yellowstone National Park. Nontopographical factors
(e.g., weather) are set and changed manually, or
randomly, or by prespecified scripts. Phoenix agents
contain fires by cutting fireline around them. Several

agents are usually required to contain a fire, so they

must coordinate or be coordinated. Currently, a single
fireboss agent directs several semi-autonomous
bulldozer agents, which plan individually how to

carry out the directions. The current Phoenix agent

architecture includes sensors, effectors, reflexes, and a

cognitive scheduler. Reflexes respond immediately to
situations such as encroaching fire. The cognitive

scheduler coordinates all the agent's activities except

its reflexes, including selecting skeletal plans,

expanding plans into subplans, assigning appropriate
execution methods to actions, monitoring, and fixing

plans when actions cannot be executed.

10

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

Let us consider a situation in which several fires are

burning simultaneously. The Phoenix fireboss decides

to send all its resources to each fire in sequence, rather

than dividing resources between the fires (this has

been shown to be the best strategy in most cases).

The question remains, in which order should the fires

be fought?

2.1 Environment assessment.

Environment assessment is the informal process of
deciding which aspects of an environment have

important effects on particular behaviors, which can
be safely left out, and which have unknown effects.
The behavior that interests us here is the order in

which multiple fires are fought, and the consequent
loss of acreage of forest. A good ordering minimizes
the loss of acreage. After watching fires in Phoenix
for a long time, one gets a sense of the factors that
affect how much area bums, and, thus, the factors that
influence the fireboss's decision about the order in

which to fight the fires. The factors that should most
influence the ordering decision are probably wind
speed, ground cover, the initial size of the fires, and
the force one can bring to bear on the fires (see Table
1). It also matters whether bulldozers work directly at
the fire edge (direct attack), or at a distance (indirect

attack). The direction of the wind probably does not
affect the ordering decision, nor do small fluctuations
in wind speed and direction, which cancel out over

time. Fires in the Phoenix environment generally
have lumpy elliptical shapes, but the exact shape

probably has little effect on the ordering decision, and

it probably does not matter where bulldozers start

working. Natural and artificial boundaries are

currently exploited by the Phoenix planner, but it is
unclear how these should affect the ordering decision.

Another uncertainty is whether the fire perimeter can

ever increase at a nonlinear rate that is high enough to

affect performance. Preliminary data tell us that

perimeter growth is linear, but when convective fires

are implemented in Phoenix, they will probably

influence the ordering decision.

This assessment leads to some assumptions, and then
to a model. I will assume that fireline cut by

bulldozers is contiguous and its position around the
fire is irrelevant. A will also assume that the fire

grows by the same amount at all points on its

perimeter that are not constrained by fireline or other

boundaries, and that travel time between fires is

negligible.

2.2 Modelling

It turns out that if the Phoenix fireboss can minimize
the total amount of time that agents require to contain
a sequence of fires, it will also minimize the total

area burned [3].

Fire growth is roughly linear. The radius of the fire

grows by a constant at each time unit:

r(t+1) = r(t) + k

A fire is usually not noticed immediately by the
Phoenix fireboss because its subordinate watchtowers

require a significant interval to scan an area. Also,

Probably Influences
Fireboss's Ordering
Decision

Probably Doesn't Influence
Decision

Unknown or Uncertain

Influence on Decision"

Wind speed Wind direction Boundaries

Ground cover Shape of the fire Nonlinear fire growth

Elevation gradients Where on the perimeter

bulldozers work first Direct or indirect attack

Initial size of fires Fluctuations in wind

speed and direction Number of bulldozers

Table 1. Assessment of factors with respect to the fireboss's ordering decision.

11

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

bulldozers need time to reach the fire. So by the time
bulldozers begin working on a fire, it already has a
significant perimeter, which I denote pQ.

Now, imagine an agent constructs a circular line at a

constant rate around a growing fire, as shown in

Figure 2, so that when it has finished constructing

the line, the fire is completely within the line. This

is called indirect attack.The time it takes to construct
such a line depends on po, the initial perimeter of the

fire; s, how fast the fire grows; and C, how fast

bulldozers can construct fireline. The fire is contained
by the line when

t = PO
C - s (1)

or, if we build fireline so that a "corridor" remains
between the perimeter of the fire and the fireline, such

that the length of the fireline is r times the length of
the fire perimeter, then

t = PO

- s
(2)

The situation is as shown in Figure 3, which plots

the perimeter of the fire (y axis) against time (x axis).
As long as C > s, the agent's line will eventually
contain the fire. If r = 1, the containing fireline and
the fire perimeter will equal pf i. If r > 1, then the

length of the fireline and the containing perimeter
will be pfr and r pfr, respectively. At some time in

the past, the fire was very small, perhaps just a single
tree or patch of grass. This point, Q, proves
significant later.

Equations 1 and 2 can be extended to multiple fires
that are fought in succession (and also to fires fought

simultaneously, though I will not describe that here).
For the immediate discussion, I will work with Eq. 1,

assuming a "snug" fit between the fireline and the

fire. In the Phoenix environment, different fires have

different initial perimeters and spreading rates. I
denote the initial perimeters of fires fi,f2,...,fn as

PO(fl), P0(f2),-P0(fn), the rates of spread as s(fi),
s(f2),...,s(fn). I denote the time required to contain

fires fi,f2,-.,fn in that order as T(fi,f2,...,fn). It is

easy to show that

T(fl,f2 Wn) =
t(fn) + (1+g(fn))T(fi,f2 fm) (3)

where g(x) = s(x) / (C - s(x)). The derivation is in the
Appendix.

One can see from Eq. 3 that the order in which one

fights fires affects the time required to fight them.
Imagine two fires, a and b, with po(a) = 100, po(b) =

150, s(a) = 12, and s(b) = 4; and the maximum rate at
which bulldozers can cut fireline is C = 20. If we
fight fire a first (i.e., assign {a -> fi, b -> f2}) then

T(a,b) = 25. Alternatively, if we fight b first (i.e.,
assign {b -> fi, a -4 f2J) then T(b,a) = 35.9.

Figure 2. A schematic view of indirect attack.

r Pfr

Pfr

,< Pf1
fire spread
rate = s wi ^^^\S^^~^~ bulldozers'

yS ; cutting rate = C

n0W t=pO/C-s' t = p0/((C/r)-s

Figure 3. If C > s, the bulldozers will eventually
"catch" the growing fire at time t.

The Phoenix fireboss should fight fires in the order
that will minimize the sum of the times it spends on

12

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

each. Given a set of fires A = {a,b,...}, we need a rule
that maps A onto the ordered set F = {f"i,f2,...} so

that T(fi,f2,...) is minimized. One approach would be

to have the fireboss calculate the time required for

each order, then select the order with the lowest time.

Because the number of orders increases as the factorial

of the number of fires, this approach could be

expensive. In fact, there is a much quicker way to
find the best order: Each fire fi can be characterized by

a function of its initial perimeter and its rate of

pread:

POfi)
Q(fi) = s(f.).

If Q(a) < Q(b) < ... < Q(k), and the fireboss fights

fires in the order {a,b,...k} then it will minimize the
time required to fight the fires. I call this the
"youngest first" rule because Q(fi) is the age of fire i.

I prove in the Appendix that fighting fires in the order
youngest first minimizes the total time required to
contain all the fires. The rule is illustrated

graphically in Figure 4. In the top pane, starting at
the point labelled "now," the Phoenix agents build

fireline around fire a until it is contained. This is
shown as the intersection of the heavy "fireline" line
and the thinner "fire a" line, at t(a). The agents then
start work on fire b (assuming that travel time from

fire a to fire b is negligible). Fire b is contained at
time T(a,b). The intervening period between t(a) and

T(a,b) is t(a,b). In the bottom pane, this pattern is

reversed. Agents work on fire b first. Note that T(a,b)
< T(b,a), as predicted by the youngest first rule.1

*It surprised me that the best strategy should be to
fight the youngest fires, not necessarily the smallest,

or slowest, first. Had we relied on intuitive criteria to
select fires to fight, we would probably have
programmed Phoenix to fight the fastest-moving fire

first. I suspect that many other intuitively correct

design decisions in AI planners are, in fact, incorrect.

contain a before b

Q[a] now t[a] T[a.bl

t[b,a]

Figure 4. A geometric interpretation of the ordering

rule.

2.3 Design and Redesign

The model developed above says that if Phoenix
fights fires in youngest first order, it will minimize
the time to put out all the fires. Implementing this

strategy—making it a permanent part of the design of
indirect attack plans—is very easy if the assumptions
upon which the model is based are true. If the

assumptions are not true, then the model will make
false predictions, and we are left with this question:
Should we rework the model, or should we change the

design of the Phoenix planner so that the
assumptions are true? Here is an example of each:

Rework Phoenix: The model is based on the idea
that Phoenix figures out how long a fire will take to
contain, then selects an appropriate perimeter around

the fire to cut line, so that when it is done the
perimeter of the cut fireline is r times the perimeter of
the fire (see Figure 3). In the model, r = 1.0; that is,

there is no "corridor" between the fire and the cut
fireline. The assumption is that Phoenix has infinite

control over the perimeter of its fireline. In fact, this
assumption is wrong. The Phoenix planner does not

determine t as shown in Figure 3, but rather quantizes
t, deciding that the fire will take 500, 1000, 2000,

3000...minutes to contain. As a result, Phoenix

cannot ensure a constant corridor around a fire; for

13

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

example, a "1000-minute shell" may provide a snug

fit to some fires and very loose fit to others. Since
the model is based on a constant corridor (i.e., r =

1.0), the strategy derived from the model ("youngest

first" is best) may be wrong. If these wrong

predictions can be laid at the door of the quantizing

problem, and the model appears to be otherwise

correct, then the appropriate response is to rework

Phoenix to eliminate the quantizing problem, to give

it infinite control over the perimeter it decides to cut,

to make it conform to the assumptions of the model.

This tack is using the model prescriptively, to drive
redesign.

Rework the model: The model assumes that as

soon as one fire is contained, work begins on the

next, with no travel time. If the prediction ("youngest
first" is the best strategy) is not borne out, it may be
due to travel times between fires. There is no

meaningful way to rework the Phoenix planner to
make it conform to the "no travel time" assumption:

travel time is inherent in the Phoenix environment.

The model is descriptively wrong, and must be
reworked.

Now I will show how experiments with Phoenix
proved wrong the prediction that we should always
fight the youngest fire first, and how I showed that
Phoenix, not the model, needed reworking.

2.4 Predictions

The principal prediction under examination is that
fighting fires in the order "youngest first" minimizes

the time it takes to fight all the fires. Related
predictions are quantitative in nature: how long it
should take to fight a sequence of fires, how large is
the difference in times between one strategy and
another, and so on. Figure 5 summarizes the predicted
difference in times to fight a pair of fires under the

"oldest first" strategy and the "youngest first"

strategy, as a function of the difference in the age of

the fires (the curves correspond to differences of 20,

16, 12, and 8 hours, from top to bottom,

respectively); and the rates of spread of the fires.

Figure 5 assumes one fire spreads at 100 m/hr and

the other spreads at rates between 100 and 300 m/hr.

It predicts a 1.75 hour advantage for fighting the

youngest fire first, if the delay between the fires is 20

hours and one fire spreads at 300 m/hr and one spreads

at 100 m/hr. In Phoenix, softwood fires spread at
roughly 200 m/hr and hardwood at roughly 100 m/hr

in a 3km wind. Given these figures, the expected

advantage of the youngest-first strategy, for an eight

hour delay, is roughly twenty minutes. The advantage

of the youngest-first strategy is predicted to be much
higher for fires that burn faster.

,25

1.75

0 25

150, 200, 250, 300,

Figure 5. Predicted advantage, in hours, of the
youngest first strategy for fires burning in 3km winds

2.5 Experiments

The basic experiment went like this. A trial involved
two fires, fought in the yougest-first or oldest-first
order. For each trial, the groundcover in each of two

sectors was selected and "painted" with hardwood or
softwood according to the experimental protocol.
Then the watchtowers in each sector were deactivated.
Next, a fire was set at a random location in one of the
sectors. A delay of 8, 12, 16, or 20 hours ensued,
depending on the protocol. Then the second fire was

set in the other sector. If the strategy under test was

"fight the youngest fire first," then the watchtower in

the sector with the most recent fire would be

activated; it would send a report to the fireboss, who

would begin planning to fight the fire. If the strategy

was "fight the oldest fire first," then the other

14

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

Q2- Qi predicted time actual time disparity

8 hours 8.6 9.4 9%

12 hours 9.84 10.7 9%

16 hours 11.1 12.0 8%

20 hours 11.6 12.66 9%

Table 2. Predicted and actual times to contain fires as a function of the delay between the start times of the fires.

8 hour 12 hour 16 hour 20 hour

YF first fire

final fire perim. 4990 5123 5015 5154

final line perim 8104 8106 8088 8097

final line/fire = r 162% 158% 161% 157%

OF first fire

final fire perim. 7120 8495 10396 11840

final line perim 8335 9969 12259 13074

final line/fire = f 117% 117% 118% 110%

Table 3. Fires fought under the youngest-first strategy have a higher fireline to fire perimeter ratio than fires fought
under the oldest-first strategy, indicating a "sloppier" shell.

H

-C

32

30
^

28 *^^
V- ^y^ 0
C 26 ^ "

E
O
O

24

*^^^ o 22 ^s^
■
E 20 -

— ■ 1 1 1 1

8 hours 12 hours 16 hours 20 hours

youngest first then oldest
oldest first then youngest

Figure 6. Mean summed time to contain both fires as a function of delay between start times of the fires and fire-
fighting strategy.

15

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

watchtower would be activated, instead. After a period

of hours, the as-yet-inactive watchtower would be

activated, and would send a report to the fireboss. The

experiment would be allowed to run until both fires

were out or 65 simulated hours elapsed. Then the

identical experiment would be run again, except with

the opposite strategy. Following this pair of trials,
new locations for the fires would be selected. We

fully counterbalanced for local terrain and other factors

that affected fire growth and bulldozer cutting rates.

We ran 470 pairs of fires. One basic result is that

Eq.l does a good job of predicting the time it takes to

put out ihn first fire. Table 2 contains data for the fire

under both strategies. Empirically, I found that for all

first fires, under both strategies, Phoenix was
building fire lines in such a way that the final

perimeter of the fireline was on average 1.37 times
the final perimeter of the fire. That is, over all first
fires, r = 1.37. However, it became clear that this

"corridor" between the fireline and the fire was bigger
for fires fought under the youngest first strategy than
for fires fought under the oldest first strategy. Table 3

contains the data: Whereas r ranges from 1.1 to 1.18
for first fires fought under the oldest first strategy, it
ranges from 1.57 to 1.62 for those fought under the

youngest first strategy. This means that the "shell"
selected to fight the latter fires is much "sloppier"
than the shells selected for the former. As a

consequence, the first fire under the youngest first
strategy takes longer to fight than it should.

The data on the time to fight both fires under the
youngest first and oldest first strategies are given in
Figure 6, which shows the time to contain both fires

on the y axis. As predicted, the advantage of the

yongest-first strategy increases as the delay between
the fires increases, but, counter to prediction, the

youngest-first strategy does worse than the oldest first
strategy when the delay is 8 hours. Thus, the
principal prediction of the model is wrong!

2.6 Explanation

As noted earlier, given wrong predictions, we have to

decide whether to rework the model or rework

Phoenix. In either case, the first step is to discover

why the model is making wrong predictions. A good

way to proceed is to modify the model so it makes

correct predictions, and then see whether the

modification points to an aspect of the Phoenix

environment that cannot be changed (e.g., travel time)
or an aspect of the Phoenix planner, which can be

changed. The model as derived assumes r is a
constant: Phoenix keeps the same size "corridor"
between its cut fireline and the fire perimeter. In fact,

as we saw above, this is false. The corridor is much

bigger for the first fire under the youngest-first

strategy than it is for the first fire under the oldest-

first strategy. In another experiment, we discovered
the reason for this: Phoenix plans the perimeter of its

fireline based on projections of where the fire will be

in 500, 1000, 2000... minutes. Every first fire fought
under the youngest first strategy was fought with a
500-minute projection. Since this is the smallest

possible projection, it seems to be too large for many
of these fires.

When the model is modified to incorporate the fact
that r is larger for the youngest first strategy than for
the oldest first, the predicted and actual times (in

minutes) to contain both fires under each strategy are
shown in Table 4. Clearly, the modified model makes
very good predictions. It lends strong support to the

argument that youngest-first would be the best
strategy in all cases, if only Phoenix wasn't forced to

use a 500-minute projection for the first fires under

the youngest first strategy. In general, the problem
with quantizing the projections is that r will not be
constant, and so the youngest-first strategy will not
always be best.

16

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

8 hour 12 hour 16 hour 20 hour

YF both fires

predicted 2281 2639 2996 3353

actual 2287 2583 2964 3319

disparity 100% 98% 99% 99%

OF both fires

predicted 2110 2519 2928 3336

actual 2017 2496 2968 3377

disparity 104% 101% 99% 99%

Table 4. Predictions from the revised model are more accurate.

It seems to me that when one has a simple model

from which one can derive a general rule, such as
fight the youngest fire first, but the rule fails because
the program is doing something that is demonstrably

inefficient, such as constructing an excessively large

fireline around one kind of fire, then changing the
model does no more than describe the inefficiency
formally, whereas changing the program eliminates

the inefficiency and restores the rule. For this reason,
we decided to modify Phoenix to allow it to plan to
cut a fireline of any perimeter, not an arbitrarily

quantized perimeter. We have not yet re-run the

previous experiments to determine whether the

predictions of the original model hold.

3.0 Conclusion: The Issue of
Generalization

Let me summarize the discussion to this point. The

premise of the ecological view is that behavior results
from the interaction between an agent and its

environment, and that we should design agents from

models of these interactions. Equations 1 and 3 are

models of this kind because they represent how a
measure of behavior (the time to control a sequence of

fires) results from the interaction between
environmental factors (the rate at which fires spread, s

and g), and aspects of an agent's architecture (the rate

at which line can be cut, C).2 From these models, it

was possible to design an ordering scheme to

miminize time.We are currently engaged in other
modelling effort, also:

3.1. Direct attack. The current model assumes
agents work at a distance from the fire. In fact,

Phoenix agents can also work directly at the fire edge.
In this case, called direct attack, the perimeter growth
is not linear, because as agents control more of the

perimeter its growth rate decreases. Empirically, this
nonlinearity is quite small, but we need to know

whether it can obviate the strategy to order fires by Q.

3.2. Nonlinear growth. As fires get bigger they
generate convective winds, which increase the rate at

which the fires grow. We have not yet implemented
convective fires in the Phoenix environment. When
we do, we may need to rethink the strategy for

ordering fires, because the oldest fires, not the
youngest, are the most likely to become convective.
Nonlinear growth adds a previously absent dimension

to the fireboss's scheduling problem: hard deadlines.
In the linear model, as long as C > s, delays in

fighting a fire have linear effects—the bulldozers will

2 po, the size of the fire when the bulldozers reach it,

can be treated either as an environmental factor or as
another measure of behavior, since it results from the
interaction of agent features, such as the time it takes

the fireboss to respond to a reported fire, and
environmental conditions.

17

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

"catch" the fire eventually (Fig. 7.a). But if fire

growth is not linear, a delay may ensure that the

bulldozers can never contain the fire. When the "C

line" is tangent to the "s line" (Fig. 7.b), its x

intercept is a hard deadline.

s
s

pO

delay/
' C pO

delay/
/c

3 b

Figure 7. Linear fire growth implies soft deadlines;

nonlinear growth implies hard deadlines.

3.3. Other performance measures. I have
assumed that the fireboss wants to minimize the area

burned, but it may want to minimize the total cost of

the area burned and the resources it requires to fight
the fires. Assuming that the acreage burned increases
with the square of time, the cost of a firefighting
operation can be modelled as the following sum:

X = (t2 ■ cost(acre)) + (N • cost(bulldozer))

given that N is the number of bulldozers and t is

defined by Eq. 1. As N decreases, t increases. We can
find the value of N that minizes this sum by setting
its first derivative with respect to N to zero and
solving for N:

cost(acre)1/3 pp2^
N= s +

.51/3 cost(bulldozer)1/3

The efficacy of designing from models depends on
whether models can predict how designs will behave.

As AI researchers work with more complex
environments, and with architectures that produce
complex behaviors from interactions of simpler

behaviors, the goal of predicting behavior seems
increasingly remote. Some researchers claim that
behavior is in principle unpredictable, so the only way

to design systems is as Nature does, by mutation and
selection (e.g., [9], p. 25). I think this is going too

fan We can often predict the behavior of a system at a

level of abstraction or aggregation that is useful for

design, even if we cannot predict details of the

behavior. For example, I do not expect Eq. 1 to

predict precisely t, the time it takes to contain a fire.

No model can, because t depends on the interactions of

hundreds of events over time. But as Figure 8 shows,

Eq. 1 does predict the general form of the relationship
between t and (C - s): t increases as (C - s) approaches

zero. Nonlinearities in performance, like this one,
alert designers to diminishing returns: Increasing the

number of bulldozers that are sent to a fire (increasing

C), will have a increasingly smaller effects on t;

whereas decreasing the number of bulldozers will have

an increasingly larger effects. I am confident in these

trends in the values of t, if not in the values

themselves. So the question is not whether predicting

behavior is possible in principle, but whether
prediction is useful in practice.

prediction
from Eq. 1

C-s

Figure 8. As (C - s) approaches zero, t increases as a
harmonic series

Quite apart from their utility to design, modelling and
prediction are useful for analysis of systems that
already exist—for explaining why systems behave as

they do. And here, predictions can be equally useful if
they are wrong, because they prompt revisions in our

models. For example, we recently noticed that

Phoenix's predictions about the fire spread were
wrong, adversely affecting its performance. The
problem was that fires spread much more quickly

upwind than predicted. Scott Anderson discovered that
the fire tacks upwind, moving from point A to point
B by tacking first from A to C, then from C to B;

and it does this much more quickly than going from
A to B directly.

But, returning to design for a moment, how can we

design from models that sometimes make wrong

18

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

predictions? I acknowledge this concern, but what is

the alternative? Currently, we design AI programs to

vague specifications; for example, we designed
Phoenix agents for "unpredictable, real-time,

dynamic" environments, and endowed them with

"reactivity, approximate processing, responsiveness,"

and so on. With such vague design goals, it is hard to

know whether we succeeded. Phoenix agents put out

fires, of course; but as Adele Howe and I have
discussed, demonstrations are not adequate evaluations

because they don't tell us why a system works or
doesn't work [2,5]. And even good evaluations cannot
ensure that our results are general, because you and I

may interpret the informal terms we use as design

goals, such as "real time," differently.

Modelling might provide a solution to these
problems. A model is a formal summary of our
understanding of how behavior emerges from the

interactions between an agent and its environment.
Models are no less useful for being formal. I think we
are better off designing from models like Eqs. 1 and 3

than we are designing from informal terms like "real
time." And if a model is inaccurate, if it makes wrong
predictions, that is because our understanding of the
environment is wrong; it has nothing to do with
whether we express that understanding formally or
informally. On the other hand, formal models like

Eqs. 1 and 3 make our design goals precise. This

means that we can say exactly what a system does,
instead of relying on demonstrations that a system

"works." This is essential to achieving general results
in AI. For example, Figure 7 shows a sketch of one
definition of "hard deadline": the tolerable delay before

a linear process starts "chasing" a superlinear one.
You may have another definition. If our definitions

are precise, and encapsulated in models, then we can

reason about our respective models, instead of
guessing what our respective programs might or

might not do.

The principal challenge for the model-based design
methodology is coming up with general models. The

model developed in Section 2 is of limited interest
because it applies only to linear processes chasing

other linear processes. It is difficult to see how to

generalize the strategy "work on the linear process

that started most recently," to other domains and

tasks. But engineers in virtually every discipline have

developed general models, from queueing theory to

stress analysis, and these are used in model-based
design. There is no reason to suppose we cannot do

the same in AI.

4.0 Appendix.

Derivation of Eq 3:

T(f 1 ,f2 fm-fn) = t(fn) + (1 + g(fn)) T(fi ,f2 W

I denote the first fire as fi, the second as {2, and so

on. I will often refer to the time it would have
required to contain fire fi z/the fireboss had attacked it

first. I denote this t(fi).

Consider the time it takes to contain fire f2 after

containing fire fj.

t(V2) =
(P0(f2) + t(fl)s(f2))

(A.1)
(C - s(f2))

When the buldozers finally start work on fire f"2 (after
containing fire fi), its perimeter will be larger than

it would have been if they had worked on it first.
P0(f2) will have grown at rate s(f2) for as long as it
took to contain fire f 1. Therefore, the perimeter of fire

f2 at time t(fi) will be p0(f2) + t(fl) s(f2>- Expanding

Eq. A.l gives

P0(fl)
P0(f2)

s(f2
... . . _ rwv~ C-S(fl)
t(tl't2,-(C-s(f2)) + (C-s(f2))

Now let us introduce a function, g(x) = s(x) / (C -
s(x)). Rewriting the previous expression in terms of g

gives

t(fi,f2) -
P0(f2)

+ g(i2) (C - s(f2))
= t(f2) + g(f2)t(fi)

PO(fj)
(C-s(fi))

(A2)

This is the time to contain fire f2 after fire fi. The

time to contain both fires is

19

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

T(fl,f2) = t(fi)+t(fi,f2)
= t(f2) + (1+g(f2»t(fl) (A3)

We can extend this model to three fires, and then to
any number of fires:

MU fo M (P0(f3) + T(fl ,f2) S(f3)) ,. ..
t(fl .f2.f3) = (C - s(f3)) (A4)

T(fl,f2.f3)=T(f1lf2)+t(fi,f2,f3)
= T(fi,f2)+t(f3) + g(f3)T(f1lf2)
= t(f3) + (1 +g(f3))T(f1,f2) (A.5)

Eq. A.4 is analogous to Eq. A.l and Eq. A.5 is
analogous to Eq. A3. In general,

T(fl,f2,...Wn)
= t(fn) + (1+g(fn))T(fi,f2 fm) (A.6)

gfl)t(i) < g(i) t(j) = H< ^ =Q(i)<QÖ)

SoT(i,j)<T(j,i) = Q(i)<Q0).

Lemma 2: It is intuitively clear that if T(i,j) < T(j,i),
then T(i ,j, S2) < T(j,i, S2). All fires in the

subsequence S2 are growing while fires i and j are

being fought, and they will grow more, and thus take
longer to contain, if those fires are fought in the order

j,i than if they are fought in the order i,j. Similarly,
if T(Si, i ,j) < T(Si, j,i) then, by the same

reasoning, T(Si, i ,j, S2) < T(Si, j,i, S2). It
remains to prove that T(i,j) < T(j,i) implies T(Si, i

,j) < T(Si, j,i). To begin, we rewrite Eq. A.6 with

all its terms fully expanded:

Proof that the fires should be fought in
"youngest first" order:

If Q(a) < Q(b) < ... < Q(k), and the fireboss fights

fires in the order {a,b,...k} then it will minimize the

time required to fight the fires. To prove this, I will
show that if Q(a) < Q(b) <,...,< Q(k), then the

fireboss cannot minimize time unless it fights fire a
first. The rule is to fight first the fire with the
smallest value of Q. Then, after it has fought the first

fire, the fireboss can reapply this rule to the

remaining fires. To prove this rule, I will prove two
lemmas:

Lemma 1: T(i,j) < T(j,i) iff Q(i) < Q(j)

Lemma 2: T(i,j) < T(j,i) -> T(Si, i ,j,
S2) < T(Si, j,i, S2) where Si and
S2 are subsequences of zero or more
fires.

Lemma 1: From the definitions of Q, t, and g, it
follows that Q(fi) = t(fi) / g(fj). I will show that

KiL . Kil T(ij)<T(j,i) go) K m -Q(i)<Qö)

Expanding T(i,j) < T(j,i) according to Eq. A.3 gives

t(') + t(j) +gO')t(i) < tG) + t(i) +g(i)t(j)

Eliminating the common terms gives

T(fl,f2 Wn) =
t(fn) + (1+g(fn))(t(W

+ (1+g(m))(....(t(f2) + g(f2)(t(f1)))...)))
Rearranging terms and multiplying through, we get

T(fl,f2 Wn) =

t(fi) (1 + g(f2))0 + g(f3» - (1 + g(fm))(i + g(W)
+ t(f2)(1+g(f3))...(1+g(fm))(1+g(fn))

+ t(fm)(1+g(fn))

+ t(fn)

Note that the last two terms in this sum are (1 +
g(fn))t(fm) + t(fn) , which is just T(fm,fn). If we

decide to fight these fires in the opposite order, then
the last two terms of the sum become (1 +
g(fm))t(in) + t(fm) = T(fn,fm), but the previous

terms in the sum do not change. If you swap the
last two fires, fm and fn, in a sequence of fires, the
resulting difference in time is just T(fm,fn) -

TCfn.fm)- Therefore, the lemma is proved: T(i,j) <
T(j,i) -> T(Si,i,j)<T(Si,j,i)

Now, if we know Q(a) < Q(b) < Q(c) < Q(d), we can
use lemma 1 to show

T(a,b) < T(b,a), T(a,c) < T(c,a), T(a,d) < T(d,a),
T(b,c) < T(c,b), T(b,d) < T(d,b),
T(c,d) < T(d,c) (A.7)

20

Designing and Analyzing Phoenix with Models. Paul R. Cohen. July, 1990.

The fireboss should not fight d first: If it does, then

it will next have to fight either a, b, or c, giving the

sequences T(d,a,...) or T(d,b,...) or T(d,c,...). Because

we know from Lemma 2 that if T(i,j) < T(j,i) then

T(i,j,S2) < T(j,i,S2), and we know from (A.7) that

T(d,x) > T(x,d) for all x, it follows that for every

sequence that begins {d,x,...} there is another with a

lower value of T that begins {x,d,...}.

Similar reasoning shows that the fireboss must fight

fire a first. If it doesn't, then at some point in the
future, it will generate a sequence {Si, x, a}, and we

know from Lemma 2 and (A.7) that this has a higher
value of T than {Si, a, x}. Now we start "unpacking"
the subsequence Si: for each of its components, T

would be smaller if fire a preceded that component.
So if Q(a) < Q(b) < Q(c) < Q(d), the time to fight all
the fires cannot be minimized unless fire a is fought
first. This reasoning applies anew to fire b: if Q(b) <

Q(c) < Q(d), then the fireboss must fight fire b before
the others. Thus, Q(a) < Q(b) < ... < Q(k) implies

that T(a,b,...,k) is the smallest time to fight fires
a,b,...,k.

5. Acknowledgments

This work was supported by ONR Contract N00014 -
88 - K - 004 and University Research Initiative grant,
ONR N00014-86-K-0764

6. References

4. Cohen, P. R., Greenberg, M. L., Hart,

D.M., Howe, A. E. "Trial by Fire: Understanding the

Design Requirements for Agents in Complex

Environments." AI Magazine. 10(3): 32-48, 1989.

5. Cohen, P. R. and A. E. Howe. "Toward AI

research methodology: Three case studies in

evaluation." IEEE Transactions on Systems, Man and

Cybernetics. 19(3): 634-646, 1988.

6. Cohen, P. R., A. E. Howe and D. M. Hart.

Intelligent Real-time Problem Solving: Issues and

Examples. Intelligent Real-Time Problem Solving
(IRTPS). 1989.

7. Dean, T. L. Intractability and Time-
dependent Planning. Reasoning About Actions and
Plans, Proceedings of the 1986 Workshop at

Timberline, Oregon. 245-265, 1987.

8. Kaelbling, L. P. An Architecture for

Reactive Systems. Reasoning About Actions and
Plans, Proceedings of the 1986 Workshop at
Timberline, Oregon. 395-410, 1987.

9. Langton, C. Artificial Life. Santa Fe
Institute Studies in the Sciences of Complexity.
1989.

10. Neisser, U. "Cognition and Reality." 1976

Freeman Press. San Francisco.

1. Chapman, D. and P. E. Agre. Abstract
Reasoning as Emergent from Concrete Activity.

Reasoning About Actions and Plans, Proceedings of

the 1986 Workshop at Timberline, Oregon. 411-424,
1987.

2. Cohen, P. R., Howe, Adele E. "How
evaluation guides AI research." AI Magazine. 9(4):

35 - 43, 1988.

11. Rosenschein, S. J., B. Hayes-Roth and L.

D. Erman. Notes on Methodologies for Evaluating

IRTPS Systems. Intelligent Real-Time Problem

Solving (IRTPS). 1989.

12. Simon, H. A. "The Sciences of the

Artificial." 1981 The MIT Press. Cambridge, MA.

3. Cohen, P. R. Discovering Functional

Relationships that Model AI Programs. 1989.

21

Analogical Planning

Diane J. Cook
Beckman Institute for Advanced Science and Technology

Department of Computer Science
University of Illinois

Urbana,IL 61801
Arpanet: cook@gaea.cs.uiuc.edu

Abstract

Analogical reasoning provides a powerful method for learn-
ing plans where other machine learning methods fail. Unlike
many machine learning paradigms, analogy does not require
numerous previous examples or a rich domain theory. In-
stead, analogical reasoning utilizes knowledge of solved prob-
lems in similar domains, adapting the knowledge to the cur-
rent problem.

This paper describes the ANAGRAM system which performs
parallel analogical planning using a graph match technique.
Given a target problem specification, ANAGRAM finds a sim-
ilar problem from the database from which a solution can
be derived. This paper describes the parallel implementation
of ANAGRAM on the Connection Machine and addresses the
difficulties that arise when an analogy fails because the base
case is only partially applicable to the current problem. ANA-
GRAM offers a solution to this problem by merging the graphs
representing several similar base cases, resulting in a virtual
base graph that generalizes the individual cases enough to
cover the target problem.

Two examples are presented in this paper that illustrate
the use of parallel analogical planning and graph merge in
the domain of automatic programming. The techniques de-
scribed in this paper can similarly be applied to planning
tasks in a variety of complex domains.

1 Introduction

When solving a problem in a relatively new and unfamil-
iar domain, an planner often relies on experience with
similar problems to suggest ways of attacking the cur-
rent problem: adapting known techniques, mapping ap-
propriate constraints from a solved problem to the prob-
lem at hand, and modifying existing programs to include
new capabilities. Application of many machine learning
paradigms to engineering problems requires knowledge
of the domain despite the fact that knowledge is avail-
able from similar domains. Induction requires numerous
examples within the problem class. Explanation-based
approaches require a rich theory of the problem domain.
In the absence of numerous examples or a rich domain
theory, analogy can be used to transfer knowledge of a

similar domain to the current problem domain. Given a
novel problem (the target case), analogy selects a similar,
solved problem (the base case), computes a mapping be-
tween the base and target problem descriptions, and uses
the mapping to adapt the base solution to the current
domain.

The ANAGRAM system solves novel problems by con-
structing analogical plans. Given a target goal, ANA-
GRAM finds a similar goal in the base domain from which
a solution can be derived. ANAGRAM expresses plans as
graphs and uses a graph match algorithm to identify po-
tential base cases and form the mapping between base
and target problems. To approach the benefits offered
by other machine learning paradigms, ANAGRAM is ca-
pable of merging several similar base cases when a single
base is only partially applicable to the current problem.

This paper describes ANAGRAM'S efficient approach to
constructing plans using parallel analogical graph match,
and introduces congruent graph merge as a technique for
increasing the effectiveness of an analogy by merging sev-
eral similar base cases. The approach is illustrated with
several examples from the domain of automatic program-
ming.

The theories described here are beneficial to scientific
and industrial planning applications in several ways:

• Analogy is a central approach to learning. Skilled
designers rarely attempt to solve a problem from
scratch. Instead, they build on their expertise, com-
paring current problems to ones previously solved.

• The inability to utilize all necessary information is
a limitation that has always plagued analogical rea-
soning systems. Merging congruent bases to form
more general virtual bases is one solution that will
impact all areas in which analogical planning can be
used.

• The complexity of the analogical reasoning task has
long prevented its automation. Using the massively
parallel architecture to reduce the complexity of
base selection and map formation makes the task
tractable.

22

• Automatic programming problems have features
common with other problems in engineering. All
require reasoning about the structure of the prob-
lem, its solution, and the ordering of sub-tasks.

Section 2 defines the area of research: planning by
analogy. Section 3 describes the parallel implementa-
tion of this research in the ANAGRAM system. The next
section introduces the notion of merging congruent base
cases when forming an analogy, followed by an example
from the domain of automatic programming.

2 Planning by Analogy

Analogy uses knowledge about one problem or domain
to infer knowledge about a similar problem or domain.
Analogy is a central approach to learning. Skilled de-
signers and talented students rarely try to learn about
a new area or solve a new problem from scratch. In-
stead they build on their expertise, comparing current
problems to ones previously solved.

Gentner [Gentner, 1988] has shown that people form
analogies between concepts that have structural similari-
ties, rather than surface similarities. Representing plans
as graphs encodes the structure of the plans, and forcing
the base and target graphs to match ensures that the
structure of the base and target plans are the same.

Much of analogical reasoning research uses analogies
to produce a detailed description of a concept [Gentner,
1988, Greiner, 1988]. It is difficult in these systems to de-
termine the type of information that should be mapped
to the target. As Holyoak [Holyoak, 1984] and Carbonell
[Carbonell, 1983] have pointed out, goals provide an es-
sential constraint in problem solving. Using analogical
reasoning in the problem area of planning provides a fo-
cus for the analogical learning task and offers a method
of generating plans in unfamiliar domains.

3 Overview of ANAGRAM

The ideas mentioned in this paper are implemented in
a system called ANAGRAM (ANAlogical GRAph Match-
ing). Given a target problem specification represented in
graph form, ANAGRAM uses a colored graph match tech-
nique to select a base case from a database of previously-
solved problems. ANAGRAM uses the selected base case
to generate a plan which will achieve the target goal.1

The system accepts as input two subgraphs, represent-
ing the target problem's initial state description and goal
state specification. ANAGRAM then searches through the
database, finding the best match for both subgraphs.
Using the output of the individual graph matches, ANA-
GRAM then maps over the base plan to the target domain

JSee [Cook, 1989] for a complete description of the ANAGRAM
system.

to generate a solution to the target problem. If the re-
sulting plan is unsuccessful, or if no sufficiently similar
base cases are found, the system then attempts to merge
several base cases that are all similar to the target prob-
lem. The result is a virtual base graph that eliminates
anomalies and generalizes various options in the plan to
an extent that covers the target domain.

3.1 The Graph Match Algorithm

Perhaps the biggest factor that currently prevents ma-
chines from making extensive use of learning by analogy
is the complexity of the task. It is difficult to under-
stand why analogical reasoning is performed so often
and so easily by humans, yet is difficult and costly to
perform on a machine. Part of the problem is not fully
understanding the nature of analogical reasoning and the
algorithms humans use to perform it. However, much
of the problem is speed. To make analogical planning
tractable, it must be able to examine many base cases
in parallel and efficiently form correspondences between
base and target. This is possible if the algorithm takes
advantage of the massively parallel architecture of such
machines as the Connection Machine

This section describes a method of efficiently perform-
ing analogical planning by performing base selection and
map formation in parallel on the Connection Machine.
The algorithms used by ANAGRAM were performed on a
Connection Machine-2 with 32,768 nodes.

ANAGRAM employs a colored graph match on directed
acyclic graphs (DAGS). The arcs as well as the nodes are
labeled. These labels provide an additional constraint
on the matching process. Node labels may be different
between two graphs, but the arc labels must correspond
exactly. The data describing each node of a graph is
stored in a separate processor. To perform the graph
match, the nodes in the base graph look for a match in
the target graph in parallel.

Two nodes match if they are at the same level in the
graph (leaves are at level 0, and their parents are at
level 1), and the structures of the nodes' children and
parents (encoded by the integer assigned to each child
and parent) match. Each node is described by the tuple
(level [(child-integer out-link) .. .] [(parent-integer in-
link) ...] node-label). Initially, no integers have been
assigned to the nodes, so each so each child-integer and
parent-integer slot is set to "?".

Each node from the first graph looks in parallel for a
match with a node at the same level in the second graph.
If two complete tuples match (the tuples are complete if
they have no ?s), the match is added to the gmap and
a unique integer is assigned to the two nodes. If a tu-
ple is incomplete, it generates a list of partial matches
(every non-? matches). After every search pass, each

23

node in both graphs simultaneously updates its tuples.
Assigned integers are propagated across the links. Once
the tuples are updated, matches between incomplete tu-
ples are checked once again — if they no longer match,
the algorithm returns failure. If no unique matches are
found for any of the nodes on a given pass, the algorithm
takes one node from the list of nodes with more than one
candidate match, and randomly selects a match for the
node. If there are nodes from the first graph that can-
not be matched with any node from the second graph,
the algorithm returns failure. When this is done, the
entire process is repeated. The process is successfully
completed when a match is found for each node in the
first graph.

The complexity of the graph match algorithm is pro-
portional to the greatest number of nodes found at any
level in the target graph, because each base node se-
quences through the target nodes at the same level to
look for a match. Let n represent the number of nodes
in the each graph, and let h represent the height of
the graph. The complexity of the graph match is thus
0(n-h).

The base selection process enjoys a tremendous
speedup by being parallelized. Normally, the base selec-
tion process is extremely time consuming because each
potential base solution must be compared with the target
problem specification. Fortunately, each of these com-
parisons is independent of the others, so the bases can
be examined in parallel. To perform base selection, each
node from each base graph is stored in a separate pro-
cessor and looks for a match in parallel. Assuming there
are enough processors to store all of the base cases, the
complexity of the base selection task is the same as for
graph match, or 0{n — h).

3.2 Example 1

This example is borrowed from Dershowitz [Dershowitz,
1986], who uses analogies between program specifications
to modify existing programs in a way that allows them
to perform different tasks. The target problem is to gen-
erate a function to compute c/d within an accuracy e:

assert c<0<d, e>0
goal \c/d — q\ < e

;; Initial State
:: Goal State

The base case is a program that computes the cube
root of a within an accuracy e:

begin cube-root
assert a > 0, e > 0
goal [a1/3 - r\ < e
(r,«):= (0,o + l)
loop L3 : until 3 < e

3 := j/2
if (r + s)3 < a then r
repeat

end

;; Initial State
;; Goal State
;; function body

r + s endif

Figure 1: The Base and Target Initial State Subgraphs

ANAGRAM performs a graph match on the subgraphs
representing the initial states and goal states of the base
and target. The goal-state subgraphs for the two prob-
lems are shown in figure 1.

In the first pass, each node from the base graph looks
for a partial match from the target graph in parallel. An
incomplete match is found for every tuple. A unique in-
teger int is assigned to the nodes in each unique match.
These integers are then propagated to parents and sons
through the graph, and corresponding tuples are up-
dated. The final values of the tuples are shown in tables
1 and 2.

intt tuplet

1 (1 [] [(compare 2)] GOAL-STATE)
2 (2 [(compare 1)] [(tl 3) (t2 4)] <)
3 (3 [(tl 2)] [(arg 5)] ABS)
4 (3 [(t2 2)] ö E)
5 (4 [(arg 3)] [(op 6)] TERMO)
6 (5 [(op 5)] [(tl 7) (t2 8)] -)
7 (6 [(tl 6)] [(tl 9) (t2 10)] ')
8 (6 [(t2 6)] D R)
9 (7 [(tl 7)] D A)

10 (7 [(t2 7)] 0 1/3)

Table 1: Updated tuples for the base goal subgraph

24

inib tuple},

1 (1 D [(compare 2)] GOAL-STATE)
2 (2 [(compare 1)] [(tl 3) (t2 4)] <)
3 (3 [(tl 2)] [(arg 5)] ABS)
4 (3 [(t2 2)] D I)
5 (4 [(arg 3)] [(op 6)] TERM1)
6 (5 [(op 5)] [(tl 7) (t2 8)] -)
7 (6 [(tl 6)] [(tl 9) (t2 10)] /)
8 (6 [(t2 6)] 0 Q)
9 (7 [(tl 6)] ö C)

10 (7 [(t2 7)] 0 D)

Table 2: Updated tuples for the target goal subgraph

Combined with the mapping produced by comparing
the initial-state subgraphs, the global mapping between
the base and target graphs is shown below.

{Initial-State —► Initial-State, Goal-state —> Goal-state,
< —> < abs —> abs, - —> -, r —> q, 1/3 —> d,

—* /, termO —* terml, a —> c}

Using these matches, ANAGRAM maps the complete
base graph over to the target domain, resulting in the fol-
lowing function that successfully meets the target goal:

begin target
assert c < 0 < d, e > 0
goal \c/d - q\ < e
(?,*):= (0,2) _
loop li2 : until s < e

s := s/2
if (a -f- s) X d < c then q:~ q ■
repeat

end

;; Initial State
;; Goal State
;; function body

■ s endif

4 Merging Congruent Base
Cases

One basic difference between analogical learning and
learning by induction is that induction requires several
input examples of the concept, and analogy generally
uses only one example, the base case. However, there
are many instances in which multiple base cases would
strengthen an analogy.

One example of using multiple base cases is incremen-
tal analogy [Burstein, 1988]. One base case may provide
some of the information needed for the target, but not
all. Another base case may provide the remaining needed
information, but nothing else. An analogy formed be-
tween the target and either one of these bases would be
insufficient, but the merging of the two separate analo-
gies results in a complete, useful analogy.

A second way of using multiple base cases is to merge
similar base cases, resulting in a "virtual" base case.
This virtual base case is more beneficial to the analogy
than a single case, because it removes anomalies and gen-
eralizes alternative operations. Furthermore, merging

y/y = Generalized subgraph

Figure 2: Virtual Base Case

base cases serves to focus on the relevant aspects of the
base cases, because those aspects of previous plans that
are beneficial to the target are retained in the virtual
base. Base cases that are sufficiently similar in structure
to be merged together are termed congruent base cases.
Note that this term is borrowed from geometry, where
two triangles are congruent if they have the same angles
and proportions of side lengths.

Consider the task of mowing the lawn. A person who
has never mowed before may compare cutting the grass
to painting a large area with only a small brush. The
person could also form an analogy with shoveling snow,
waxing the floor, or wallpapering the wall. The anal-
ogy formed between the target case (mowing the lawn)
and each of the base cases is insufficient, for various
reasons. The waxing motion is circular instead of the
long back-and-forth movements needed for mowing the
lawn. When wallpapering, care must be taken to line up
the strips so the designs meet. Painting a wall involves
putting on more than one coat of paint. Shoveled snow
is dumped to the side of the sidewalk, and the ultimate
goal is to remove all of the snow, not just give it a trim.
Figure 2 depicts a virtual base case generated by general-
izing part of each of the base cases. The analogy between
the virtual base case and the target case provides enough
information to solve the problem of mowing the lawn.

4.1 The Merge Algorithm

This section describes how ANAGRAM uses the technique
of merging congruent base cases to enhance its analogy-
formation and problem-solving capabilities. First, the
issue of deciding when to merge base cases is addressed,
and then the merging algorithm is described.

25

ANAGRAM using the graph-merge algorithm in the fol-
lowing cases:

• A match is found between the target initial/goal
states and the base initial/goal states, but the in-
termediate steps in the base case are not mappable
or can not be applied in the target domain.

• No base case matches perfectly, but several match
closely. Moreover, the unmappable parts either 1)
are generalizable in a way that map to the target
case, or 2) they do not overlap (the base cases fail
to match the target at distinct parts of the target
graph).

In all of the cases described above, it is possible to
merge base cases only if congruent base cases exist in
the database. Because trying to find a fit between an
arbitrary number of graphs in a given database is an
arduous task, the selection process only considers cases
within the same index category. The categories are de-
termined when base cases are entered into the database,
and are formed according to key parts of the graph, such
as the type of operators and objects involved in the plan
and the size of the plan.

When selecting cases for merging, the algorithm
chooses cases based on ease of generalization. The types
of graph merges attempted are (in order of preference):

1. Merging graphs with distinct base/target differences.
The simplest and most beneficial way to merge
congruent graphs occurs when the graphs match
each other and their differences with the target do
not overlap. Let Bi represent a base graph which
is composed of the subgraphs Sj,..., S\, let 52

represent the base graph composed of subgraphs
S\,. . .,S\, and let T represent the target graph
composed, of subgraphs Sj,,. .., Sj,. If the subgraph
S* cannot be mapped to SJ., S| cannot be mapped
by Sj., SJ. ^ Sj., and a match exists between B\
and £2, then a merge of the two graphs is possible.
Let M represent the set of mappings output from
the match between B\ and B2- The algorithm re-
places the "defective" subgraph SJ in Bi with the
corresponding mapped subgraph M(S|). The new
base graph is mapped to the target (and guaranteed
to work). This merging process is easily extended
to 3 or more graphs. The restrictions are that the
"defective" subgraphs be distinct and all of the base
cases are mappable to each other.

2. Relaxing order constraints. The graph match al-
gorithm looks for matches between nodes at cor-
responding levels in the graphs. This precludes a
match between plans with different orderings of op-
erators. This is unfortunate, because changing the
order of operations in the base case can often solve

the target problem (see the description of the in-
order tree traversal problem described in the next
section).

Comparing multiple base graphs helps to focus on
relevant aspects of a problem. When comparing two
plans whose only difference is the order of opera-
tions, it becomes apparent that maneuvering the
operators may also solve the target problem. When
this situation exists, ANAGRAM looks for correla-
tions between the order of operations and ordering
constraints in the initial or goal state. Such con-
straints help focus the mapping to the target prob-
lem, preventing trials of all possible operator com-
binations.

3. Disjunction/generalization of subgraphs. The meth-
ods of merging base graphs discussed in the previous
paragraphs are considered first, because the gener-
ated target plan (based on the virtual base plan) is
guaranteed to be successful. If neither of the meth-
ods is applicable, the system generalizes portions of
the graph.

When comparing base graphs whose "defective"
subgraphs do overlap, ANAGRAM generalizes the
overlapping subgraphs. The methods of generaliza-
tion correspond to those found in most induction
systems, such as adding disjunctions and climbing
ISA trees. The purpose of the generalization is to
abstract the non-mappable parts to the extent that
the generalized subgraph will cover the target case.
The more base cases found to support the gener-
alization, the better. As the number of base cases
increases, this form of merging base graphs begins
to look like pure induction.

4.2 Example 2

This section describes the application of ANAGRAM'S

graph match algorithm and congruent base case merg-
ing algorithm to an example in the domain of automatic
programming. In this example, the target problem is
to construct a program that uses inorder traversal to
traverse a given binary tree. The initial and goal state
descriptions are given:

assert tree 6 binary — trees and null(vlist)
goal V(y 6 vlist) [left-son(y) before y before right-son(y)]

Among the base cases in the database are the algo-
rithms for preorder and postorder tree traversal. The
matches are equally good with either base case, so the
selection process arbitrarily chooses the preorder case.
However, the resulting plan is

begin inorder
x := root(tree)

26

unless null(tree)
vlist := appendivlist, x)
inorder(left-son(x), vlist)
inorder(right-son(z), vlist)

end

which does not solve the problem (remember that the
graph matcher does not consider re-ordering the opera-
tors). The system then compares the preorder and pos-
torder algorithms, and notices that the operators are the
same in the two algorithms, but the order of applica-
tion is different. The goal description in both base cases
places ordering constraints on the output:

goal-preorder:
V(y £ vlist) [y before left-son(y) before right-son(y)]

goal-post order:
V(y 6 vlist) [left-son(y) before right-son(y) before y]

By comparing the order of operators with the order
imposed by the goal description, ANAGRAM observes
that the placement of y corresponds with the push-end
operation, left-son(y) with recursive-call(lefl-son(x)),
and right-son(y) with recursive-call(right-son(xJ). ANA-

GRAM is able to generate a virtual base graph that con-
tains the correspondences between the three operators
and the desired order of elements in vlist. The resulting
target plan is successful:

begin inorder
x : — rootitree)
unless null(tree)

inorder(left-son(x), vlist)
vlist := appendivlist, x)
inorderfright-son(x), vlist)

end

5 Conclusion

The ANAGRAM system demonstrates the power of anal-
ogy for planning in unfamiliar domains. Analogical rea-
soning allows a system to hypothesize plans to solve
problems which lack a rich domain theory and have few
similar examples from which to generalize. Using both
the structure of the plan descriptions and the goal of the
target instance, ANAGRAM can select a base case, find
correspondences between base and target, and map the
base solution to the target domain. Because of the par-
allel nature of the algorithm, the task is performed in
time sublinear in the average size of the base graphs.

In many cases, an analogy will fail because of an
anomaly in the base case, because operators used in the
base solution cannot be applied to the target problem,
or because not all information maps from the base to the
target. ANAGRAM proposes a solution to this situation
by examining several similar base cases. If two or more
base cases can be found which are similar to each other

and to the target, they can be merged into a general-
ized virtual base graph which is more likely to cover the
target situation.

In this paper, ANAGRAM'S graph match algorithm and
congruent graph merge algorithms are described and il-
lustrated using examples from the domain of automatic
programming. The contributions that ANAGRAM makes
in this domain are indicative of the benefits analogical
reasoning can provide to planning in many new and com-
plex domains.

6 References

[Burstein, 1988] M. H. Burstein, "Incremental Learning
from Multiple Analogies," in Analogica, A. Priedi-
tis (ed.), Morban Kaufmann Publishers, Inc., Los
Altos, California, 1988, pp. 37-62.

[Carbonell, 1986] J G Carbonell, "Derivational Analogy:
A Theory of Reconstructive Problem Solving and
Expertise Acquisition", in Machine Learning: An
Artificial Intelligence Approach, Vol. II, R. S.
Michalski, J. G. Carbonell and T. M. Mitchell (ed.),
Morgan Kaufmann Publishers, Inc., Los Altos, Cal-
ifornia, 1986, pp. 371-421.

[Cook, 1989] D. Cook, "ANAGRAM: An Analogical Plan-
ning System," Technical Report, University of Illi-

nois, 1989.

[Dershowitz, 1986] N. Dershowitz, "Programming by
Analogy," in Machine Learning: An Artificial In-
telligence Approach, Vol. II, R. S. Michalski, J. G.
Carbonell and T. M. Mitchell (ed.), Morgan Kauf-
mann Publishers, Inc., Los Altos, California, 1986,
pp. 393-421.

[Gentner, 1988] D. Gentner, "Analogical Inference and
Analogical Access," in Analogica, A. Prieditis (ed.),
Morgan Kaufmann Publishers, Inc., Los Altos, Cal-
ifornia, 1988, pp. 63-88.

[Greiner, 1988] R. Greiner, "Learning by Understanding
Analogies," in Analogica, A. Prieditis (ed.), Morgan
Kaufmann Publishers, Inc., Los Altos, California,
1988, pp. 1-36.

[Holyoak, 1984] K. J. Holyoak, "The Pragmatics of Ana-
logical Transfer," in The Psychology of Learning and
Motivation, Vol. I, G. H. Bower (ed.), Academic
Press, New York, 1984.

27

Rational Distributed Reason Maintenance for Planning
and Replanning of Large-Scale Activities

(Preliminary Report)
Jon Doyle*

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

doyle@zermatt.lcs.mit.edu

Michael P. Wellman
USAF Wright R&D Center

WRDC/TXI
Wright-Patterson AFB, OH 45433

wellman @wrdc.af. mil

Abstract

Efficiency dictates that plans for large-scale dis-
tributed activities be revised incrementally, with
parts of plans being revised only if the expected
utility of identifying and revising the subplans im-
prove on the expected utility of using the original
plan. The problems of identifying and reconsidering
the subplans affected by changed circumstances or
goals are closely related to the problems of revis-
ing beliefs as new or changed information is gained.
But the current techniques of reason maintenance—
the standard method for belief revision—choose re-
visions arbitrarily and enforce global notions of con-
sistency and groundedness which may mean recon-
sidering all beliefs or plan elements at each step.
We outline revision methods that revise only those
beliefs and plans worth revising, and that toler-
ate incoherence and ungroundedness when these are
judged less detrimental than a costly revision effort.

1 Introduction

Planning is necessary for the organization of large-scale
activities because decisions about actions to be taken in
the future have direct impact on what should be done
in the shorter term. But even if well-constructed, the
value of a plan decays as changing circumstances, re-
sources, information, or objectives render the original
course of action inappropriate. When changes occur be-
fore or during execution of the plan, it may be necessary
to construct a new plan by starting from scratch or by
revising a previous plan. In fact, replanning may be
worthwhile even when the new situation does not devi-
ate significantly from prior expectations. The original
plan may have been constructed to perform acceptably
over a wide range of possible circumstances, and know-
ing more about the particular situation encountered may

"Jon Doyle is supported by National Institutes of Health
Grant No. ROI LM04493 from the National Library of
Medicine.

enable construction of strategies which are better suited
to the case at hand.

There are two central decisions surrounding the re-
planning process. First, given the information accrued
during plan execution, which remaining parts of the orig-
inal plan should be salvaged and in what ways should
other parts be changed? Incremental modification is
more efficient than wholesale replanning, but a restric-
tion to local changes can compromise the value of the
revised plan. Second, to what extent should the planner
attempt to avoid the need for replanning by anticipat-
ing contingencies and providing for them in the original
plan? Contingency planning improves the capacity for
response when replanning time is limited, but the return
on up-front investment rapidly diminishes as the likeli-
hood of particular contingencies decreases.

In the following, we describe an approach to replan-
ning which addresses the first question by applying
the decision-theoretic conception of rationality to the
plan revision tradeoff. Characterizing the computational
costs and performance of the revision process contributes
toward solutions to the second problem, development of
a contingency planning strategy. Our techniques center
on a reason maintenance system or RMS (also known as
TMS for "truth maintenance system" [de Kleer, 1986;
Doyle, 1979]), redesigned for more rational and flexible
control.

2 Rational replanning

To replan effectively in crisis situations, replanning must
be incremental, so that it modifies only the portions of
the plan actually affected by the changes. Incremental
replanning first involves localizing the potential changes
or conflicts by identifying the subset of the extant beliefs
and plans in which they occur. It then involves choos-
ing which of the identified beliefs and plans to keep and
which to change. For greatest efficiency, the choices of
what portion of the plan to revise and how to revise it
should be rational in the sense of decision theory. This
means that the replanner employs expectations about

28

and preferences among the consequences of different al-
ternatives to choose the best one.

2.1 Explicit and implicit rationality

According to decision theory, a choice is rational if it
is of maximal expected utility among all alternatives.
But planning and replanning involve at least two dif-
ferent sorts of decisions, and applying the standard of
rationality to each yields different notions. The funda-
mental distinction is that between result rationality and
process rationality. Rationality of result measures how
efficiently the plan achieves specified objectives. Com-
plementing this, rationality of process measures how ef-
ficiently the planner expends its efforts in constructing
the plan. While most investigations of planning have fo-
cused on one or the other, both elements are essential to
the overall rationality of the planning system.

Making any process rational is not easy, for straight-
forward mechanizations of decision-theoretic definitions
can require more information than is available and more
computation than is feasible to use that information.
Sophisticated mechanizations are more tractable, but
the main tool for achieving rationality in reasoning is
to distinguish between explicit and implicit rationality
in processes. Computational mechanisms may calculate
and compare expected utilities in order to make explic-
itly rational choices. Explicit rational choice promises
to be most useful in guiding some of the larger meta-
level decisions about whether to replan globally or in-
crementally, and in choosing which contingencies call for
planned responses. For the more numerous small deci-
sions that arise, however, explicitly representing and cal-
culating expected utilities may not be worth the cost. In-
stead, the more useful approach is to apply non-decision-
theoretic reasoning mechanisms whose results may be
justified as rational by separate decision-theoretic anal-
yses. Such mechanisms may be viewed as "compiling"
the results of explicit rational analysis into directly ap-
plicable forms. Each of these ways of implementing ra-
tionality is best in some circumstances, since compilation
is not always possible or worthwhile.

Examples of implicitly rational procedures abound in
AI under the name of heuristics. For instance, the "sta-
tus quo optimality" heuristic [Wellman, 1990a, Section
6.4.1] constrains the set of possible revisions under the
assumption that the current plan is optimal. In par-
ticular, the replanner need only respond to the specific
changes. A related example is application of the basic
theorem of optimization that says that if the only change
is a tightening of constraints, the currently optimal plan
remains optimal if it remains feasible. Another example,
of somewhat different character, is provided by the as-
sumptions made by nonmonotonic reason maintenance
systems. The default rules or reasons justifying these
assumptions are important forms of heuristics, and the
RMS examines them to come up with a coherent set of
assumptions and logical conclusions. Though the algo-
rithms for determining these sets of conclusions do not

involve any explicit rationality calculations, the conclu-
sions drawn by the RMS can be shown to be Pareto op-
timal sets, that is, rational choices of conclusions when
the reasons are interpreted as preferences over states of
belief [Doyle, 1985]. Viewed this way, default rules or
reasons encode compiled preferences, and reason main-
tenance is an example of an implicitly rational choice
mechanism.

Thus one approach to the application of rationality
principles in planning and replanning is to identify the
principles and look for computational mechanisms that
implement them, preferably implicitly. Another is to de-
velop seemingly effective computational mechanisms and
then figure out under what conditions they are rational.
We are pursuing both approaches.

2.2 Rational guidance of replanning

Process rationality enters the task of planning in numer-
ous ways. For example, in the development of a plan,
contingency plans should be included only when the ex-
pected utility of preparing them is sufficiently great: if
the contingency is likely to occur and if the costs of devel-
oping it in advance are less than the costs of constructing
it under the tighter constraints existing while executing
the enclosing plan. Similarly, a portion of a large plan
should be revised only if, given the new information, the
expected costs and benefits of identifying which plan el-
ements need revising outweigh those expected for either
using the original portion or replanning from scratch.

Making these judgments requires information about
the likelihoods, costs, and benefits of different sorts of
contingencies and planning responses. This includes the
likelihood of specific contingencies arising, their impor-
tance if they do arise, and the costs of planning for them;
similarly, the likelihood of one part of the plan being af-
fected by changes in another, the importance of those
changes, and the costs of determining and effecting them.

While many of the likelihoods involved in planning
derive from the specifications of the task, the costs and
benefits of reasoning steps involved in planning are func-
tions of the underlying representational and reasoning
architecture. The theory of computation supplies some
abstract notions of computational costs, such as worst-
case time and space taken by Turing machines. However,
significant differences in reasoning time and space can
be lost in the translation to Turing machines, and the
worst case is not the only one of interest. Use of the the-
ory of rational decisions effectively in making judgments
about plan revision requires realistic measures of compu-
tational costs and benefits appropriate to the particular
architecture of the planner, as well as expectations ap-
propriate to the domain of planning. Our development
of the planning architecture attempts to make formal-
ization and estimation of these measures more direct.

Process rationality must be evaluated with respect to
the combined planning/replanning system. In our model
of the plan construction process, depicted in Figure 1,
the planner and replanner continually evaluate and re-

29

Agent World

Planner
—►

■4

Executor

actions

V
Replanner *■

•4

observations

Figure 1: An integrated planning, replanning, and exe-
cution system.

vise the existing plan in light of what happens in the
world. The distinction between planning and replan-
ning is that the latter uses the existing plan to focus
attention on a restricted set of decisions about actions
to be performed. The tight coupling of the planning and
replanning modules is indicative of the strong interac-
tions between their designs. Knowledge about the capa-
bility of the replanner dictates where up-front planning
effort should be spent anticipating particular contingen-
cies. And the replanner requires access to the planner's
reasons for adopting the current strategy in order to in-
telligently adapt it for changing situations.

To do this, the planning procedures routinely identify
the assumptions made during planning and connect plan
elements with these assumptions. In addition, to achieve
true flexibility in the sorts of changes the replanner can
accommodate, we permit any element of information to
change, including the problem specification, background
knowledge, and preferences. This allows the replanner
to benefit from knowledge of what other specifications,
beliefs, and preferences were adopted as consequences
or choices from the changed items. This also makes it
important that implicitly rational planning procedures
indicate the original expectations, preferences, and sub-
plans from which they were "compiled."

3 Planning framework

Our approach combines a dominance-proving architec-
ture for planning [Wellman, 1990a] with a reason mainte-
nance facility for replanning. We start from a constraint-
posting view of the plan construction process. Plans
consist of a set of actions, which can be specified at
varying levels of detail. Constraints posted by the plan-
ner dictate the inclusion or exclusion of particular ac-
tions, and specify features of the actions included. For
example, unary constraints on an action may determine
the resources allocated to it, its spatiotemporal location,
or some other details about its implementation process.
Inter-activity constraints may identify shared objects or
establish temporal relations among actions. The class of
expressible constraints defines the plan construction lan-
guage. The planning language itself is a restricted subset
of this, limited by input requirements of the execution
module.

Each posted constraint represents a decision made by
the planner, choosing the class of plans satisfying the
constraint over those that do not. To support rationality
in planning, we require that every decision be associated
with a reason, of one of the following types:

1. Dominance reasons indicate decision-theoretic argu-
ments that plans violating the constraints are inad-
missible [Wellman, 1987].

2. Feasibility reasons justify posting constraints because
they are required for plan executability. For example,
we must enforce preconditions of included actions.

3. Completeness reasons indicate the constraints are re-
quired to fill out plans so that they can be interpreted
by the execution module. For example, all shipment
actions must specify a source and destination. The
degree of incompleteness permitted depends on the re-
active capabilities of the executor.

4. Default reasons directly associate decisions with other
conditions on the planning situation. While all plan-
ning decisions are defeasible, we distinguish those not
based on explicit rationality arguments.

All reasons specify the beliefs, preferences, and other
planning decisions on which they depend. Because these
elements in turn are supported by reasons, the compos-
ite argument for a planning decision can include a vari-
ety of these justification types. For example, a decision
might be derived from a decision-theoretic dominance
proof with some premises representing default intentions
premised on some default intentions which in turn were
triggered by the need to complete an insufficiently spec-
ified action description.

The dominance-proving architecture offers several ad-
vantages as the basis for a rational replanning system.
Foremost, it accommodates use of decision-theoretic cri-
teria for choice among plans, which is the central basis of
result rationality. In addition, its dominance relation is
defined over abstract plan classes, so that these criteria
can be associated with isolated planning decisions (that
is, individual constraints). Attaching reasons to domi-
nance conditions generalizes the current architecture and
directs the replanner to the appropriate regions for mod-
ification when things change.

Though recording the reasons for plans is a first step
towards efficient incremental replanning, this alone is not
sufficient, as we see by a closer examination of reason
maintenance techniques.

4 Replanning and reason maintenance

The problem of revising plans to account for changed
conditions has much in common with backtracking and
the problem of revising beliefs in light of new informa-
tion. In both cases, one must determine which existing
beliefs or plans are in conflict with the new informa-
tion, what these existing beliefs or plans depend on, and
what gaps in plans or beliefs appear as the revisions or

30

updates are made. That is, one must localize the po-
tential changes or conflicts by identifying the subset of
the extant beliefs and plans in which they occur. Simi-
larly, both belief revision and plan revision involve choos-
ing which of the identified beliefs and plans to keep and
which to change. In addition, the problem of providing
for contingencies has much in common with the prob-
lem of choosing rules for reasoning by default, for both
involve setting up primary plans or beliefs and the sec-
ondary plans or beliefs to use when the primary ones are
not applicable. In both plan revision and belief revision,
we seek to make these choices of where and how to revise
rational in the sense of decision theory.

The standard approach to belief revision, backtrack-
ing, and default reasoning is to use a reason maintenance
system to connect original information with derived con-
clusions and assumptions. Reason maintenance may be
used in a similar way to revise plans as well as beliefs
by indicating the dependence of plans on beliefs and on
other plans, thus indicating the relevant portions for re-
vision and the conflicts between prior plans and new cir-
cumstances. This possibility was, in fact, one of the orig-
inal motivations for reason maintenance systems (see [de
Kleer et al., 1977]).

4.1 Rational reason maintenance

But the extant architectures for reason maintenance re-
quire reassessment. In the first place, essentially all the
choices made by current RMSs are irrational since they
are made without reference to any preferential informa-
tion about what choices are better than others. The
most obvious decisions concern backtracking: whether
observed conflicts warrant resolution and if so, which
assumption to retract in order to resolve them. Ap-
proaches to each of these decisions play prominent roles
in the design of different reason maintenance systems.
But if we are to achieve the efficiency required for revis-
ing large plans, reason maintenance must be redesigned
to make these choices rationally whenever possible. Ac-
cordingly, we have begun to develop formal foundations
for the theory of rational belief revision [Doyle, 1988;
Doyle, 1990], and are developing techniques for encod-
ing probabilistic and preferential information within the
RMS and methods by which the RMS can use this in-
formation to backtrack in a rational manner. In this,
we build on techniques for qualitative representation of
probabilistic information [Wellman, 1990b].

But to really make reason maintenance techniques effi-
cient, we must do more than choose rationally among as-
sumptions in backtracking. We must in addition under-
take a fundamental reconsideration and redesign of rea-
son maintenance systems to make them much more in-
cremental than extant architectures. Current algorithms
for revising beliefs are based on making unbounded (po-
tentially global) optimizing computations that in some
cases may reconsider the status of every item in the
plan and knowledge base, even though very few of these
statuses may change as the result of the revision. Put

another way, extant systems maintain global coherence
(propositions are believed if and only if there is a valid
argument for them) and global groundedness (all be-
lieved propositions have a well-founded argument from
premises). While these unbounded computations have
been manageable in the relatively small knowledge bases
explored to date, they would appear to be infeasible for
use in systems manipulating very large plans. Instead
of global computations, we need some way of controlling
how much effort is spent on revision. If reason main-
tenance is to be rational, the system must be able to
trade off coherence and groundedness for time or other
resources. Specifically, it must be able to decide whether
the benefits of updating some arguments or consequences
justify the costs of updating them.

To make the RMS amenable to rational control, we di-
vide the knowledge base into parts, each of which may be
revised or preserved separately. Each module of this dis-
tributed RMS contains its own set of beliefs and plans
(as well as other information) corresponding to differ-
ent elements and purposes of the overall plan or to dif-
ferent dimensions of structure (hierarchical abstraction,
overlapping views, spatial separation, temporal separa-
tion, flow of material and information, etc.). Decom-
position of knowledge in this way is a familiar element
of many representational schemes (e.g., those based on
Minsky's [1975] original frame-systems idea). The use of
locality in planning is illustrated most explicitly by the
encapsulation mechanisms of Lansky's [1988] GEMPLAN
system.

4.2 Distributed reason maintenance

Along with the general benefits of decomposition, there
are several additional reasons for distributing reason
maintenance across different processors. In the first
place, the information and effort required may be too
great to store or perform on a single machine. In manag-
ing very large activities, for example, the most effective
representations may spread information across machines
or storage media of different speeds and access times
(e.g., disk storage, large spatial separations). Even when
the information resides on a single processor, the most
convenient representation may be a modular, distributed
organization as described above. But more generally, the
information and actions involved in some task may be
naturally distributed. For example, the necessary infor-
mation may come from geographically separated sensors
or databases. If communication is either unreliable or
costly, effective action may require on-site processing.
Similarly, there may be numerous people or devices car-
rying out parts of the task. For example, in the task
of operating a large manufacturing complex, plans are
executed by line or cell managers acting independently
except as coordinated by the plan. When changes occur,
at least some of the changes in plan must be determined
by the line or cell managers, since the complex manager
will not be able to keep track of all of the activities or
to respond quickly enough. Because authority is dele-

31

gated and distributed, reactions to deviations may be
completely decentralized and uncoordinated.

In addition, distributed reason maintenance may be
valuable because different beliefs and plans may serve
different purposes. These purposes may dictate careful
maintenance of some beliefs and more casual mainte-
nance of others. A common case of this arises when rea-
soning is accomplished by different modules operating at
different rates. Even if they share a common database,
it is often natural to view each module as having dis-
tinct inputs, outputs, and local state. In this setting,
different rates of inference or action in the modules call
for differing treatment of the information in computing
updates and checking support. For example, outputs
which change rapidly compared with how often they are
used as inputs need not demand reconsideration of con-
sequences each time they change. Instead, it may be
much more efficient to leave the consequences untouched
and to have the consuming module recheck the support
immediately prior to use—and then only if the risks of
unjustified action are great enough. In many cases, we
may expect that the success of the overall plan will not
be adversely affected if the beliefs of one module about
plans involving some distant module are mistaken.

For example, suppose one part of a manufacturing
plan calls for receiving parts from San Diego at Los An-
geles and then flying them to Detroit. If local difficulties
promise to delay the parts from San Diego, the origi-
nation portions of the plan might be revised to reroute
similar parts in San Francisco to Los Angeles. As long as
this plan patch attaches appropriate shipping orders for
the Los Angeles authorities, there is no need to notify
them in advance about the change in plans. Indeed, if
the origination plans change several times (say from San
Diego to San Francisco, back to San Diego, etc.), noti-
fying Los Angeles in advance just leads to wasted effort
in revising the latter portion of the plan.

4.3 The reason maintenance service

The extant RMS architectures make reason maintenance
the base-level stratum upon which all other reasoning
procedures are erected. To enable belief revision, one
must encode every bit of information that might change
in reasons and tell these reasons to the RMS (cf. [Rich,
1985; Vilain, 1985]). This can present an excessive bur-
den, as manifest by the observation that the RMSs sup-
plied in expert system shells all too often go unused.
If one must apply it to every step of reasoning, at every
level down to the smallest inference, reason maintenance
becomes a demanding duty rather than a flexible service
to use or ignore as appropriate. To integrate existing
application tools and systems that do not use reason
maintenance into AI systems that do, the RMS must be
able to use other databases and processes to effect its re-
visions. In particular, the RMS must be able to treat ex-
ternal databases as the authorities about certain beliefs,
and it must be able to operate even though other pro-
cesses may be changing these databases independently

of the RMS. This makes the RMS just one of a set of
distributed databases.

5 Rational distributed reason mainte-
nance

Putting these observations together, we seek to facilitate
revision of large plans by employing a rational distributed
reason maintenance service, or RDRMS. The purpose
of the RDRMS is to maintain a description of the overall
system's state of belief that is as good as possible given
the reasoner's purposes and resources. This description
may be approximate, partial, or imperfect, and it may
be improved by performing further computation as the
resources supplied to the RDRMS increase.

There are many motivations for using an RMS: as a
way of providing explanations, as a way of answering
hypothetical questions, and as a way of maintaining co-
herence, groundedness, and consistency. These also mo-
tivate the RDRMS, but its primary purpose is to en-
able the reuse of past computations in whole or in part
without having to repeat the possibly lengthy searches
that went into constructing their results. That is, we
view reasons as information about past computations
or conditions which may be used to reconstruct results
in changed circumstances, either exactly or in modified
form (as in derivational analogy [Carbonell, 1986] or
case-based reasoning). Treating reasons as aids to re-
computation is in marked contrast with the traditional
use of reasons in RMSs, where they are treated as rigid
requirements that belief states must satisfy instead of in-
formation which may be used or ignored as suits the rea-
soner's purposes. Naturally, in this setting the RDRMS
is not expected to determine completely and accurately
what the system believes. Instead, it only offers a theory
of what the overall system believes—an "autoepistemic"
theory, in the sense of Moore [1985], but not necessarily
a complete or correct one.

5.1 RDRMS Operations

The basic operation of the RDRMS is to record reasons
and other information, and, when so instructed, to revise
beliefs in accordance with the expectations and prefer-
ences supplied by the reasoner. Put another way, the
default operation of the RDRMS is to ignore the infor-
mation it records until it is told to revise beliefs, and
then to revise them only as far as can be justified by
purposes of the reasoner. We do not require that all
inference be rationally controlled. Some amount of au-
tomatic inference is acceptable if it represents strictly
bounded amounts of processing.

In the RDRMS, reasons are ordinarily partial. That
is, the reasoner need not register all inferences with the
RDRMS. The RDRMS will therefore be unable to track
all the consequences of all beliefs. Although knowledge
is usually preferable to ignorance, this incompleteness of
the beliefs of the RDRMS need not be detrimental since

32

the underlying knowledge and inferences of the reasoner
are incomplete anyway. Moreover, these consequences
may not influence the reasoner's actions, in which case all
effort expended in recording them would be wasted. The
only discipline required of the reasoner is that any infer-
ences that will not be performed by some other agency
and that cannot be determined after the fact during
backtracking should be described to the RDRMS.

Correspondingly, reasons may be incorrect in the
RDRMS. That is, the reasoner may use a reason to
describe the result of a computation, but may leave out
some underlying assumptions. The result is a reason
that is valid when those unstated assumptions hold, but
which may be invalid otherwise. Incorrect reasons can
be very troublesome in a traditional R.MS, since they
would be enforced as requirements on the state of be-
lief, but they need not cause special problems in the
RDRMS. Since the RDRMS may obey or ignore reasons
depending on its instructions and experience, all reasons
are implicitly defeasible. Thus incorrect reasons pose
no problems not already present in explicitly defeasible
nonmonotonic reasons.

Just as reasons may be incomplete, so may be the
theories of belief states constructed from them, since if
reasons are ignored, their consequences will not be be-
lieved. More generally, the RDRMS makes it possible
to vary how many conclusions are drawn from reasons.
For example, the system will ordinarily use reasons to
construct a single global set of beliefs, as in the original
RMS. But for some specific sets of reasons, say those
corresponding to a circumscribed problem, the RDRMS
may determine all consistent sets of beliefs as in the
ATMS [de Kleer, 1986]. Alternatively, only some consis-
tent interpretations may be constructed, such as those
maximal in some order (as in preferential nonmonotonic
logics [Shoham, 1988]). In general, the aim is to use
the recorded reasons to draw as many conclusions as the
reasoner needs.

Similarly, the revisions performed by the RDRMS may
be incomplete. In the absence of more specific instruc-
tions, the default revision is trivial, simply adding the
new reasons and their immediate conclusions to the be-
lief set. (In recognition of the partiality of reasons, the
RDRMS also accepts commands to simply believe some
proposition, independent of reasons. This corresponds
to the "revision" operation in philosophical treatments
of belief revision [Gärdenfors, 1988].) Specifically, with-
out explicit instructions, the RDRMS does not propa-
gate changes, does not ensure beliefs are grounded, and
does not automatically backtrack to remove inconsisten-
cies. To give some structure to these operations, we de-
fine revision instructions relative to the modules of the
knowledge base. These instructions may indicate that
changes should propagate within the module containing
the belief, or to its neighbors, or globally; or that all be-
liefs in the module should be grounded with respect to
the module, with respect to its neighbors, or globally; or
that backtracking should be confined to the module, or
should look further afield for assumptions to change.

5.2 RDRMS Behavior

One consequence of the incompleteness and incorrect-
ness of reasons is that beliefs of the system may be in-
consistent in routine operation. The overall set of be-
liefs may exhibit inconsistencies by including conflicting
beliefs from different modules. Ordinarily the special-
ized beliefs corresponding to specific problems or sub-
jects will be represented in modules that are internally
consistent, but the RDRMS need not be forced to keep
all these modules consistent with each other. In this
case, the locally coherent modules can be interpreted
as "microtheories" [Hewitt, 1986] (related to the idea of
"small worlds" in decision theory [Savage, 1972]). But
inconsistency can arise even within a module if too little
inference is specified.

Another consequence is that the beliefs of the sys-
tem may not be fully grounded. In the first place,
the set of beliefs may be so large as to make global
groundedness too costly. More fundamentally, large
sets of beliefs always contain interderivable sets of
propositions—alternative definitions provide the most
common example—and which of these sets to choose as
axioms can depend on the specific reasoning task being
addressed. For example, the standard definition of non-
planar graphs is best for some purposes (e.g., teaching
the concept), but Kuratowski's characterization is best
for other purposes (e.g., recognition algorithms). Thus
lack of global groundedness need not be cause for alarm.
Ordinarily, however, specialized modules corresponding
to specific problems will be kept grounded in the axioms
formulating these problems. The system of beliefs can
thus be thought of as "islands" of groundedness floating
in a sea of ungrounded beliefs.

The aim of the RDRMS is to make all of its choices
as rationally as possible. These include the choices of
which reasons to use in reconstructing results, whether to
propagate changes, whether to ground a conclusion, and
whether to backtrack. Since reasons merely record some
of the inferential history of the reasoner, they do not by
themselves determine whether consequences are updated
or supports are checked. Instead, to make these deci-
sions the RDRMS uses annotations supplied by the rea-
soner which give instructions, expectations, and prefer-
ences about alternative courses of action. These include
specification of the conditions under which the RDRMS
should pursue consequences and check support. For ex-
ample, local propagation may be expressed as processing
changes within the module containing the changed be-
lief, but not externally. Alternatively, changes might be
communicated to neighboring modules (with or without
local propagation). Other regimes are possible too, in-
cluding the extreme of propagating the change globally.
Similarly, the annotations may indicate to persist in be-
lieving the proposition without reevaluating the support-
ing reason, to check that the reason is not invalidated by
beliefs within the containing module, or to check validity
with respect to external beliefs.

It is this limited scope, along with the variety and

33

fine grain of RDRMS operations, that makes the service
amenable to rational control. For decisions about up-
dating consequences and checking support, it is impor-
tant that the individual operations be well-characterized
computationally. Domain knowledge of probabilities and
preferences should also be reflected in the revision poli-
cies. Because such information is not always available,
the architecture provides default choices for each of these
classes of decisions. Each domain may override these
with other defaults that are more appropriate in its spe-
cific area. These default choices are then used whenever
there is no evidence that a decision requires special treat-
ment.

In addition to these decisions within the RDRMS,
there are choices about whether to record specific rea-
sons and about which propositions to adopt or aban-
don as premises of different modules. At present, the
RDRMS embodies the same approach as do traditional
RMSs, namely that these decisions are the responsibil-
ity of the external system (or systems). But since these
decisions sometimes can depend on what reasons have al-
ready been recorded, we are investigating techniques by
which the RDRMS can make some of these decisions for
the external reasoner when the external reasoner informs
the RDRMS of its purposes. Of course, these decisions
may also depend on other facts, such as how hard it was
for the reasoner to discover the belief, so we cannot ex-
pect the RDRMS to make all such decisions on its own.

6 Comparison with other work

Reason maintenance is the standard approach to belief
revision, backtracking, and default reasoning [de Kleer
et al, 1977; Doyle, 1979; Goodwin, 1987]. Morris [1988]
has shown that a standard RMS can support planning
and dependency-directed replanning within the classical
planning framework. But developing an architecture for
reason maintenance and replanning subject to rational
control will require significant modification of existing
techniques.

As mentioned above, we use the RDRMS to extend the
dominance-proving architecture for planning with par-
tially satisfiable goals [Wellman, 1990a]. This decision-
theoretic approach fits well with our goal of rational
planning. We also make use of the methods, currently
under active investigation, for decision-theoretic control
of reasoning, in which the reasoner explicitly estimates
and compares the expected utilities of individual search
or inference steps [Dean, 1990; Horvitz et al, 1989;
Russell and Wefald, 1989]. These are very important in
making some of the larger, nonroutine decisions arising
in the planning and belief revision tasks. But our aim
is to identify implicitly rational decision-making proce-
dures whenever possible by separate, off-line decision-
theoretic analyses based on the computational tradeoffs
associated with RDRMS operations.

In the traditional, generative approach to planning,
the planner takes an initial state and a goal, and con-

structs a sequence (or partially ordered set) of ac-
tions to achieve the goal. Most work on generative
planning has concentrated on planning from scratch,
though the replanning task has been studied off and
on over the years [Fikes et al., 1972; McDermott, 1978;
Wilkins, 1988] with some success. But generative
planning has focused—with a few recent exceptions—
on planning without probability or utility information.
Many of these techniques therefore require some rework-
ing before they can be said to produce rational plans,
and the issue of rational control of the planning pro-
cess is just now beginning to be studied [Dean, 1990;
Smith, 1988].

Another approach is the "reactive" approach to plan-
ning and action, which seeks to avoid execution-time
planning by "compiling" all necessary behaviors into di-
rectly applicable forms [Brooks, 1986; Georgeff and Lan-
sky, 1987; Rosenschein and Kaelbling, 1986; Schoppers,
1987]. Our approach fits well with such compilation,
since we seek to develop implicitly rational planning and
decision-making procedures. More specifically, decision-
theoretic analyses of planning and replanning apply also
to the tradeoff between planning and reacting. Since
providing a compiled response for every contingency is
usually not feasible, our approach is to provide explicit
contingency procedures only when they increase the ex-
pected utility of the overall plan, taking both planning
effort and execution-time utilities into account. In addi-
tion, our assumption of distributed execution authorities
and replanners explicitly accounts for the reactive abili-
ties of the distributed execution modules.

The constraint-based approach to scheduling [Fox,
1987] complements the generative planning approach in
many ways, as it does focus on issues of utility and op-
timization. At the same time, it has somewhat lower
aspirations, since the focus is on scheduling activities
within the confines of an overall plan, rather than on
selecting the activities in the first place. In addition,
it has generally not addressed issues of probability, and
its concepts of preference are not directly translatable to
expected utility. But many of the fundamental optimiza-
tion techniques have been refined and integrated with AI
reasoning techniques in this area, and we will draw on
these in constructing methods for rational control of the
planning process and construction of rational plans.

The case-based approach to planning [Collins et al,
1989; Hammond, 1986; Minton et al, 1989] shares with
ours the aim of incremental construction and repair of
plans. Some case-based reasoners make significant use of
recorded reasons for beliefs and plans, for example Car-
bonell's [1986] method of derivational analogy. By and
large, however, most work on case-based reasoning fo-
cuses on issues of conceptual organization and retrieval
rather than reason maintenance. In addition, it is not
too inaccurate to say that research on case-based rea-
soning has largely ignored issues of rationality. Work
in this area has generally aimed to make all planning
operations habitual, so that plans are constructed sim-
ply by remembering old plans or plan fragments, along

34

with patches that should be applied to these plans for
specific circumstances. We also aim to develop habit-
ual rules for plan construction whenever possible (for
example, default plans and default decisions in guiding
planning), but to produce and apply these rules in a
principled way amenable to formal analysis and directed
improvement. In particular, we use the same probabili-
ties that guide decision-making in novel circumstances to
also guide the formation and memorization of habitual
rules, remembering and forgetting rules and past plans
based on estimates of their incremental expected utility.
We believe our approach will make it easier to combine
techniques from the case-based literature with the more
formal techniques developed in the generative planning
and constraint-based scheduling literatures.

Most work on distributed AI has not addressed issues
of belief or plan revision, focusing instead on distribut-
ing the effort involved in ordinary reasoning and plan-
ning [Bond and Glasser, 1988]. Very recently, however,
some distributed RMSs have been developed. While
these represent important first steps, they are not at
present suitable bases for rational plan revision. For ex-
ample, the distributed nonmonotonic TMS of Bridgeland
and Huhns [1990] ensures global consistency among dif-
ferent agents about the information they share. Main-
taining this degree of coherence is not always feasible
in large databases, nor even desirable in cases in which
the various agents have different information sources and
perspectives. Another relevant work is the distributed
ATMS of Mason and Johnson [1989]. This system per-
mits a large degree of inconsistency among the differ-
ent knowledge-bases, and so is closer to the aims of the
RDRMS. But their system also does not address the
issue of rationality, and limits the representation of rea-
sons to monotonic implications.

7 Conclusion

Reason maintenance promises to play an important role
in replanning, but to prove useful for large-scale activi-
ties, the techniques must be capable of incremental appli-
cation that does not incur the costs of global reconsider-
ation. Furthermore, reasons must reflect likelihoods and
preferences about events related to the activity, and revi-
sion policies must be sensitive to computational tradeoffs
inherent in the process of modifying plans and beliefs.

To support this behavior, we extend traditional reason
maintenance techniques to make use of instructions, ex-
pectations, and preferences in deciding how to establish
and revise beliefs and plan elements. In our concep-
tion, the rational distributed reason maintenance service
maintains only as much coherence and grounded support
as is called for by the planner's purposes. In essence, the
fundamental operations of finding supporting arguments
and pursuing consequences become flexible rather than
routine, with different sorts of reasons indicating differ-
ent sorts of processing during revisions.

Together with the dominance-oriented approach to

decision-theoretic planning, the RDRMS represents a
general architecture for reasoned replanning of large-
scale activities. Although much remains to be worked
out, the RDRMS concept provides both a tool for inves-
tigating representational issues in belief and preference
specification and an analytical framework for studying
computational issues in revising beliefs and plans. Be-
cause the issues of rationality highlighted by this ap-
proach are generally not even expressible within stan-
dard RMSs and classical models of planning, we expect
this line of research to yield some new insights into the
dynamics of the planning and replanning process.

References

[Bond and Glasser, 1988] Alan Bond and Les Glasser,
editors. Readings in Distributed Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA, 1988.

[Bridgeland and Huhns, 1990] David Murray Bridge-
land and Michael N. Huhns. Distributed truth main-
tenance. In Proceedings of the National Conference on
Artificial Intelligence. AAAI, 1990.

[Brooks, 1986] Rodney A. Brooks. A robust layered
control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2:14-23, 1986.

[Carbonell, 1986] Jaime G. Carbonell. Derivational
analogy: A theory of reconstructive problem solving
and expertise acquisition. In Ryszard S. Michalski,
Jaime G. Carbonell, and Tom M. Mitchell, editors,
Machine Learning 2. Morgan Kaufmann, 1986.

[Collins et al, 1989] Gregg Collins, Lawrence Birn-
baum, and Bruce Krulwich. An adaptive model of
decision-making in planning. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, pages 511-516, 1989.

[de Kleer, 1986] Johan de Kleer. An assumption-based
TMS. Artificial Intelligence, 28:127-162, 1986.

[de Kleer et al, 1977] Johan de Kleer, Jon Doyle,
Guy L. Steele Jr., et al. AMORD: Explicit control
of reasoning. In Proceedings of the ACM Sympo-
sium on Artificial Intelligence and Programming Lan-
guages, pages 116-125, 1977.

[Dean, 1990] Thomas Dean. Decision-theoretic control
of inference for time-critical applications. Technical
Report CS-90-44, Department of Computer Science,
Brown University, Providence, RI, 1990.

[Doyle, 1979] Jon Doyle. A truth maintenance system.
Artificial Intelligence, 12(2):231-272, 1979.

[Doyle, 1985] Jon Doyle. Reasoned assumptions and
Pareto optimality. In Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence,
pages 87-90, 1985.

[Doyle, 1988] Jon Doyle. Artificial intelligence and ra-
tional self-government. Technical Report CS-88-124,

35

Carnegie-Mellon University Computer Science De-
partment, 1988.

[Doyle, 1990] Jon Doyle. Rational belief revision. In
Proceedings of the Third International Workshop on
Nonmonotonic Reasoning, Stanford Sierra Camp, CA,
June 1990.

[Fikes et al, 1972] Richard E. Fikes, Peter E. Hart, and
Nils J. Nilsson. Learning and executing generalized
robot plans. Artificial Intelligence, 3:251-288, 1972.

[Fox, 1987] Mark S. Fox. Constraint-Directed Search: A
Case Study of Job-Shop Scheduling. Pitman and Mor-
gan Kaufmann, 1987.

[Gärdenfors, 1988] Peter Gärdenfors. Knowledge in
Flux: Modeling the Dynamics of Epistem.ic States.
MIT Press, Cambridge, MA, 1988.

[Georgeff and Lansky, 1987] Michael P. Georgeff and
Amy L. Lansky. Reactive reasoning and planning. In
Proceedings of the National Conference on Artificial
Intelligence, pages 677-682, 1987.

[Goodwin, 1987] James W. Goodwin. A theory and
system for non-monotonic reasoning. PhD the-
sis, Department of Computer and Information Sci-
ence, Linköping University, Linköping, Sweden, 1987.
Linköping Studies in Science and Technology, No. 165.

[Hammond, 1986] Kristian Hammond. Case-based Plan-
ning: An Integrated Theory of Planning, Learning and
Memory. PhD thesis, Yale University, 1986.

[Hewitt, 1986] Carl Hewitt. Offices are open systems.
ACM Transactions on Office Information Systems,
4:271-287, 1986.

[Horvitz et al., 1989] Eric J. Horvitz, Gregory F.
Cooper, and David E. Heckerman. Reflection and ac-
tion under scarce resources: Theoretical principles and
empirical study. In Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence,
pages 1121-1127, 1989.

[Lansky, 1988] Amy L. Lansky. Localized event-based
reasoning for multiagent domains. Computational In-
telligence, 4:319-340, 1988.

[Mason and Johnson, 1989] Cindy L. Mason and
Roland R. Johnson. DATMS: A framework for dis-
tributed assumption based reasoning. In Les Gasser
and Michael N. Huhns, editors, Distributed Artificial
Intelligence, chapter 13, pages 293-317. Morgan Kauf-
mann, San Mateo, CA, 1989.

[McDermott, 1978] Drew McDermott. Planning and
acting. Cognitive Science, 2:71-109, 1978.

[Minsky, 1975] Marvin Minsky. A framework for repre-
senting knowledge. In Patrick Henry Winston, editor,
The Psychology of Computer Vision, chapter 6, pages
211-277. McGraw-Hill, 1975.

[Minton et al, 1989] Steven Minton, Jaime Carbonell,
Craig Knoblock, et al. Explanation-based learning:
A problem-solving perspective. Artificial Intelligence,
40:63-118, 1989.

[Moore, 1985] Robert C. Moore. Semantical considera-
tions on nonmonotonic logic. Artificial Intelligence,
25:75-94, 1985.

[Morris, 1988] Paul Morris. Truth maintenance-based
planning with error recovery. In Proceedings of the
Rochester Planning Workshop, pages 18-19, 1988. Ex-
tended Abstract.

[Rich, 1985] Charles Rich. The layered architecture of
a system for reasoning about programs. In Proceed-
ings of the Ninth International Joint Conference on
Artificial Intelligence, 1985.

[Rosenschein and Kaelbling, 1986] Stanley J. Rosen-
schein and Leslie Pack Kaelbling. The synthesis of
digital machines with provable epistemic properties.
In Joseph Y. Halpern, editor, Theoretical Aspects of
Reasoning About Knowledge: Proceedings of the 1986
Conference, pages 83-98. Morgan Kaufmann, 1986.

[Russell and Wefald, 1989] Stuart Russell and Eric We-
fald. Principles of metareasoning. In First Interna-
tional Conference on Principles of Knowledge Repre-
sentation and Reasoning, pages 400-411, 1989.

[Savage, 1972] Leonard J. Savage. The Foundations of
Statistics. Dover Publications, New York, second edi-
tion, 1972.

[Schoppers, 1987] M. J. Schoppers. Universal plans for
reactive robots in unpredictable environments. In Pro-
ceedings of the Tenth International Joint Conference
on Artificial Intelligence, pages 1039-1046, 1987.

[Shoham, 1988] Yoav Shoham. Reasoning about Change:
Time and Causation from the Standpoint of Artificial
Intelligence. MIT Press, 1988.

[Smith, 1988] David E. Smith. A decision theoretic ap-
proach to the control of planning search. Technical
Report LOGIC-87-11, Department of Computer Sci-
ence, Stanford University, 1988.

[Vilain, 1985] Marc B. Vilain. The restricted language
architecture of a hybrid representation system. In Pro-
ceedings of the Ninth International Joint Conference
on Artificial Intelligence, pages 547-551, 1985.

[Wellman, 1987] Michael P. Wellman. Dominance and
subsumption in constraint-posting planning. In Pro-
ceedings of the Tenth International Joint Conference
on Artificial Intelligence, pages 884-890, 1987.

[Wellman, 1990a] Michael P. Wellman. Formulation of
Tradeoffs in Planning Under Uncertainty. Pitman and
Morgan Kaufmann, 1990.

[Wellman, 1990b] Michael P. Wellman. Fundamental
concepts of qualitative probabilistic networks. Arti-
ficial Intelligence, 1990.

[Wilkins, 1988] David E. Wilkins. Practical Planning.
Morgan Kaufmann, Los Altos, CA, 1988.

36

Computational Considerations in
Reasoning about Action

Matthew L. Ginsberg*
Computer Science Department

Stanford University
Stanford, California 94305
ginsberg@cs.stanford.edu

Abstract
Any first-principles declarative planner will need to
be constructed from an underlying declarative system
that reasons about action. In this paper, we point out
that if such a planning system is to be computationally
viable, the associated declarative description of actions
must satisfy at least two broad conditions. First, it will
need to be event-driven, so that fluents that hold in a
particular situation can be propagated into the future
at reasonable computational cost. Second, it will need
to be anytime in the sense that partial or approximate
answers to queries can be provided in the presence of
computational resource constraints. We suggest that
the first these goals can be achieved by taking the truth
values assigned to sentences to be functions from the
temporal elements into a set of basic values, and that
the second can be achieved by viewing temporal oper-
ators as functions on these functional truth values.

1 Introduction
Existing planning systems can be grouped into three
broad categories: expert planners, general-purpose
planners, and first-principles planners.

Expert planners, of which there are many, are es-
sentially applications of expert-systems technology to
planning problems. The situation in which a particu-
lar agent finds itself is classified to determine which of
a predetermined set of actions is most likely to be ef-
fective in achieving the agent's goals. There has been
some interest recently in constructing the expert de-
cision rules automatically [Drummond, 1988], but the
approach itself must inevitably be limited by the fact
that the agent involved has no real idea what's going
on - it is simply mindlessly applying rules that gov-
ern its behavior. The ensuing brittleness is typical of
expert systems generally.

General-purpose planners, of which there are few,
attempt to address this difficulty by working with a
set of action descriptors that describe the possible ac-
tions in some domain, and then constructing a plan

'This work has been supported by the Rockwell Palo
Alto Laboratory, by General Dynamics and by NSF under
grant number IRI89-12188.

to achieve a particular goal using methods that are
independent of the domain in which the agent finds it-
self. This work began with STRIPS [Fikes and Nilsson,
1971]; the most successful existing planner of this sort
is arguably Wilkins' SIPE system [Wilkins, 1988].

There are two difficulties with the general-purpose
approach. The first is that the computational complex-
ity of planning problems is typically very high, making
it impractical to generate a complete plan that is guar-
anteed to achieve a particular goal. SlPE addresses this
difficulty by restricting the form of the actions it can
consider.

Unfortunately, the nondeclarative restrictions placed
on the form of the actions being considered gener-
ally make these planners nonuniversal; there are do-
mains for which any particular restriction is inappro-
priate. This is the essence of the second difficulty:
General-purpose planners, by committing at a funda-
mental level to a specific description of actions, in-
herit some (but by no means all) of the brittleness of
their expert-planning predecessors. "General-purpose"
planners are only general-purpose within the bounds
established by assumptions embodied in the form of
the action descriptors.

First-principles planners (of which there are none)
attempt to address these difficulties by viewing plan-
ning as a purely declarative activity, specifically, by
viewing it as theorem proving set against the back-
ground of a declarative system that describes actions
in a particular domain.

This idea is an old one, dating back to Green's QA3
system [Green, 1969]; as work on declarative systems
generally has advanced, the attractiveness of the ap-
proach has remained. With the development of non-
monotonic reasoning, for example, it was suggested
that this general declarative notion could be applied
to construct a planner that would be able to jump
to conclusions while building its plans. It was later
suggested that assumption-based truth maintenance
[de Kleer, 1986], another general declarative technique,
might bear on the problem of debugging plans that
appear to be nonmonotonically sound but that closer
inspection reveals to be flawed in some way [Ginsberg,

37

1990b].
The reason that there are no established planners

of this type is that the underlying declarative descrip-
tions of action are themselves lacking. The best-known
reason for this is the infamous Yale shooting problem
[Hanks and McDermott, 1987], although a variety of
researchers have found solutions to this particular dif-
ficulty.

A more fundamental problem with declarative de-
scriptions of action is that they are simply unsuitable
for inclusion in planners. The approach suggested in
[Green, 1969] and reiterated in [Genesereth and Nils-
son, 1987] is still a valid one - given a monotonic de-
scription of a domain, it is indeed possible to view plan-
ning as theorem proving. The difficulty is that it is not
practical to do so.

The reason for this can be seen by considering the
frame axiom. Here is a typical nonmonotonic rendering
of it:

holds(/. s) A -iab(a, /, s) D holds(/, result(a, s))

Informally, this axiom says that if some fluent / holds
in a situation s and the action a is not abnormal in that
it reverses / when executed in the situation s, then /
will continue to hold after the action is completed.

There are technical problems with this definition,
but they can be avoided [Baker and Ginsberg, 1989,
and many others]. But an overwhelming computational
difficulty can be seen if we imagine using (1) to prop-
agate a set of fluents through a long sequence of ac-
tions. The application of (1) for each action and to
each fluent will result in a prohibitively large number
of consistency checks, making the system unusable in
practice.

This problem is avoided in general-purpose planning
systems by using a nondeclarative description of action
that has more attractive computational properties. In
STRIPS, for example, actions are described in terms of
add and delete lists, reducing the complexity of the rea-
soning enormously. The STRIPS formalism cannot deal
with the inferred consequences of actions, however, as
was observed in [Lifschitz, 1986]. (This is called the
ramification problem in [Finger, 1987J.) A partial so-
lution to this difficulty can be found in [Ginsberg and
Smith, 1988], but the approach presented there contin-
ues to describe actions in nondeclarative terms.

The intellectual foundation for the work described in
this paper lies in an attempt to present a declarative
description of the work in [Ginsberg and Smith, 1988];
we have tried to develop a formalization of action that
will be computationally viable in the situations likely
to arise in planning. The two specific heuristic com-
mitments that we will make are the following:

First, we will assume that fluents typically survive
long sequences of actions before being needed; a robot
should be able to put a wrench in its toolbox, perform
most of its day's activities, and conclude at a single
stroke that the wrench is still in the toolbox. We will

describe this by saying that our formalization of action
needs to be event-driven in the sense that propagating
fluent values through idle periods does not incur sig-
nificant computational expense.

Second, we will commit ourselves to a system that
can reason about actions in an anytime fashion; the
word appears to originate in [Dean and Boddy, 1988].
By this we mean that the system, when asked the value
of a fluent in a specific situation, will produce some
answer quickly, perhaps modifying that answer as nec-
essary if allowed to consider more subtle features of
the situation involved. It is generally recognized that
planning problems are sufficiently difficult that approx-
imate answers are inevitable; we are simply requiring
that this sort of computational response be present in
the description of action that underlies the planner it-
self.

The reason that we have chosen to discuss these two
problems in this paper is not that there are no others
(there are), but that the solutions to them are linked.
Roughly speaking, both difficulties can be addressed
by taking the truth value assigned to a sentence to
be not a single value such as "true" or "false," but a
function from a set of time points into such values.

The reason that this approach leads to an event-
driven description is that it allows us to conveniently
describe the expected future behavior of fluents in a
compact fashion. Instead of saying, "The wrench is in
the toolbox at 9:15," and, "Things in toolboxes tend
to remain there," we can simply say, "The wrench is
expected to be in the toolbox for the rest of the day,"
meaning that the truth value assigned to the sentence

in(wrench, toolbox)

is a function that maps the entire temporal interval
from 9:15 to 5:00 to the value t (or perhaps dt - true
by default - if we are prepared to admit the possibility
of subsequent information reversing our conclusions).
The problem of making our description event-driven
now becomes essentially a matter of finding a data
structure for the functional truth values that efficiently
encodes the behavior of fluents that change only infre-
quently.

The idea of taking truth values to be temporal func-
tions also bears on our requirement that the implemen-
tation of our formalism exhibit anytime behavior. As
an example, consider a sentence such as. "One second
after the valve is closed, the pressure will increase,"
which we will write somewhat schematically as

delay(closed-valve) D pressure (2)

where delay is an operator that we will use to push
the temporal description of the valve one second into
the future.

From a formal point of view, the delay operator
appearing in (2) is a modal operator, since it accepts
as an argument not an object in our language, but a
declarative sentence. It is shown in [Ginsberg, 1990a]

that when truth values are taken to be more descriptive
than simply elements of the two-point set {t, /} (true
and false, respectively), it is possible to view modal op-
erators as functions on the truth values of their propo-
sitional arguments. In (2), the modal operator delay
corresponds to the function delay that is given by

[delay(/)](i + l) = /(i) (3)

Note that delay accepts a function as an argument and
returns a function as its result, since the truth values
that we are using are themselves functional.

To see that this interpretation leads to anytime be-
havior, we need to make one more observation: The
basic purpose of a deductive system is to determine
what truth value should be assigned to a particular
query. Now note that when considering a query q,
we may well encounter a modal operator, requiring
us to apply the corresponding function (as in (2) or
(3)) to the truth values of the propositional arguments
(closed-valve in (2)). But what are we to use for
these truth values? We can use either the result of in-
voking the theorem prover recursively on the proposi-
tional arguments themselves, or use the values that can
be obtained by simply searching for the given propo-
sitions in the database. Using these latter values as
approximations for the former leads to a system that
produces some answer quickly, but may modify that
answer on further consideration. Perhaps there is a
deductive demonstration that the valve in (2) will be
open at some particular future time, and so on. If the
analysis of the embedded sentences produces still fur-
ther modal expressions, anytime behavior will result
as the system makes and then examines assumptions
about the truth values assigned to these embedded sen-
tences.

The remainder of this paper will consider each of
these ideas in turn, and then show an example of an
implementation of them being used to analyze a shoot-
ing scenario similar to that appearing in [Hanks and
McDermott, 1987]. The implementation is built using
the multivalued theorem proving system MVL [Gins-
berg, 1988, Ginsberg, 1989].

2 Truth values
We remarked in the introduction that we intend to
label sentences in our declarative database with func-
tional truth values that include information about the
truth or falsity over time (or default truth/falsity,
etc.) of the sentence involved. The reason that we
are comfortable doing this is that the labels so con-
structed retain the mathematical structure of the orig-
inal "instantaneous" labels, in that we can combine
them, negate them, disjoin and conjoin them, and so
on.

It is these operations of conjunction, disjunction and
so forth that underlie the semantics of any declarative
system. Specifically, if we have labels x and y for sen-
tences p and q respectively, we need a way to construct

0 1 2 3 4 ••• 50 51 52 53 54

Figure 1: A fluent that is true three times

a label xV y for the disjunction of p and q, and so on.
In [Ginsberg, 1988], a mathematical structure called a
bilattice was introduced that consists of a set together
with just these combining operations. Although the
formal definition will not play a significant role in the
remainder of this paper, we include it here in the in-
terests of completeness:

Definition 2.1 A bilattice is a sextuple
(B, A, V, •, +, -i) such that:

1. (B, A, V) and (B, ■, +) are both complete lattices, and
2. -i : B —> B is a mapping with:

(a) -i2 — \, and

(b) -i is a lattice homomorphism from (B,A,v) to
(B, V, A) and from (B, •, +) to itself.

The bilattice operations A, V and -i all correspond to
the usual logical notions, while + corresponds to com-
bination of evidence and is used to combine the truth
values obtained from separate lines of reasoning to a
single conclusion. Many more details of the bilattice
work, together with a discussion of the philosophical
ideas underlying the approach, can be found in [Gins-
berg, 1988],

What is of interest to us here is the fact that if B is
some bilattice, then B2, the collection of ordered pairs
of elements of B, inherits a bilattice structure from
B where all of the bilattice operations are computed
pointwise. (The construction is analogous to the con-
struction of the Cartesian plane IR2 as the product of
two copies of the real line.) More generally, for any
set S, the set Bs of functions from S into B inherits a
bilattice structure from the set B.1

It follows that if we have some set T of time points,
then the set BT of functions from T into the "base"
set of truth values B has the structure required of a set
of truth values. As an example, if we take T to be the
integers, then the graph in Figure 1 shows the truth
value assigned to a fluent that is true for two units of
time at t = 2, for one unit of time at t — 50, and for
all time after t — 53.

Our event-based philosophy now corresponds simply
to a data structure that represents these truth values
by listing the points at which the value changes. In
Figure 1, for example, we record the fact that the fluent
is unknown at time 0, true at time 2, unknown at time
4, and so on; values at a total of six points are recorded.

There is no real difference between viewing the set B~
as the set of ordered pairs of elements of B, or as the set
of functions from the two-point set {1,2} into B.

39

Determining the value of the fluent at any intermediate
time £ is a matter of walking along the graph until the
next event is later than £, and taking the value at the
last time encountered. Note that the computational
effort required to determine the value of the fluent in
Figure 1 is completely independent of the length of the
gap between times 4 and 50.

Extensions
The ontological shift that we are proposing does not in
and of itself commit us to any specific computational or
representational strategy. As an example, the simple
representation scheme that we described in the previ-
ous paragraph can easily be extended in a variety of
ways:

1. The set T of time points only needs the structure of
a partial order in order for the above approach to
work; to determine the value of a fluent / at some
particular time t, we walk our way along the function
until we find ourselves between two points i0

and *i
such that

t0<t< t1}

so that t is no earlier than £o and £i is later than t.
The value of / at t is then the value taken at to.

2. As an example, taking the above partial order to
be the continuous real line allows us to avoid our
earlier implicit assumption that time was discrete.
This particular choice commits us to fluents being
true over half-open intervals [x,y) only, but this can
be avoided by introducing auxiliary elements x+ for
each i£E such that the half-open interval [x, y+)
in fact denotes the closed interval [x,y].

3. Another example involves taking the elements of the
partial order to be action sequences, where an ac-
tion sequence a2 temporally follows a sequence ai
whenever a2 is an extension of aj. Nonlinear action
sequences can be handled by weakening the partial
order to cater to possible linear action sequences con-
sistent with a given nonlinear one.

4. It is also possible to extend the scheme by introduc-
ing "decay functions" that describe how a fluent's
truth value is expected to change as time goes by.
In Figure 1, for example, the fluent's truth values
do not change at all as time passes; a more realistic
example might involve the truth value of the fluent
falling from t to dt at times 3 and 54, as shown in
Figure 2. Here, our confidence in the truth of the
fluent decays as time passes, corresponding to the
application of a nonmonotonic frame axiom. As be-
fore, information is recorded only when the truth
value of the fluent changes from the expected one,
so we still need to record information only about the
"events" at times 0, 2, 4, 50, 51 and 53. By changing
the set of base truth values to which the temporal
functions map, this idea can be extended to include
a wide variety of temporal behaviors, such as the

t

dt

u
0 1 2 3 4 ••• 50 51 52 53 54

Figure 2: A default frame axiom

probabilistic decay functions discussed in [Dean and
Kanazawa, 1988].

In all of these cases, the computational efficacy of the
scheme that we have proposed is preserved.

The frame axiom
The approach we have suggested encodes the informa-
tion that is normally captured by a frame axiom such
as (1) in two separate ways. First, the actual default
behavior assigned to some particular fluent / is en-
coded in a truth value such as that appearing in Fig-
ure 2, which explicitly indicates the default truth of
the fluent at times following times when it is known to
be true with certainty.

We have thus far avoided the question of how we
obtain truth values such as that appearing in Figure 2
in the first place. What we would like to do is to have
a sentence in our database such as the following:

If the robot puts a tool in its toolbox, then the
tool is definitely in the toolbox at that time, and
can be assumed by default to be in the toolbox at
subsequent times.

Note first that the truth value to be assigned to the
conclusion of the rule (that the tool is in the toolbox)
is not the same as the truth value of the premise; the
premise (that the tool is being put into the toolbox)
holds only instantaneously, while the conclusion (that
the tool is actually located in the toolbox) holds over
a wide range of times. This is a technical issue that
we will consider in the next section and is identical in
principle to the appearance of the delay operator in
the introduction.

More importantly, note that the future behavior of
any particular fluent (in this case, the location of the
tool) is determined not by applying some blanket frame
axiom such as (1), but instead by an axiom describing
this future behavior when the fluent is first asserted
(i.e., when the robot puts the tool in the toolbox).

This is an important distinction between our ap-
proach and the conventional one. Computational is-
sues aside, we prefer our approach on purely philosoph-
ical grounds, since it is not the case that the frame
axiom applies to all, or even most of the fluents we
encounter in everyday life.

As an example, consider the problem of entering a
crosswalk when there is a car five feet away approach-
ing at 60 MPH. Are we to apply the frame axiom to
the fact that the car is five feet from the crosswalk, or
to the fact that it is moving at a high speed? Clearly

40

to the latter, although there is no information in (1)
indicating that we should do so.

This is related to the well-known problem of induc-
tion [Skyrms, 1966]. How is it that we know to ap-
ply the frame axiom to a predicate such as "blue" or
"green" but not to one such as "grue" (green until July
10th but blue subsequently) or "bleen?" Although we
have not provided an answer to this question, we have
indicated clearly the declarative point at which such
an answer is used - in the description of the expected
future behavior of newly established fluents. Similar
observations have also been made in [Myers and Smith,
1<

3 Modal expressions
Let us return to the observation we made in the last
section that the truth value to be assigned to the con-
sequent of some rule is often not the same as the truth
value of the antecedent. In the introduction, we han-
dled a situation such as this in (2) by introducing a
modal operator m and writing

m(a) D c

where a is the antecedent and c is the consequent. The
modal operator m changes the truth value of a so that
the truth value of c is modified correctly by the above
rule. The two examples of this that we have seen thus
far involve a modal operator delay that delays the
truth value of the antecedent by a fixed amount of
time, and an operator propagate that was hinted at in
the previous section and that is responsible for insert-
ing the consequent into the database with a complete
"future history" if appropriate.

We will discuss these two operators in some detail
shortly, but let us continue to examine general issues
first. The idea that modal operators can be viewed
truth-functionally (i.e., as functions on the truth val-
ues of the sentences on which they operate) is an old
one in the philosophical community, but was discarded
in favor of Kripke's possible-worlds approach [Kripke,
197l] when it was realized that there simply are not
enough functions on the two-point set {t,f} to corre-
spond to all of the interesting modal expressions that
one might wish to consider.

In [Ginsberg, 1990a], however, it was pointed out
that if truth values are taken from an arbitrary bilat-
tice instead of from the set {i, /}, it becomes practical
to view modal operators truth-functionally after all; in
fact, the resulting construction is a generalization of
Kripke's.

Anytime behavior

An additional advantage of viewing modal operators
truth-functionally is that the associated declarative
systems naturally exhibit anytime properties; this can
probably be made clearest by an example from PRO-
LOG. Consider the following program:

landlubber(X) :- animal(X), not(fly(X)).
fly(X) :-bird(X), not(penguin(X)).
animal(X) :- bird(X).
penguin(X) :- bird(X), tuxedo(X).
bird(opus).
tuxedo(opus).

Animals that cannot fly are landlubbers, birds can fly
unless they are penguins, and birds in tuxedos are pen-
guins. Opus is a bird wearing a tuxedo. Is he a land-
lubber?

Ignoring inadequacies in our representation of the
domain, the interpreter begins by noting that it can
prove that Opus is an animal, and therefore that he is
a landlubber unless he can be shown to fly. A new proof
process is therefore begun with the intention being to
prove that Opus can fly.

Since Opus is a bird, he can fly unless he can be
shown to be a penguin. Yet another proof process is
begun; since this one succeeds in showing Opus to be
a penguin, he cannot be shown to fly and the original
query (is Opus a landlubber?) succeeds.

What is proposed in [Ginsberg, 1990a] is that it
should be possible to interrupt this procedure at the
points where new proof attempts are generated. Thus,
when creating the attempt to prove that Opus can fly,
we note that since there is nothing in the database in-
dicating explicitly that he can, we can tentatively label

fly(opus)

as unknown, and therefore assign not (fly (opus)) the
value of true using PROLOG'S negation-as-failure rule.
This allows us to tentatively confirm the original query.

Given more time, we can work on the goal
fly (opus), noting that this spawns the subgoal
penguin (opus). Once again, we break the inference
process, using the fact that penguin(opus) is miss-
ing from our database to conclude tentatively that
not (penguin (opus)) is true and therefore that Opus
can fly, so that the original query should fail. Finally,
given still more time for reflection, we realize that Opus
is a penguin and therefore a landlubber after all.

PROLOG'S treatment of negation is as an operator
that returns t unless the truth value of the argument
is itself i; specifically, if some sentence p is unknown,
negation-as-failure treats not(p) as true. Viewed in
this fashion, PROLOG'S negation is a modal operator
in our sense. We are proposing two extensions to this
idea:

1. Extending the notion of a modal operator to include
temporal operators such as those that arise when
reasoning about action.

2. Using these modal operators as semantic markers
for points at which the inference process can be sus-
pended and an approximate answer computed.2

This suggests the introduction of a modal operator 1
that doesn't modify the truth value of its argument at all,
but serves only to mark a point where inference can be
suspended. This idea is unexplored at this point.

41

These ideas are described in greater detail in [Ginsberg,
1990a].

Temporal operators
Given that we take the view that temporal operators
can be described by giving their functional behavior
and then incorporating them into our declarative lan-
guage, what operators are required in a system that
reasons about action?

We will clearly need an operator delay to separate
the occurrence of an action from the appearance of its
effects, and another operator propagate that allows us
to construct temporal truth functions such as the one
appearing in Figure 2.

In fact, we appear to need nothing else; the axioma-
tization appearing in the appendix uses no modal op-
erators other than these two. The description of delay
is as appearing in (3), while propagate is defined re-
cursively as3

[propagate(/)](i) =

I /(*)> ifi=0or/(t)^u;
| decay[propagate(/)(r. — 1)], otherwise.

The function decay might be given by, for example:

X decay(s)
t dt
dt dt
f df
df df
u u

This decay function maps any truth value into its de-
fault version, corresponding to a nonmonotonic frame
axiom. A monotonic frame axiom would simply take
decay(s) = x. As an example, Figure 3 shows the
result of applying propagate to a temporal function
that changes from t to /. Figure 4 shows the result if
the frame operator is chosen to be monotonic.

From these two operators, we can build a declarative
description of action that has the desired properties of
being event-driven and anytime. If a is an action that
causes a fluent / to be true in a persistent way (such
as putting a tool in the toolbox), we write4

propagate(delay(a)) D / (4)

The implementation of propagate does not follow this
definition directly, since this would be horrendously ineffi-
cient. Instead, we use a monotonic propagation function
(as described in the appendix), and simply drop informa-
tion about any "events" at which a truth function becomes
unknown.

The axiom (4) is not quite satisfactory as it stands, be-
cause it is awkward to combine it with domain constraints
describing ramifications of the action in question. This is
handled in the appendix by reifying the fluents so that they
can be treated as objects in our language, and replacing (4)
with an axiom like

causes-persistently(a, /)A

t

dt

u

df

f

t

dt

u

df

f

t

dt

u

df

f

t

dt

u

df

f

2 3 4 ••• 50 51 52 53 54

A temporal function /

0 1 2 3 4 ••• 50 51 52 53 54

The function propagate(/)

Figure 3: Applying the frame axiom

0 1 50 51 52 53 54

0 1 2 3 4 ••• 50 51 52 53 54

propagate(/)

Figure 4: A monotonic frame axiom

42

while if a causes / to be true only instantaneously (like
striking a match causing a light), we write

delay(a) D /

Efficiency considerations
Suppose that we consider the example in Figures 3
and 4 a bit more closely. In the example in Figure 4,
for example, note that there is no point to attempting
to show that the fluent holds at time 4 - we already
know this by virtue of the application of our monotonic
propagation function. This implies the following:

When invoking the prover on a sentence p in
order to evaluate a modal expression m(p), one
should, only investigate proofs that will affect not
only the truth value of p, but the truth value of
m(p) as well.

In fact, the situation is a bit more subtle still; consider
Figure 3.

Suppose that we are interested in showing that the
fluent / holds at time 53, perhaps because / is a pre-
condition to an action that we would like to take at
that time, or perhaps because the restriction men-
tioned above implies that this is the only information
about / that is of interest to us.

In the initial situation in which we know nothing,
it follows that we should try to show that / holds at
any time before t = 53, since this value will then be
propagated to the time of interest. Although show-
ing that / holds at time 54 does effect the value of
propagate(/), it does not do so in an interesting way.
This means that we should replace the above principle
with the following stronger one:

When invoking the prover on a sentence p in
order to evaluate a modal expression m(p), one
should only investigate proofs that will change the
truth value of rn(p) in a way that will affect the
response to the original query.

Applying this idea can be fairly subtle. In the ex-
ample we are considering, suppose that we succeed in
showing that / holds at time 2, so that propagate(/)
holds by default at time 53. Now there is no point in
showing that / holds, but there is a reason to show
that the negation of / holds at some time between 3
and 53, since ->/ will block the propagation of / to the
time that is of interest to us.

In the example in the figure, we can show that -if
holds at time 51; now we must once again change the
focus of our proof efforts as we attempt to show that
/ is true either at t = 52 or at t = 53.

From a conceptual point of view, this is all quite
straightforward. From an implementational point of
view, however, it can be rather subtle, especially since
we should preserve portions of the proof tree for a

fluent / even if they appear not to be relevant to
propagate(/). The reason for this is that subsequent
developments may change this. In the example we have
been considering, perhaps proving / has been reduced
(after considerable effort) to proving g and h\ when our
focus changes to that of proving -if, we should retain
this information in case (as happens in this example)
we decide that we need to prove / after all.

4 An example
The ideas that we have described have been im-
plemented using the multivalued theorem prover de-
scribed in [Ginsberg, 1988, Ginsberg, 1989], which al-
lows the user to select truth values from arbitrary bi-
lattices and to include arbitrary modal operators in
a declarative database. The precise axiomatization of
actions generally and our domain in particular can be
found in the appendix.

The domain we are considering involves a gun, which
may or may not be loaded, and a victim (Fred), who
may or may not be alive. At time 0, the gun is loaded
and Fred is alive.

This domain has three actions: loading and unload-
ing the gun (which always succeed), and shooting the
gun at Fred. If the gun is loaded, firing it at Fred will
kill him.5 All of the fluents persist in a nonmonotonic
fashion except that once Fred dies, he is guaranteed to
stay dead.

The course of events in this domain is as follows:

Time Event
0 Fred is alive and the gun is loaded
1 The gun is unloaded
2 The shooting is attempted

and the gun is reloaded
50 The shooting is attempted
52 The gun is reloaded
53 The shooting is attempted

The first shooting action should fail, since the gun
has been unloaded at the previous time point. The sec-
ond shooting action should succeed by default, since
the gun has presumably remained loaded between
times 3 and 50. The third shooting action will defi-
nitely succeed, since it immediately follows a load ac-
tion.

Given this information, the system was asked to in-
vestigate the truth or falsity of the fluent alive (is Fred
alive?) at all times; the results are shown in Figures 5
and 6.

The machine reasoned as follows:6

propagate(delay(holds(a))) D holds(/)

5This is the only consequence of the shooting action.
Specifically, shooting does not cause the gun to become
unloaded.

6The machine is reasoning backwards in time only be-
cause it uses the most recently asserted facts first, and the
assertions about what actions took place at what times
happen to be in chronological order. (These are the last
axioms appearing in the appendix.)

43

dt

u

df

f
0 1 2 3 4 •■• 50 51 52 53 54

(a) Initial knowledge

t

dt

u

df

f

t

dt

u

df

f

1 2 3 4 ••• 50 51 52 53 54

(b) The third shooting action succeeds

0 1 2 3 4 ••• 50 51 52 53 54

(c) The second shooting action succeeds by default

t

dt

u

df

f
0 1 2 3 4 ••• 50 51 52 53 54

(d) The first shooting action succeeds by default

Figure 5: The shooting scenario

t

dt

u

df

f
0 1 2 3 4 ••• 50 51 52 53 54

(e) Fred is alive by default initially

t

dt

u

df

f
0 1 2 3 4 ••• 50 51 52 53 54

(f) Unload at t = 1 causes first shooting to fail

t

dt

u

df

f
0 1 2 3 4 ••■ 50 51 52 53 54

(g) In the initial situation, Fred is alive for sure

Figure 6: The shooting scenario (ctd.)

44

1. First, it realized that the shooting at time 53 is guar-
anteed to succeed, so that at times 54 and subse-
quently, Fred will be dead.

2. Next, it realized that the shooting at time 50 was
expected to succeed, since the gun was loaded at an
earlier time and presumably remained so.

3. It also decided that the shooting at time 3 was likely
to succeed, since the gun was loaded in the initial
situation and that fact was expected to persist.

4. The proof attempts in Figure 5 involve attempts to
find times at which Fred is dead; the machine now
changed its focus to trying to prove that he is alive,
and concluded that he is (by default) from time 0
until the initial shooting.

5. The machine next investigated the modal expression
propagate(loaded) a bit more closely, since this
modal expression was used in its conclusion that the
shootings at times 3 and 50 succeed. It discovered
that the gun is not expected to be loaded at time 3
after all, and therefore that the first shooting should
fail.

6. Finally, the program realized that Fred is guaranteed
to be alive in the initial situation, and updated its
conclusions to reflect this.

In this example, we can clearly see the two features
that have been the focus of this paper - the event-
driven nature of the description, evidenced by the lack
of computational effort devoted to the "idle" time from
t = 4 to t = 50, and the anytime nature of the analysis,
shown in the shifting conclusions displayed in Figures
5 and 6.

5 Conclusion
My intention in this paper has been to argue for two
things: First, the use of truth values that directly cap-
ture the complete history of fluents that change over
time; second, the manipulation of these truth values
using truth-functional modal operators. We have pre-
sented an implementation of our ideas that correctly
analyzes a simple example similar to the shooting sce-
nario presented in [Hanks and McDermott, 1987], but
the theoretical justifications for this approach are more
compelling:

1. The approach embeds the action descriptions in a
full declarative language, and investigates the conse-
quences of actions by proving theorems against this
background. A system developed in this way will
benefit from developments elsewhere in the theorem-
proving community in a way that a more ad hoc ap-
proach cannot.

2. The event-driven nature of the approach allows us to
reason in a computationally viable way about fluents
that change value only infrequently. As discussed in
Section 2, we do this without committing ourselves
to any specific ontology of time or of action.

3. The natural implementation of our ideas exhibits an
anytime behavior that we can expect to be present
in the associated planning system as well. Further-
more, this ability to incrementally refine our conclu-
sions is grounded in a solid formal foundation.

4. Finally, the approach we have described avoids the
use for a blanket frame axiom such as (1), which is
likely to fall prey to the problem of induction. Al-
though we have presented no solution to this diffi-
culty, our approach makes clear that such a solution
will need be reflected in the declarative description
of our domain, since the expected future history of
any particular fluent needs to be asserted when the
fluent itself is added to the database.

Appendix: Axioms used in Section 4
The axioms used in our description of action involve
four separate causal predicates, as follows:

1. causes(a, /) means that the action a causes the flu-
ent / to be true instantaneously.

2. causes-persistently(a,/) means that the action
causes the fluent to be true in a way that is expected
to persist into the future.

3. causes-f orever(a,/) means that the action causes
the fluent to be true in a way that is guaranteed to
be true in the future.

4. Finally, causes-not(/1, f2) means that fluent fi im-
plies the negation of fluent f2- The fluents alive and
dead are related in this fashion.

Fluents are reified using a holds predicate; the in-
sertion of the reified fluents into the database is also
reified using a triggers predicate, so that holds is
the result of applying the modal operator propagate
to triggers.

Here are the axioms associated with these predi-
cates, expressed in a PROLOG-like style:

holds(F) :- causes(A,F),
delay(succeeds(A)).

causes(A,F) :- causes-persistently(A,F).
holds(F) :- propagate(triggers(F)).
triggers(F) :- causes-persistently(A,F),

delay(succeeds(a)), default.
triggers(F) :- causes-forever(A,F),

delay(succeeds(a)).
not(holds(P)) :- causes-not(Q,P), holds(Q).
not(triggers(P)) :- causes-not(Q,P),

triggers(Q).

There are a couple of things to note here:

1. The MVL system has a true negation operator in ad-
dition to the modal negation-as-failure operator used
in PROLOG. The not appearing in the heads of the
last two of the above rules is true negation.

2. The sentence default is inserted into the database
with a truth value indicating that it has value

45

dt at all times. This allows us to use a
monotonic propagate operator, with the inclu-
sion of the default sentence serving to distinguish
causes-persistently from causes-forever.

We also need axioms expressing conditions under
which an action succeeds. We assume that there is
a predicate prec(a,p) that holds just in case p is a
list of the preconditions of the action a, and another
predicate prec-holds(p) that is true just in case every
sentence in the list p holds:

succeeds(A) :- occurs(A), prec(A,P),
prec-holds(P).

prec-holds([X|Y]) :- holds(X),
prec-holds(Y).

prec-holds([]).

Finally, there is a dummy action init that takes
place at time — 1 and is used to construct the initial
situation. This action has no preconditions.

occurs(init). ;true at time -1 only
prec(init, []) .

To describe the shooting domain specifically, we first
describe the initial situation as a consequence of the
init action:

causes-persistently(init,alive).
causes-persistently(init,loaded).

These axioms say that Fred is alive (and expected to
remain so) and that the gun is loaded (and also ex-
pected to remain so) in the initial situation.

We also need axioms describing the various actions.
Here are load and unload:

causes-persistently(load,loaded).
causes-persistently(unload,unloaded).
prec(load,[]).
prec(unload, []) .

The fluents load and unload are negations of one
another:

causes-not(loaded,unloaded).
causes-not(unloaded,loaded).

Shooting is similar. It causes Fred to be dead forever
and has a precondition of the gun being loaded. The
fluents alive and dead are negations of one another:

causes-forever(shoot,dead).
prec(shoot,[loaded]).
causes-not(alive,dead).
causes-not(dead,alive).

Finally, we need axioms saying what occurs when:

occurs(unload). ;true at time 1
occurs(shoot). ;true at time 2
occurs(load). ;also true at time 2
occurs(shoot). ;true at time 50
occurs(load). ;true at time 51
occurs(shoot). ;true at time 53

When we indicate "true at time 2" above, we mean
that these facts are inserted into the database with
truth values indicating that they are true at these
times; there is no way to represent this using conven-
tional PROLOG syntax. The three occurrences of the
shooting action are combined to get a truth function
similar to that shown in Figure 1 except for the fact
that the occurrences are all of unit time duration.

Acknowledgement
I would like to thank Adnan Darwiche and Don Geddis
for various helpful discussions.

References
[Baker and Ginsberg, 1989] Andrew B. Baker and

Matthew L. Ginsberg. Temporal projection and
explanation. In Proceedings of the Eleventh In-
ternational Joint Conference on Artificial Intelli-
gence, pages 906-911, 1989.

[Dean and Boddy, 1988] Thomas Dean and Mark
Boddy. An analysis of time-dependent planning.
In Proceedings of the Seventh National Conference
on Artificial Intelligence, pages 49-54, 1988.

[Dean and Kanazawa, 1988] Thomas Dean and Keiji
Kanazawa. Probabilistic temporal reasoning. In
Proceedings of the Seventh National Conference
on Artificial Intelligence, pages 49-54, 1988.

[de Kleer, 1986] Johan de Kleer. An assumption-
based truth maintenance system. Artificial In-
telligence, 28:127-162, 1986.

[Drummond, 1988] Mark Drummond. Situated Con-
trol Rules. Technical Report, NASA Ames Re-
search Center, Moffett Field, CA, 1988.

[Fikesand Nilsson, 1971] R.E. Fikes and Nils J. Nils-
son. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial
Intelligence, 2:189-208, 1971.

[Finger, 1987] Jeffrey J. Finger. Exploiting Con-
straints in Design Synthesis. PhD thesis, Stan-
ford University, Stanford, CA, 1987.

[Genesereth and Nilsson, 1987] Michael R. Gene-
sereth and Nils J. Nilsson. Logical Foundations of
Artificial Intelligence. Morgan Kaufmann, 1987.

[Ginsberg, 1988] Matthew L. Ginsberg. Multivalued
logics: A uniform approach to reasoning in ar-
tificial intelligence. Computational Intelligence,
4:265-316, 1988.

[Ginsberg, 1989] Matthew L. Ginsberg. User's Guide
to the MVL System. Technical Report 840-88-24,
Rockwell International Science Center, 1989.

[Ginsberg, 1990a] Matthew L. Ginsberg. Bilattices
and modal operators. Journal of Logic and Com-
putation, 1, 1990.

46

[Ginsberg, 1990b] Matthew L. Ginsberg. The compu-
tational value of nonmonotonic reasoning. In Pro-
ceedings 1990 Workshop on Nonmonotonic Rea-
soning, American Association for Artificial Intel-
ligence, Lake Tahoe, CA, 1990.

[Ginsberg and Smith, 1988] Matthew L. Ginsberg and
David E. Smith. Reasoning about action I: A
possible worlds approach. Artificial Intelligence,
35:165-195, 1988.

[Green, 1969] C. C. Green. Theorem proving by reso-
lution as a basis for question-answering systems.
In B. Meltzer and D. Mitchie, editors, Machine
Intelligence 4, pages 183-205, American Elsevier,
New York, 1969.

[Hanks and McDermott, 1987] Steve Hanks and Drew
McDermott. Nonmonotonic logics and tempo-
ral projection. Artificial Intelligence, 33:379-412,
1987.

[Kripke, 197l] Saul A. Kripke. Semantical considera-
tions on modal logic. In L. Linsky, editor, Refer-
ence and Modality, pages 63-72, Oxford Univer-
sity Press, London, 1971.

[Lifschitz, 1986] Vladimir Lifschitz. On the semantics
of STRIPS. In Proceedings of the 1986 Workshop
on Planning and Reasoning about Action, Tim-
berline, Oregon, 1986.

[Myers and Smith, 1988] Karen L. Myers and
David E. Smith. On the persistence of derived
beliefs. In Proceedings of the Seventh National
Conference on Artificial Intelligence, 1988.

[Skyrms, 1966] Brian Skyrms. Choice and Chance:
An Introduction to Inductive Logic. Dickerson,
1966.

[Wilkins, 1988] David E. Wilkins. Practical Planning:
Extending the Classical AI Planning Paradigm.
Morgan Kaufmann, San Mateo, CA, 1988.

47

Issues in Decision-Theoretic Planning:
Symbolic Goals and Numeric Utilities

Peter Haddawy
Department of Computer Science

University of Illinois
405 N. Mathews Ave.

Urbana IL 61801
haddawy @m.cs.uiuc. edu

Abstract

The planning problem in AI has traditionally
been framed as a problem of search plus de-
duction. But as researchers admit that the
planning world may not be controlled perfectly
or known completely by the planning agent
this model looks less satisfying. One loses the
crisp distinction between the provably good
and provably bad plans, and is forced to choose
among alternatives that offer various tradeoffs
between likelihood of success and penalty for
failure. Planning becomes a problem of choice
under uncertainty.

Decision theory offers a normative model
for choice under uncertainty. But apply-
ing decision-theoretic analysis to the planning
problem raises questions concerning assessment
of the probability and utility model. This pa-
per centers on the utility model, paying partic-
ular attention to the role played by the agent's
explicit goals. In considering how to integrate
symbolic goals with numeric utilities we take
into account the contribution those goals make
to the practical business of constructing plans.

In this paper we explore relationships between
the process of planning to achieve symbolic
goals and planning to maximize utility, concen-
trating on relationships that must hold between
the goals and the utility function. We do so in
three parts: First, we show relationships that
ensure consistent solutions to the problem of
planning to achieve explicit goals and planning
to maximize utility. Then we present a gen-
eral framework for building goal-oriented util-
ity models that allows the incorporation of ex-
plicit goals and at the same time respects the
conditions that ensure a consistent relationship
between utility maximization and goal satisfac-
tion. Finally, we integrate these two results by
showing the relationship between planning to
achieve goals and maximizing utility with re-
spect to goal-oriented utility functions.

Steve Hanks
Dept. of Comp. Sei. & Engr. FR-35

University of Washington
Seattle WA 98195

hanks@cs.washington.edu

1 Introduction: Planning under
Uncertainty

The planning problem in AI can be expressed as follows:
given a set of goals G = {gj, gn,..., g„}, an initial state
of the world So, and a set of operators {a^}, find
quence of the aj that will cause all the g; to be true if
executed beginning at SQ.

Simplifying assumptions about the world—that no
other events will occur and that the effects of all the op-
erators are known completely and with certainty—allow
classical planning algorithms to prove (in principle at
least), for any sequence of operators, that the resulting
world state either provably satisfies or provably fails to
satisfy all the goals. Thus the problem faced by classical
planners is one of search rather than choice: a planner
searches for a plan that works, but does not attempt to
choose among the feasible alternatives.

As researchers admit that the planning world may not
be controlled perfectly or known completely by the plan-
ning agent—as the agent is seen to be uncertain as to
its past, present, or future environment—the model of
search plus deduction looks less satisfying. One loses the
crisp distinction between the provably good and provably
bad plans, and is forced to choose among alternatives
that offer various tradeoffs between likelihood of success
and penalty for failure. Planning, in other words, is a
problem of choice under uncertainty.

Decision theory offers a normative model for choice
under uncertainty. Given again the initial world state
So, and letting A be a sequence of operator instances
(ai, a2, ..., am),1 we can define the expected utility of
executing A in So as follows:

EU(A) = ^TP(S|A,SO)U(S)

where P(s|A,S0) is the probability that executing A in
So will actually result in state s and U(s) is the utility
the agent associates with world state s. Decision theory
dictates that an agent perform that course of action A*
among all possible courses of action A that affords it the
highest expected utility. Note that decision theory says
nothing about plan generation: it dictates only how to

We will refer to these sequences interchangeably as an
"action," "course of action," or "plan."

48

choose a course of action from among a set of alterna-
tives.

Applying decision-theoretic analysis to the planning
problem raises questions in addition to those concerning
how to generate alternatives. These problems center re-
spectively around the probability model (computing the
probabilities P(s|A,S0)) and the utility model (comput-
ing U(s) for those members). Important questions that
arise are how one assigns probabilities to the occurrence
of certain events and numeric utilities to outcome states,
as well as how one knows how to "stop projecting." The
last problem, known as the horizon problem, arises be-
cause in principle the result states s might represent the
state of the world arbitrarily far in the future—there
must be time such that projecting a course of action fur-
ther into the future would have a negligible effect on the '
utility associated with that course of action.

Some work has begun on computing the probabilistic
planning model—[Hanks, 1990c], for example, confronts
this problem. This paper centers instead on the utility
model, paying particular attention to the role played by
the agent's explicit goals, the set G above.

Clearly the agent's goals must play a role in building
the utility model (note that goals receive no explicit men-
tion in the decision-theoretic formalism), in that states
in which the goals are satisfied should tend to be assigned
higher utility than states in which they are not. Excep-
tions are certainly possible, however: one could imagine
being able to satisfy one's goals, but at an unacceptably
high cost.

In considering how to integrate symbolic goals with
a utility function we must take into account the con-
tribution those goals make to the practical business of
constructing plans:

1. Goals are easily communicated to the agent,
whereas numeric utilities are notoriously hard to
assess consistently—see, for example, [Keeney and
Raiffa, 1976, Hogarth, 1975, Savage, 1971].

2. Goals guide the search for plan alternatives, by pro-
viding indices into plan libraries or transformation
strategies.

2 Previous work in decision-theoretic planning has mostly
ignored problems associated with integrating goals and util-
ity. [Feldman and Sproull, 1975], for example, associate a
fixed utility with achieving a goal, then go on to define the
cost of applying various operators (also in terms of these
utility units), but never confront the problem of reconciling
the two numeric assignments. [Dean and Boddy, 1988] and
[Horvitz, 1988] make similar assumptions: that the applica-
tion provides the planner with a utility function that identi-
fies the benefit associated with achieving a given world state.
Once again, they ignore questions of how goals might give rise
to these functions, and how to ensure consistency between
the utility benefit and the cost associated with achieving that
benefit. [Etzioni, 1989] admits explicit symbolic goals, but he
again separates "goal utility" from the cost of achievement,
and provides no way to make the two notions compatible.
These recent efforts have focused on the problem of decision-
theoretic control—how an agent decides whether to act or to
think about acting—rather than the problem of how to use
decision theory to choose among alternatives. We argue in
[Hanks, 1990a] that this effort is misguided.

3. Goals guide the projection process in that they iden-
tify those aspects of the world that are relevant
and allow the planner to ignore all others ([Hanks,
1990b]).

4. Goals solve the horizon problem in that the last time
point associated with a goal is the point at which
projection can terminate.

So traditional symbolic goals are crucial to the process
of plan generation, and play a role in the construction of
utility functions, which can then be used to compare
alternative plans. In this paper we explore relation-
ships between the process of planning to achieve sym-
bolic goals and planning to maximize utility, concentrat-
ing on relationships that must hold between the goals
and the utility function. We do so in three parts: First,
we show relationships that ensure consistent solutions
to the problem of planning to achieve explicit goals and
planning to maximize utility. Then we present a general
framework for building goal-oriented utility models that
allows the incorporation of explicit goals and at the same
time respects the conditions that ensure a consistent re-
lationship between utility maximization and goal satis-
faction. Finally, we integrate these two results by show-
ing the relationship between planning to achieve goals
and maximizing utility with respect to goal-oriented util-
ity functions.

2 Satisfying Goals and Maximizing
Utility

The probabilistic analogue to the goal satisfaction prob-
lem is to find that course of action that maximizes the
probability of goal satisfaction. We might ask, then, for
what forms of utility functions does choosing the plan
that maximizes the probability of the goal lead to choos-
ing the plan that maximizes expected utility?

The answer is that this relationship holds only for sim-
ple step utility functions, functions for which utility is
a constant low value for outcomes in which the goal is
not satisfied and a constant high value for outcomes in
which the goal is satisfied. Such a function is shown in
figure 1. Utility is represented along the vertical axis
and the space of world states along the horizontal axis.
G and G designate the set of all states that satisfy and
do not satisfy the goal, respectively.

To demonstrate this fact we first introduce some no-
tation: assume that So is the (known) initial state, and
that we can characterize the goal condition G as a set of
world states—the set of states in which all the g; hold.
We then define for a course of action A,

P(G|A)=^P(s|S0,A).

seG

We now prove this specific class of step functions is the
only form of utility functions for which

P(G|Ai) > P(G|A2) => EU(Ai) > EU(A2) (1)

for any two courses of action Ai and AT.

We first show that this form of the utility function is
a sufficient condition for condition (1) to hold. Suppose

49

UG-

-UG

Figure 1: Step utility function.

that p! and p2 are the probabilities that acts A! and
A2 achieve the goal, respectively. Suppose further that
Pi > po and that_we have two constants, UG and UG
such that UG > UG. Then by algebraic identity

(UG - UG) • pi + UG > (UG - UG) • P2 + UG.

Rearranging terms,

UG • pi + UG(1 - pi) > UG ■ p2 + UG(1 - P2)

So if UG represents the utility associated with satisfying
the goal and UG represents the utility associated with
failing to do so, then EU(Ai) > EU(A2).

Next, we show that the utility function must necessar-
ily take the form of a step function for condition (1) to
hold. For simplicity, suppose we have only four states,
si s2, S3, and s4, and we are choosing between two acts,
Ai and A2. Suppose that the goal is satisfied in si and in
s2, but not in the other two states. What restrictions on
the utility function are necessary to guarantee condition
(1)? We start by noting that

P(G|A1) = P(s1|A1) + P(s2|A1)

and likewise for P(G|A2), and examine what restrictions
on the utility functions over the s; cause condition (1) to
be true.

First, the utility function must be constant over the
regions where the goal is satisfied and where it is not
satisfied. Suppose we have a utility function in which
this is not the case, as in the following scenario:

state P(s|Ai) P(s|A2) U(s)
Sl 0.6 0.0 1
S2 0.0 0.2 10
S3 0.4 0.0 0
s4 0.0 0.8 0

P(G|Ai) = 0.6 P(G|A2) = 0.2
EU(Ai) = 0.6 EU(A2) = 2

So note that P(G|Ai) > P(G|A2) whereas EU(Ai) <
EU(A2), thus contradicting condition (1). So it is nec-
essary that U(si) > U(s2), and the only way to guaran-
tee this in general is if U(s,) = U(SJ) for all s; and Sj
such that s,;,Sj 6 G. An identical argument shows that

U(sj) = U(sj) over G is a necessary condition as well.

UGH

V
UGL

UGH

A

V
UGL

Figure 2: Approximate step utility function.

The final necessary condition is that the utility of the
world states in which the goal is satisfied must be less
than the utility of those in which is is not satisfied. This
condition is obvious and the proof is omitted.

In practice, only few utility functions will actually take
the form of such a simple step function. Utility is likely
not to be perfectly flat over any region, and it may con-
tain continuous transitions rather than discontinuities.
In the next three sections we discuss how to handle these
cases.

2.1 Noise in the step function

What can be said if the utility function has the dis-
continuity of a step function but is not otherwise con-
stant? Suppose that we have a discontinuous utility
function such that the states that satisfy the goal all
have relatively high utility and those that do not all
have relatively low utility as shown in Figure 2. UGi
and UG# are the lowest and highest utility for states
that do not satisfy the goal. UGL and UGH are the low-
est and highest utility for states that satisfy the goal.
Suppose we are considering two plans Ai and A2 with
probabilities of achieving the goal px and p2, respec-
tively. For what values of pi and p2 can we say that
plan Ai is preferred to plan A2? Since we don't know
the exact outcomes of the plans, we must do a worst-
case analysis. The lowest possible expected utility for
A: is p! ■ UGi + (1 - pi) • UG/. The highest possible
expected utility for A2 is p2 • UG„ + (1 - p2) • UG„. Ai
is guaranteed to be preferred to A2 just in case

Pi ■ UGL + (1 - Pi) ■ UGL > p2 • UG/, + (1 - P2) ■ UGH.

Rearranging terms,

(UGL - UGL)Pl + UGL > (UG„-UG„)p2 + UG„

and finally

Pi >
(UG/,-UG/,)p2 + (UG/,-UGL)

(2)
UG/ - UGL

By comparing probabilities in this way we can eliminate
the set of plans known to be sub-optimal and use more

50

refined methods (e.g. complete EU calculation) to iden-
tify the best plan among the candidates left. (Note the
similarity to [Wellman, 1988].) Furthermore, if we sub-
stitute probability 1 for pi we can see that any plan with
probability greater than

cutoff(G)
(UG£ - UGH)

(UGH-UGH)

is guaranteed to be in the candidate set (that is, among
the set of non-dominated plans). The reason is that no
plan can have a probability of achieving the goal greater
than one, so there can be no plan with probability of
achieving the goal high enough to be preferred to any
plan that has probability of achieving the goal at least
as great as the cutoff value. In order to compare plans
in terms of their probability of achieving the goal us-
ing inequality (2), we need not calculate precise point
probability values. It is sufficient to establish upper and
lower bounds on the probabilities. This can result in
computational savings (see, for example, [Hanks, 1990c,
Haddawy and Frisch, 1987]).

A simple numerical example will help to illustrate how
these results can be used. Suppose that

UGr -13 UGH =-4 UG/, =+8 UGH =+15.

Then inequality 2 becomes

Pi >
19p2

21

If we have a plan Ax with pi = .7 then it is preferable to
any plan with probability p2 less than

19

This means that once we have a lower bound on the
probability of any one plan, if this bound is high enough,
we can eliminate other plans from consideration based on
their upper bounds. Furthermore, the cutoff(G) value

l±i = 0.63,
15 + 4

so any plan with a probability of achieving the goal of
at least 0.63 is guaranteed to be in the candidate set.

Any plan that is related to all others by inequality (2)
is guaranteed to be one that maximizes utility. What
if there is no such plan? We can still quantify the de-
gree of approximation involved in choosing the plan that
has the highest probability of achieving the goal. Sup-
pose the two plans with highest probability of achiev-
ing the goal are Ai and A2 and that pi > p2. But
suppose that A2 actually has a higher expected utility
than Ai. To what degree does choosing Ai approx-
imate maximizing expected utility? (In other words,
how far wrong can we go by choosing Ai?) This de-
gree of approximation can be expressed as the percent
that Ai falls short of maximizing expected utility. In
the worst case, EU(Ai) = pi ■ UGL + (1 - pi) ■ UGL and
EU(A2) = P2 ■ UGH + (1 - P2) • UGH- The worst-case
degree of approximation can then be defined as:

.40

EU(A2)-EU(Ai)

EU(Ao)

Figure 3: Continuous utility function.

In the previous example, if pi — .7 and p2 = -35, the
degree of approximation in choosing Ai is

[.35(15)+.6(-4)]-[.7(8)+.3(-13)]

.35(15)+.6(-4)

So at best Ai is the act that maximizes expected utility
and at worst its expected utility is 60% that of the best
plan.

2.2 Continuous utility functions

Suppose now that the utility function has the flat re-
gions characteristic of a step function but the transition
between these regions is continuous rather than discon-
tinuous. Figure 3 shows the graph of a univariate utility
function that is continuous in the value of the attribute
variable. The utility function can be qualitatively de-
scribed by specifying the three distinct regions of the
space of world states over which it is flat, transitionary,
and flat again. If we have a symbolic description of each
of these regions, plans can be described in terms of their
probability of achieving an outcome that satisfies each
of the descriptions. That is we can define, for a course
of action A;,

Pi(X) = ^P(s|A!),

seX
where X is one of the utility regions as in Figure 3.

Suppose we are considering two plans Ai and A2 with
probability distributions Pi and P2, respectively. For
what sorts of distributions Pi and P2 can we say that
Ai is preferred to A2?

The lowest possible expected utility for Ai is

Pi(X3)-U(X3) + (l-Pi(X3))-U(Xi),

and the highest possible expected utility for A2 is

P2(Xi)-U(Xi) + (l-P2(Xi))-U(X3).

Ai is therefore guaranteed to be preferred to A2 just in
case

Pi(X3) ■ U(X3) + (1 - Pi(X3)) • U(Xi) >

P2(Xi)-U(Xi) + (l-P2(Xi))-U(X3)

51

Pi(X3)-(U(X3)-U(X1)) + U(X1)>

P2(X1).(U(X1)-U(X3)) + U(X3)

P2(XQ ■ (U(XX) - U(X3)) + (U(X3) - U(XQ)

(u(x3)-u(X0) Pi(X3)>

and finally
P1(X3)>l-P2(Xi). (3)

Notice that the utility values no longer appear in the
inequality.

The smaller the X2 region, the easier inequality (3) is
to satisfy. If Pi(X2) = P2(X2) = 0 then 3 reduces to the
simple step function condition

Pi(X3) > P2(X3).

Inequality 3 holds not only for the utility function
shown in the figure but for any utility function in which
the utilities of states in region X2 are between U(Xi) and
U(X3).

2.3 Continuous utility functions with noise

Now suppose we have a continuous utility function as
shown _in Figure 3 with noise as in Figure 2. Suppose
that UGL is the lowest utility in the X2 region as well
as the Xi region, and that UG# is the highest utility in
the X2 region as well as the X3 region. Then plan Ai is
guaranteed to be preferable to plan A2 just in case

P1(X3)-UGL + (1-P1(X3))-UGL >

P2(Xi)-UGif+ (1-P2(X1)).UG*
which simplifies to

P2(Xi) • (UGtf - UGH) + (UGH - UGL)
Pi(X3) >

fUG, UGL)

(4)
The four forms of utility functions just analyzed are

not the only possible forms one might consider. They are
prototypical examples of how, by generalizing the notion
of goal and relating it to utilities, goals can be used to
characterize more general preference structures.

Under the strict definition of goal (which has been
a standard for AI), a goal is a logical expression that
describes two regions of the outcome space: the region
in which the goal is satisfied and the one where it is
not. The set of outcome states that satisfy the goal
have constant high utility and the set of outcome states
that falsify the goal have constant low utility. We have
now generalized the concept of goal. Under our new,
more general definition, a goal describes a partition of
the outcome space such that within each region of the
partition, all utility values fall within given bounds. The
strict definition of goal is the degenerate case, in which
there are only two partitions and the upper and lower
bounds in each region of the partition are equal.

3 Utility Functions for Planning
Applications

We have so far discussed goal satisfaction and utility in
abstract terms. Now we move on to give a more concrete
application of these results. We must start, however, by
making precise the elements of our utility analysis.

3.1 World states and chronicles

We have been vague to this point about the interpreta-
tion of a "world state" s, to which we assign probability
and utility values. States can be thought of as represent-
ing either a snapshot of the world at a point in time or
alternatively as a complete description of the world over
all times. The latter is typically called a "chronicle"
[McDermott, 1982]. The two are formally equivalent, in
that a snapshot-like state can code arbitrary information
about the course of events that led to its realization.
We adopt a chronicle-based approach, which we argue
in [Hanks, 1990c] is preferable for practical reasons: a
chronicle constitutes an explicit record of a plan's hypo-
thetical execution, and that record may prove useful in
debugging or optimizing that plan.

3.2 Temporally qualified goals

Interpreting world states as chronicles facilitates reason-
ing about time as well, particularly notions like deadlines
by which and intervals over which propositions are to be
made true. To accommodate the notion of a deadline
or other temporal qualification, we will describe a goal
using two components: an atemporal condition and a
temporal qualifier (e.g. "have all the blue rocks at the
depot by noon," "keep the lights out between midnight
and 4AM"). The condition is a logical formula that is ei-
ther true or false at each point in time in a chronicle, and
the temporal qualifier describes the part of the chronicle
over which the condition is to hold.

The temporal qualifier component of a goal has two
general forms, the existential form and the universal
form. The existential form says that there exists a point
within an interval at which the condition is satisfied

3t : ti < t < U <p

(where <j) is the goal condition), and the universal form
says that the condition is satisfied at every point in an
interval

Vi : ti < t < t2 <j>.
All types of temporal goals can be expressed as special
cases of these two general forms. For example, a simple
deadline "make 4> true before i2" can be expressed as

3t : now < t < <2 <j>

and a time point goal "make <j> true at ti" can be written
as

3i : ti <t <ti <j>.
Note that the earliest relevant time for t\ is now while the
end point t2 could extend infinitely into the future. How-
ever, we will not consider temporal qualifiers in which
t'i = +00 since they do not provide criteria for termi-
nation of plan elaboration.

Some examples of goals are

• Have block A on block B by noon.

3t : noiu < t < noon on(A,B)

• Get all the rocks to the depot by noon.

3t : now < t < noon all-rocks-at-depot

• Keep my heart rate between 160 and 200 bpm from
1:00 till 1:30.

Vt : 1:00 < t < 1:30 heart-rate-in-range(160,200)

52

3.3 Goal-related utility

We will associate with each goal g; a utility U,-(c) (where
c is a chronicle). This function in turn can be separated
into two components: degree of satisfaction and utility
of satisfaction.

3.3.1 Degree of satisfaction

Degree of satisfaction, a real number between 0 and 1,
measures the extent to which the goal (logical formula
and temporal qualifier) is satisfied in the chronicle. A 1
indicates absolute success, a 0 indicates absolute failure.
Utility of satisfaction then measures the utility penalty
associated with this degree of success. The reason be-
hind this split—the reason we don't assess goal utility
directly—is that degree of satisfaction can generally be
measured independent of any particular problem or plan-
ning situation, whereas the utility number assigned to a
goal depends crucially on tradeoffs between that goal
and other goals active in the current situation.

The degree of satisfaction function for a goal can fur-
ther be split into two components, corresponding to the
atemporal condition and the temporal qualifier. The de-
gree of satisfaction function for the atemporal condition
measures the degree to which the condition is satisfied.
This function will be DSA,-(t, c). The subscript i refers
to the ith goal, which also specifies the goal's condition.
The argument c is a chronicle, and the function mea-
sures the extent to which the condition is satisfied at
time t in chronicle c. Some conditions, e.g. "the truck's
headlights are on," will always be assigned a value 0 or
1, but others, e.g. "all the blue rocks are in the depot,"
might generate intermediate satisfaction values based on
the percentage of rocks that are actually at the depot at
time t in chronicle c.

Next we associate a degree of satisfaction with the
temporal qualifier—the interval or deadline at or by
which the goal is to be satisfied. We do so with a func-
tion DSTj(t), where the index i means that the func-
tion depends on the goal's temporal qualifier. Note that
there is no chronicle argument, because no logical for-
mula need be evaluated to get the temporal degree of
satisfaction—this quantity depends only on the goal's
time argument. The meaning of DST will depend on
whether the temporal qualifier is existential (deadline)
or universal (interval). In the former case the degree
of satisfaction measures the degree to which the dead-
line is satisfied, so we can represent penalties for lateness
and/or for earliness. For interval qualifiers the function
might evaluate whether a time point is in the interval,
or how far outside the interval it falls.

We can combine DSA and DST to get an overall
degree of satisfaction associated with a time point, that
is

DSi(t,c) = /i(DSAi(t,c),DSTi(t)).

The choice of an appropriate /; will depend on the par-
ticular goal, in particular on the tradeoff we want to
express between violating the temporal and atemporal
component. We probably want to limit the function to
one of the class of conjunctive operators, that is the set of
functions that satisfy f(x,y) < min(a;, y) which is to say
that overall degree of satisfaction cannot exceed either

;
time

Figure 4: Degree of satisfaction functions for a univer-
sally temporally qualified goal.

of its components. Three reasonable alternatives would
be

f(x,y) = m'm{x,y)

f(x,y) = x-y

= I l if x = X and y = l
1
 *> 'y> 1 0 otherwise

The first will always return a value at least as great as the
second and the second at least as great as the third. The
first implies that the goal is satisfied overall to the extent
of its "weakest" component, the second implies that the
two factors are utility independent ([Keeney and Raiffa,
1976, Section 5.2]), and the third implies that only total
satisfaction is satisfactory. See the discussion in [Dubois
and Prade, 1984] for more discussion.

Recall now that we are seeking a utility function for
goal i that is a function of a chronicle, whereas the degree
of satisfaction function depends on a time point as well.
Consider, for example, the existential goal "have all the
rocks at the depot by noon," and suppose that the truck
makes two trips to the depot. The first time it arrives
at 11:30 and brings with it half of the rocks. The second
time it arrives at 12:30 with the rest of the rocks. Should
degree of satisfaction be measured with respect to the
first time point, the second time point, or some other?
The first will probably have a higher DST value than the
second, because it occurs before the deadline, whereas
the second has a higher DSA value because at that point
all the rocks are at the depot. A reasonable approach in
the context of comparing alternative plans is to take the
maximum DS value, so we define, for existential goals,

U,;(c) = US;(maxtDS;(t,c))

where US; is the utility of satisfaction function, dis-
cussed below.

The situation for universal temporal qualifiers is some-
what more difficult, since the relationship between satis-
faction at a point and satisfaction over the interval can
be a complex one. Consider the goal "keep my heart rate

53

between 160 and 200 beats per minute between 1:00 and
1:30." Figure 4 shows plausible atemporal and temporal
satisfaction functions, respectively. The atemporal func-
tion is straightforward: the goal is totally satisfied if the
heart rate at a time t is within the range, but tends to
taper off as the rate goes outside.

The temporal function now can measure how far out-
side the stated interval boundaries the goal condition
persists. If the boundaries are strict ones (that is if there
is no utility benefit associated with exercising longer),
then DSA;(t, c) would assign value 1 to all time points
inside the goal's interval < ti,t2 > and value 0 to all
points outside. If, however, there is some benefit to ex-
tending the interval, the function can assign 1 to values
in the intervals, then lower degrees of satisfaction to time
points occurring prior to ti or subsequent to t2. We can
then take utility to be the maximum total satisfaction,
as follows:

U,-(c) = US,-(ma*t-<tl, t2<t» E^f ^M^)
where goal i's temporal qualifier is <ti,t2>.

As a final example consider the goal "stir the sauce
continuously between 9 and 9:15." Stopping even for an
instant in that interval will ruin the sauce, but stirring
outside the interval is irrelevant. We might associate
with this goal a DSA function that assigns satisfaction
1 if "stirring" is true at time t in chronicle c, and 0 other-
wise. The temporal satisfaction function would likewise
assign 1 if its argument were in the interval, and 0 other-
wise. Suppose now that there is one point in the interval
at which stirring ceases. According to the above mea-
sure, we would sum the atemporal satisfaction function
over the interval <9,9:15>, but the result would essen-
tially be 1, since stirring was true over virtually the entire
interval. In this case we want the utility function to be
the product:

U2(c) = USi(maxt/<t1,t2<t' nit- DS,-(*,
t"-t<

[)

US; 01 t2 DSjft.c).
<=t, t"-t'

3.3.2 Utility of satisfaction

The function US; maps a degree of satisfaction num-
ber into a utility number, which will then be combined
with utilities for other goals in computing the plan's
overall utility. Why not use the degree of satisfaction
value directly as utility? First, utility as a function of
goals will typically be task dependent whereas degree of
satisfaction is largely task independent. Second, at some
point one has to consider the tradeoff between satisfying
the various goals. What should a marginal improvement
in gi's satisfaction be worth in terms of a decline in g2's
degree of satisfaction? The answer to this question may
be different depending on the exact circumstances, and
this difference will be reflected in the way the goals are
weighted relative to one another, and this weighting is
accomplished by assigning them different US functions.

The US functions also provide a way to express the
tradeoff between goal satisfaction and resource consump-
tion, the latter being represented in the utility function
by the "residual utility" introduced below.

3.4 The horizon problem revisited

The introduction mentioned that goals can be used to de-
termine when to terminate plan elaboration and that this
is one of the main advantages of using goals in planning.
When all our goals are all-or-nothing goals, it is clear
that we can stop planning when we have reached the
end time of the goal furthest in the future.3 What can
be said when we are dealing with soft goals—deadlines
the agent can violate and still get a utility benefit, or
intervals for which achieving the condition outside the
interval bounds is rewarded?

In these cases one has to establish the planning horizon
for each goal dynamically. For any goal we can compute
the maximum utility we could possibly realize if the hori-
zon were extended indefinitely into the future, and this
number will decline as the horizon is extended beyond
the deadline. If for some Ai and some goal g, we can
demonstrate that receiving this maximum utility award
would not cause it to be preferred to some other alterna-
tive, we needn't extend the planning horizon any further.
[Hanks, 1990c] uses this technique to limit probabilistic
inference in plan projection.

3.5 Utility functions for multiple goals

So far we have only discussed utility for individual goals.
An agent will typically be attempting to satisfy multiple
goals simultaneously. We can assume that global utility
is linear additive in the U,; functions, which is to say
that

U(c)
i-\

U,:(c) + UR(c)

where the U,- functions are utility functions for the goals
and the function Up is a "residual" utility to be de-
fined below. While there are no explicit weighting fac-
tors attached to the U; and the Up functions, the utility
function is nonetheless a weighted average—the relative
weights appear in the US; functions.

We should also point out that this functional form
does not imply that any of the U, functions are linear
additive in any attribute in c, a common and arguably
unrealistic assumption of most decision-theoretic analy-
sis. We are just assuming that the satisfaction of, and
utility associated with goals g, and gj can be computed
independently. In other words, they are independent in
the goal hierarchy—neither is a subgoal of each other,
and they are not both being performed in service of some
higher-level goal. The g, represent only the agent's top-
level goals.

The function Up represents the "residual" utility as-
sociated with the chronicle.4 It measures how well off
the agent is apart from factors taken into account by the
explicit goals. As such it measures two important and
closely interrelated features of the chronicle:

3 For a formal discussion of how the temporal relation be-
tween actions and effects/goals can be captured in a proba-
bility calculus see [Haddawy, 1990].

This function is called the "salvage value" in the litera-
ture on sequential decision-making, but that term is inappro-
priate for our purposes.

54

1. the resources consumed in achieving the explicit
goals, and

2. how well the agent is prepared to meet expected fu-
ture demands on those resources.

Since the residual utility measures the ability to meet
expected resource needs we can associate with it a time
point: the latest time point associated with any explicit
goal. Thus the goal utility functions U, evaluate the
chronicle up to the point that the last goal is (possibly)
satisfied, and the residual utility function evaluates the
chronicle beyond that point in time.

This notion of residual utility puts our formalism
in sharp contrast with other approaches to decision-
theoretic planning ([Horvitz et al, 1989], [Boddy and
Dean, 1989], [Etzioni, 1989], for example), which asso-
ciate with each goal not only a utility function but also
a cost function measuring its resource usage. We argue
that the cost, or value, of a resource may depend cru-
cially on the expected future demands for that resource.
Whether a truck's fuel tank is full at the end of the day is
irrelevant, for example, if it is filled with fuel every night
at the depot.5 Therefore associating a fixed cost with
fuel will tend to make a planner favor fuel-conserving
trips for no good reason. On the other hand, if a long
trip through the desert is anticipated in the morning,
conserving fuel may be absolutely essential—far out of
proportion to its replacement cost.

We should note a couple of things about the resid-
ual utility function. First is that it re-introduces the
nice property of a planning horizon. One must project
up until the most distant goal horizon, but after that
point in time the residual utility function summarizes
future projection. The second point, of course, is that
as a result the residual function may be quite hard to
assess—this is undoubtedly the hardest assessment prob-
lem lurking in our formalism. The general problem of
arriving at, and evaluating beyond, a planning horizon
is noted in the literature on decision theory, e.g. [Keeney
and Raiffa, 1976, Chapter 9], but no satisfying system-
atic approaches exist except for extremely regular prob-
lem domains. On the other hand the sort of reasoning
required—expectations about recurrent or regular goals
and their implications—seems wholly appropriate for AI
analysis ([Wilensky, 1978], for example). So while we do
not attempt to minimize the scope of the unsolved prob-
lem, we at least hope to have divided it up correctly.

4 Goal-oriented Utility and the
Probability of Goal Satisfaction

In Section 2 a goal was characterized as describing a
partition of the state space such that within each region
of the partition, utility is within given bounds. Goals
distinguish regions of relatively high utility from regions
of relatively low utility. The utility of a plan can then
be characterized simply in terms of its probability of
achieving a particular goal. In Section 3 we described

5 A better example might be a rental truck whose contract
specifies that the truck be returned empty at the end of the
rental period.

how utility functions could be defined in terms of partial
goal satisfaction. We now show how the probability of
goal satisfaction is related to goal-derived utility.

4.1 Probability of complete satisfaction and
complete dissatisfaction

A goal determines a utility function over the set of all
possible chronicles. This utility function can be de-
scribed in terms of the region over which the goal is
completely satisfied, the region over which it is not at all
satisfied, and the intermediate region. For example, con-
sider the existentially temporally qualified goal "get all
the rocks to the depot by noon." All chronicles in which
all the rocks are at the depot before noon will have the
same high utility value, relative to this goal. There will
typically be some time point after which satisfying an
existential goal will have no utility benefit. Say in this
case that it's 5:00pm. Then all chronicles in which no
rocks are at the depot before 5:00pm will have the same
low utility. All other chronicles will have some interme-
diate utility with respect to this goal. So at this point
the chronicles obey the conditions set down in Section
2.2, in which the goal describes three regions of chronicle
space. The region of high utility is just described by the
goal itself:

3t : now < t < noon all-rocks-at-depot

The region of low utility is described by the sentence

Vi : now < t < 5:00 no-rocks-at-depot

And the region of intermediate utility is described by
the sentence formed by conjoining the negation of each
of these.

Now consider the universal goal "keep my heart rate
between 160 and 200 beats per minute from 1:00 until
1:30." All chronicles in which my heart rate is within
range over all of the specified interval will have an equally
high utility value. Chronicles in which my heart rate is
within range only at time points far from the interval of
interest, and chronicles in which the rate is always well
out of the desired range will have no utility benefit with
respect to this goal. All other chronicles will be assigned
some intermediate utility value. So chronicle space is
again divided into three regions. Suppose that the time
horizon is 12:00 to 2:00 and the heart rate horizon is 80
bpm to 220 bpm. The region of high utility is again just
described by the goal itself:

Vi : 1:00 < t < 1:30 heart-rate-in-range(160,200)

The region of low utility is described by the sentence

V* : 12:00 < t < 2:00 heart-rate-out-of-range(80,220)

And the region of intermediate utility is described by
the sentence formed by conjoining the negation of each
of these. Figure 5 shows how the goal divides chronicle
space into the three utility regions.

In general, the high utility region of chronicle space for
either an existentially or universally temporally qualified
goal will just be described by the goal itself. The low
utility region will be described by a sentence of the form

Vt : t' < t < t" i>,

where t' < tx, t" > t2, and i/> -+ -xf> (<j> being the atem-
poral goal condition).

55

_ chronicle
space

Vt: 1:00 < t < 1:30 heait-ral£-in-range(160,200)

Vt: 12:00 <t<2:00 heait-rale-out-of-rage(80,220)

Figure 5: Utility function for a universally temporally
qualified goal.

4.2 Satisfying multiple goals

Section 2 discussed the relation between maximizing the
probability of a single goal and maximizing expected
utility. How can these results be applied to multiple
goals? Under the assumption of Section 3.5, that global
utility is linear additive in the utility functions for the
various goals, the situation is relatively simple. We de-
rive results for the case in which all the utility functions
for the goals are simple step functions, which will be
the case if both the atemporal and temporal degree of
satisfaction functions always return either 0 or 1, for ex-
ample. The results are easily generalized to the more
complex cases discussed in Section 2. Assume for the
time being that the residual utility is zero. Incorporat-
ing non-zero residual utility will be discussed in the next
section. Suppose we have two goals so that global utility
is the sum of the utility for each of the goals

U(c) = Ui(c) + U2(c).

Suppose further that we have two plans Ai and A2.
We show that if plan Ai maximizes the probability of
achieving each of the goals individually then it maxi-
mizes global expected utility. If the two regions of high
utility are Gi and G2 then

P(G1|A1)>P(Gi|A2)

P(G2|Ai) > P(G2|A2)

implies that

EU!(A0 > EU!(A2)

EU2(Ai) > EU2(A2)

and adding the two

EU(Ai) > EU(A2).

Similar results hold for the noisy step, continuous, and
noisy continuous forms of utility functions discussed in
Section 2.

4.3 Residual utility as noise

Residual utility can be treated as noise in the utility
function. Since plans must be compared according to
their probability of satisfying each goal separately, the
residual utility must be factored as noise into the utility
function for each goal. Let UR|_| be the highest residual
utility value and UR^ be the lowest over all possible
chronicles. Suppose we have a goal with a step utility
function_with constant high value UG and constant low
value UG. This can now be analyzed as a step function
with noise where the high and low utility values are

UGH = UG + URH

UGL = UG + URL

UG„ = UG + URH

UGi = UG + U RL-
So inequality (2) becomes

Pi >
(UG-UG)p2+(URH-URL)

UG-UG

Pi > P2 +
u RH -U RL

(5) UG- UG
So the smaller the range of possible residual utility values
relative to the range of the utility of completely achiev-
ing and completely failing to achieve the goal, the more
useful the goal is in comparing candidate plans. And as
long as

U RH U RL < 1
UG-UG

we can get some mileage by comparing plans in terms
of their probability of completely achieving the goal and
of completely failing to achieve the goal. Similar results
hold for continuous utility functions with noise.

5 Related Work

Our work has focused on exploring the relationships be-
tween symbolic goals and numeric utilities. We have
examined the problem of building utility functions from
symbolic goal descriptions, particularly when those goal
descriptions make explicit mention of time constraints.
We have also analyzed the relationship between the "tra-
ditional" planning problem (find a sequence of operators
that will, or will probably, achieve the goals) and the
corresponding decision problem (find a sequence of op-
erators that maximizes utility).

Most of the work exploring the intersection of planning
and decision theory has ignored the problem of building
a utility model (taking a preference structure or util-
ity function as given). This is the case with [Horvitz
et al., 1989] and with [Wellman, 1988]. Another ap-
proach, that of [Feldman and Sproull, 1975] and [Boddy
and Dean, 1989], is to define the decision problem in a
narrow enough domain (e.g. robot navigation on a grid)
so that the preference measure becomes obvious (e.g.
Euclidian distance from a goal coordinate).

A third approach maintains the explicit representa-
tion of goals in the system. The framework in [Hansson

56

et al., 1990] contains only symbolic goals and no notion
of tradeoffs or partial satisfaction. Probabilities measure
the likelihood that a partial solution will eventually lead
to one that will (certainly) satisfy the goal. Their utility
model is therefore the simple step function we identi-
fied, in 2, with the problem of planning to maximize the
probability of goal satisfaction.

The framework in [Etzioni, 1989] also preserves the
notion of symbolic goals, but under very stringent con-
ditions of independence (that methods for achieving dis-
tinct goals will not interact) that are usually violated
in prototypical blocks-world planning scenarios. He as-
sumes a degree-of-satisfaction function, like ours, but
does not explore the temporal/atemporal distinction.
Goal-related utility is then the product of degree of sat-
isfaction and a weighting factor, and global utility is the
sum of the goal-related utilities. His effort is not ori-
ented primarily toward exploring the utility model, and
as such he does not discuss the issues involved with par-
tial goal satisfaction, residual utility, and the relation
between decision-theoretic and symbolic planning.

The notion of partially satisfied goals and their role in
the decision-making process appears prominently in the
literature on fuzzy mathematics and decision analysis.
In particular our notion of a degree-of-satisfaction func-
tion bears close resemblance to a fuzzy-set membership
function. The seminal paper in this area is [Bellman
and Zadeh, 1980]; also see the papers in [Zimmerman
et al, 1984], of which the most relevant to this paper
is [Dubois and Prade, 1984]. They discuss the role of
aggregation operators in the decision-making process. In
the language of fuzzy-set theory a goal may be expressed
as a fuzzy set, a plan's membership function with re-
spect to that set indicates the extent to which the plan
satisfies that goal. An aggregation operator combines
membership functions for individual goals into an aggre-
gate membership function which is an indicator of global
success—this is called the decision set. A decision maker
then selects an alternative that is "strongly" a member
of the decision set. Dubois and Prade categorize and
analyze various aggregation functions.

So our analysis is similar to the efforts in fuzzy de-
cision making in that it emphasizes the representation
problems associated with expressing partial satisfaction
of goals. Fuzzy sets may be a more appropriate rep-
resentation than degree of satisfaction when the latter
(a numeric function) cannot reasonably be assessed. If
we can only assess vague satisfaction measures like "rea-
sonably well satisfied," "utter failure," and "complete
success," the fuzzy-set methodology provides a way to
incorporate these measures into a precise analysis. As
such it is essentially complementary to our analysis.

6 Conclusion

Classical planning techniques and decision-theoretic
analysis can play complementary roles in decision mak-
ing. The former provides a computational theory of how
to generate plans, given a set of symbolic goals; the latter
provides a normative theory for comparing alternative
plans, given utility and probability valuations.

This paper explored the question of how to build a

utility model for a domain given a set of symbolic goals
of the sort used by planners. Our conclusions about
the relationship between goals and utilities are as fol-
lows: classical symbolic (boolean-valued) goals are in-
sufficiently rich to represent many aspects of a reason-
able planning domain. We thus extended the notion of
a goal to allow partial satisfaction. We characterized a
goal as consisting of atemporal and temporal constraints
and defined functions describing the value of satisfying
either constraint partially. The agent's utility is then
measured in terms of the extent to which it satisfied its
goals as well as how efficiently it did so (as measured by
the residual utility function).

Under certain circumstances, namely that the poten-
tial residual utility is small relative to the utility associ-
ated with the goals, we can demonstrate a strong corre-
spondence between maximizing utility and maximizing
the probability of satisfying goals. Planning to maximize
goal probability is a special case of utility maximization.

Our representational framework attempts to capture
the best features of both symbolic planning and numeric
utility optimization: the (symbolic) goals, provide guide-
lines for the planner in its task of generating alternatives.
Utility functions associated with the goals along with the
residual utility function provide a principled way of com-
paring those alternatives.

Future work should proceed in three areas:

• Assessment. The problem of assessing utility func-
tions, especially the goals' utility of satisfaction
functions and the residual utility function, still re-
mains. The difficult task is to generate, for each new
planning problem, utility functions that accurately
reflect the agent's current and expected future ob-
jectives and resource needs.

• Computation. We have provided a representation
framework, but not a computational theory. It
remains to be seen whether the decision-theoretic
choice paradigm can be efficiently applied, though
preliminary work, [Hanks, 1990c, Wellman, 1988], is
encouraging, neither of these programs attempted
to build the utility model at run time.

• Validation. We made several assumptions about
forms of various components of the utility model,
for example that temporal and atemporal degree of
satisfaction were utility independent, and that util-
ities for separate goals were linear additive. We will
need to validate these assumptions by applying the
framework to complex planning problems.

References

[Bellman and Zadeh, 1980] R.E. Bellman and L.A.
Zadeh. Decision-making in a fuzzy environment. Man-
agement Science, 17:B141-B164, 1980.

[Boddy and Dean, 1989] Mark Boddy and Thomas
Dean. Solving time-dependent planning problems. In
Proceedings IJCAI. AAAI, August 1989.

[Dean and Boddy, 1988] Thomas Dean and Mark
Boddy. An analysis of time-dependent planning. In
Proceedings AAAI, pages 49-54, 1988.

57

[Dubois and Prade, 1984] Didier Dubois and Henri
Prade. Criteria aggregation and ranking of alterna-
tives in the framework of fuzzy set theory. In H.J Zim-
merman, L.A. Zadeh, and B.R Games, editors, Fuzzy
Sets and Decision Analysis, pages 209-240. North Hol-
land, 1984.

[Etzioni, 1989] Oren Etzioni. Tractable decision-
analytic control. Technical Report CMU-CS-89-119,
School of Computer Science, Carnegie Mellon Univer-
sity, February 1989.

[Feldman and Sproull, 1975] J.R. Feldman and R.F.
Sproull. Decision theory and artificial intelligence II:
The hungry monkey. Cognitive Science, 1:158-192,
1975.

[Haddawy and Frisch, 1987] P. Haddawy and A.M.
Frisch. Convergent deduction for probabilistic logic. In
Proceedings of the Third Workshop on Uncertainty in
Artificial Intelligence, pages 278-286, Seattle, Wash-
ington, July 1987.

[Haddawy, 1990] P. Haddawy. Time, chance, and action.
In Proceedings of the Sixth Conference on Uncertainty
in Artificial Intelligence, Boston, July 1990.

[Hanks, 1990a] Steven Hanks. Controlling inference in
planning systems: Who, what, when, why, and how.
Technical Report 90-04-01, University of Washington,
Department of Computer Science, April 1990.

[Hanks, 1990b] Steven Hanks. Practical temporal pro-
jection. In Proceedings AAAI, 1990.

[Hanks, 1990c] Steven Hanks. Projecting plans for un-
certain worlds. Technical Report 756, Yale University,
Department of Computer Science, January 1990.

[Hansson et ai, 1990] Othar Hansson, Andrew Mayer,
and Stuart Russell. Decision-theoretic planning in
bps. In Working Notes—Planning in Uncertain, Un-
predictable, or Changing Environments, page 39, 1990.
Stanford Spring Symposium Series.

[Hogarth, 1975] R.M. Hogarth. Cognitive processes
and the assessment of subjective probability distribu-
tions. Journal of the American Statistical Association,
70:271-294, 1975.

[Horvitz et ai, 1989] Eric J. Horvitz, Gregory F.
Cooper, and David E. Heckerman. Reflection and ac-
tion under scarce resources: Theoretical principles and
empirical study. In Proceedings IJCAI, pages 1121-
1127, 1989.

[Horvitz, 1988] Eric J. Horvitz. Reasoning under vary-
ing and uncertain resource constraints. In Proceedings
AAAI, pages 111-116, 1988.

[Keeney and Raiffa, 1976] Ralph L. Keeney and Howard
Raiffa. Decisions with Multiple Objectives: Prefer-
ences and Value Tradeoffs. John Wiley & Sons, 1976.

[McDermott, 1982] Drew McDermott. A temporal logic
for reasoning about processes and plans. Cognitive
Science, 6:101-155, 1982.

[Savage, 1971] L.J. Savage. Elicitation of personal prob-
abilities and expectations. Journal of the American
Statistical Association, 66:783-801, 1971.

[Wellman, 1988] Michael P. Wellman. Formulation of
tradeoffs in planning under uncertainty. Technical Re-
port MIT/LCS/TR-427, MIT Laboratory for Com-
puter Science, August 1988.

[Wilensky, 1978] Robert Wilensky. Why John maried
Mary: Understanding stories involving recurring
goals. Cognitive Science, 2:235-266, 1978.

[Zimmerman et ai, 1984] H.J Zimmerman, L.A. Zadeh,
and B.R Gaines, editors. Fuzzy Sets and Decision
Analysis. North Holland, 1984. TIMS Studies in the
Management Sciences, Volume 20.

58

Issues and Architectures for Planning and Execution

Steve Hanks
Dept. of Comp. Sei. & Engr. FR-35

University of Washington
Seattle WA 98195

hanks@cs.washington.edu

R. James Firby
Jet Propulsion Laboratory, MS 301-440

4800 Oak Grove Drive
Pasadena CA 91109

firby@robotics.jpl.nasa.gov

Abstract

Planning in realistic domains forces us to con-
front two main issues: uncertainty and urgency.

Uncertainty arises because the planner is nei-
ther omnipotent, omniscient, nor alone in the
world. As such it will typically lack perfect in-
formation about current and future states of
the world or about the exact effects of various
events (including its own actions).

Urgency is a more practical matter: planning
takes time, and passing time can lead to fore-
gone opportunities or worse. These two factors
combine to produce a situation in which the
agent cannot plan completely in advance: un-
certainty will prevent it from being able to infer
a best course of action, and urgency will ensure
that even if it did so the opportunity to pursue
such a plan will be lost.

Both these points argue for some sort of run-
time decision making, or "reactive planning"
as it has come to be called. Reactive planners
typically make decisions at run time based on
a limited amount of information (e.g. only that
which is currently available from sensors) and
on the basis of a minimal amount of inference.

Neither uncertainty nor urgency obviate the
need for more deliberative decision making,
however. Planning under uncertainty carries
with it its own set of issues, having to do with
representing uncertainty in the domain, effi-
ciently generating planning options, and taking
time pressure into account in the process.

Realistic planning therefore generates new
problems in three areas: in execution, in delib-
eration, and in coordinating the two processes.
This paper will discuss these issues in the con-
text of a system we have are continuing to de-

Acting versus

velop.

1 Introduction:
Deliberating

An agent situated in a complex and dynamic world is
continually faced with the difficult task of trying to fig-
ure out what to do next. It is difficult even to formulate

the problem precisely, in that the consequences, bene-
fits, and costs of a course of action may be difficult to
ascertain. Preferences reflecting the agent's goals, de-
sires, and needs, are even harder to fathom, and tend to
change over time.

The representation problems—modeling a complex
and dynamic world, and capturing an agent's beliefs,
goals, needs, and desires concerning that world—touch
on many unresolved issues in the field today. The con-
trol problem—how to manage this information in such
a way that the agent acts effectively and efficiently—is
equally troublesome.

The control problem consists of balancing two reason-
able approaches to operating in the world: the first is
to make as many decisions as possible as far ahead of
time as possible, the second is to defer making decisions
as long as possible, and thus to act at the last possible
moment. The look before you leap" and "cross that
bridge when you get to it," which highlight the distinc-
tion between deliberating and acting.

Arguing for the former position is the fact that one
tends to have more options the further ahead one thinks,
thus forethought can tend to improve one's lot. Further-
more, commiting to act in a particular way tends to im-
prove one's state of information about future states of
the world, leading to more informed choices and better
decisions.

On the other hand, one's information about the im-
mediate future is typically much better than information
about the distant future, arguing that better decisions
come as a result of waiting as long as possible. Further-
more, whenever one builds a plan one makes assump-
tions about future states of the world, and significant
changes to the world may well occur between the time
a decision is made and the time the resulting plan is to
be executed, rendering the plan ineffective and the plan-
ning effort wasted. Finally, detailed prediction and prior
commitment to detailed plans of action may simply be
beyond the cognitive capabilities of the agent (and might
generate only a minimal benefit anyway).

Clearly neither policy, think ahead or act at the last
moment, should be carried out to the exclusion of the
other, and clearly one difficult problem facing the agent
is whether it should try to generate and commit to some
plan of action to achieve a goal, or whether it should
postpone commitment, perhaps until new information

59

Transformation library

. t
Goals

Hypothetical plans

Planner
Queries

Instruction Library

Causal
model

Execution
system n

Instructions

Action

Effectors Sensors

Figure 1: An architecture combining deliberation and action

3. Watch the environment for urgent situations that
may affect the success of the current plan and deal
with them appropriately.

The rest of this section elaborates on these responsibili-
ties and discusses a way they can be implemented using
RAPs as described in [Firby, 1989].

2.1 Generating Actions for a Plan Step

There are two major problems involved in generating ac-
tions for an abstract plan step at execution time: it must
be done without projection or comparison of alternative
action sequences, and different sequences of action may
be needed to carry out the same step in different situa-
tions. For example, a plan might contain a step like "go
to the store." Clearly such a step must be broken down
into many simpler actions before it can be carried out
in the world and, just as clearly, those actions depend
on whether the store is across town or across the street.
Furthermore, if the selected actions don't actually place
the agent at the store it does not make sense to continue
with the next plan step.

We use a plan expansion library to deal with the prob-
lem of choosing appropriate actions under stringent time
constraints. The library consists of a hierarchical collec-
tion of predefined methods for each abstract plan step
that the execution system might be called on to perform.
Use of a library makes the generation of actions for a plan
step quick and easy since an appropriate method (i.e.
set of actions) can simply be looked up when needed. In
essence, the plan library represents the agent's knowl-
edge of how to get things done and each entry serves
both as an abstract planning operator, or "primitive",
out of which plans can be assembled, and as a record of
actions that can be taken to realize that primitive at run
time.

The Reactive Action Package, or RAP, is the basic
plan library representation unit in our system. A RAP is
a declarative structure that links a goal (i.e. plan step),

a test for confirming the achievement of that goal, a col-
lection of methods to use to achieve the goal in different
situations, and a test of applicability for for each method
to define the situations in which it might be used. Both
the goal completion and method applicability tests take
the form of queries to the current world model.

The execution system carries out plan steps using the
following algorithm. First, a plan step is selected for
execution (see Section 2.3) and if it represents an atomic
action it is executed directly, otherwise its corresponding
RAP is looked up in the library. Next, the step's check
for completion is used as a query to the world model
and, if satisfied, the step is considered complete and the
next step can be run. However, if the step has not yet
been satisfied, its method-applicability tests are checked
against the world model and one of the methods with
satisfied tests is selected nondeterministically. Finally,
the substeps of the chosen method are incorporated into
the current plan in place of the step being executed,
and that step is suspended until the chosen method is
complete. When all substeps in the method have been
executed, the step is reactivated and its completion test
is checked again. If all went well the step's applicability
condition will now be satisfied and execution can proceed
to the next step in the plan. If not, method selection is
carried out again and another method is attempted.

An extremely important point is that the tests for con-
firming the achievement of a goal and selecting between
alternative methods make reference to the current state
of the world model, which means that all sensing opera-
tions required to acquire or update the information refer-
enced by these queries must be included in the methods
for achieving the goal. There is no other way to ensure
that the right data appears in the world model at the
right time. This point seems obvious when one realizes
that the choice of which action to take must occur at
run time, the choice depends critically on the state of
knowledge at that time, and the sensing operations to

60

comes to light.
In the AI literature this dichotomy has surfaced as the

question of whether an agent, at any moment, should
plan or should act. The former involves mental activ-
ity only, e.g. generating new plans or refining one's pre-
dictions about the future. The latter involves effecting
changes to the external world (or perhaps sensing the
world) but the nature of those operations depends only
on information immediately at hand.

Two arguments are often advanced in favor of an agent
that primarily or even exclusively acts (or perhaps "re-
acts" is a better term): that the urgent nature of the
world means that the penalty for inactivity is high. The
image often suggested is that of a robot agent getting
run over by a truck while trying to decide how to get to
the other side of a road. The second argument is that the
uncertain nature of the world means that the agent will
typically lack information crucial to the decision-making
process until the time comes to act. Here the image is
of a robot unable to plan to get a drink of water (oil?)
because it is unable to infer the exact position of the
drinking glass ahead of time.

Of course advocates of the deliberative approach sug-
gest equally compelling images: robots painting them-
selves into corners, running out of gas, or failing to antic-
ipate unfortunate chemical reactions, all of which could
have been avoided with a little forethought.

The point is that (1) intelligent agency requires both
capabilities, and (2) as a practical matter different is-
sues tend to arise in the attempt to implement the two
modes of behavior. For this reason we propose an ar-
chitecture based on the dichotomy between action and
deliberation,1 a diagram of which appears in Figure 1.

This paper attempts to set out the issues associated
with implementing action- and deliberation-oriented sys-
tems. It also describe the interaction between systems of
the two sorts, since an additional point follows from the
discussion above: (3) that integrating representations
for, and coordinating the behaviors of, the two modes
of behavior is a crucial problem in designing an intelli-
gent agent.

The remainder of this paper devotes itself to repre-
sentation and control issues in action and execution, in
planning and deliberation, and in coordinating the two.

2 Issues in Execution

The execution system is charged with the responsibility
of taking action to carry out a plan. Traditionally, the
notion of a plan has been a sequence of atomic actions
that can be implemented directly in hardware and in-
cludes no conditionals, loops, or sensing. When a plan
is that detailed the execution system can simply execute
each planned action in sequence. In a realistic world,

'We use the term "deliberation" rather than ''planning"
because the latter suggests the "classical planning" paradigm
of generating provably-correct plans in full detail, which is
not at all what we are advocating here. As a first cut, delib-
eration refers to a class of operations carried out with respect
to the agent's model of the world whereas action refers to op-
erations carried out with respect to the external world.

however, the deliberation system is faced with uncer-
tainties and time constraints that make construction of a
complete sequence of atomic actions impossible. Instead,
a plan will always contain steps at widely different levels
of abstraction, and the execution system must generate
atomic actions on its own for both the most specific and
the most general of those steps.

When plan steps are too vague to execute directly,
they must be treated as goals to achieve rather than
simply as actions to execute. This shift in the seman-
tics of a plan step frees the deliberation system to rea-
son abstractly and to use the execution system to take
care of any detailed environmental interactions that are
overlooked. It also frees the execution system to adapt
to the specific circumstances it encounters at run time
by choosing atomic actions as needed rather than in ad-
vance. The deliberation system can simply plan to "take
a glass out of the cupboard" and the execution system
can figure out how to move the arm to achieve that goal
after the cupboard has been openned and a suitable glass
identified. However, by making the execution system re-
sponsible for choosing actions at run time, we run the
risk of re-introducing the entire planning problem under
the guise of execution.

Ensuring a timely response to urgent situations re-
quires that any projection done by the execution system
must be tightly controlled. The only way to guarantee
such control is to be able to curtail the projection pro-
cess at any time and make further decisions using only
the information gathered to that point. Since urgency
may force arbitrarily little projection, we have chosen to
simplify the projection control problem by not allowing
the execution system to do any projection at all. The
execution system has access to the current state of the
world model, current active sensor values, and whatever
expected future states of the world have already been
derived by the deliberation system, but it does not gen-
erate and compare alternative courses of action.

Incomplete projection and inherent uncertainty in the
world model force the execution system to confront the
fact that it cannot know everything that might affect
its choice of actions for a plan step. Therefore, action
choices must be predicated on partial information and
inappropriate actions will sometimes be chosen by mis-
take. Similarly, the world will sometimes change in un-
predictable or dangerous ways that prevent some part
of a plan from achieving its desired result. To remain
robust in such situations, the execution system must be
able to check that the actions executed in service of a
plan step actually achieve their intended effects and, if
they do not, the system must either adapt and try again
or else admit failure. Furthermore, the system must
watch for and deal with urgent situations not anticipated
in the plan.

Our execution system therefore has the following re-
sponsibilities:

1. Generate atomic actions to achieve an abstract plan
step using no projection and an imperfect world
model.

2. Confirm the results of those actions to ensure that
the intent of the plan step is actually achieved.

61

acquire that knowledge are actions too. If all actions are
to be treated the same way (and they should be), sensing
operations must occur in the same plans as the actions
that require the information they yield.

2.2 Dealing with Plan Step Failures

Choosing a method for a plan step given a RAP from
the plan library is a straightforward task. Sometimes,
however, a RAP will contain no applicable method, or an
atomic action will fail because its preconditions are not
met in the external world even though they are true in
the world model. In these situations the action or plan
step involved fails because it cannot achieve its intended
effect. When a failure occurs, the execution system re-
considers the plan step that chose the method with the
failed action. Often the world will have changed since
that method was selected, and in that case one of the
other methods for the step can be used instead. Even
if the situation hasn't changed, it may be appropriate
simply to try the same method again. For example, a
grasp operation may fail because the arm was bumped
at a critical moment. Nothing in the world will have
changed when the grasp operation is reconsidered, and
it just needs to be tried again.

The execution system retries a plan step, whether an
explicit failure has occured or not, until its completion
test is satisfied or none of its methods are applicable in
the current situation. The tenacity of this implicit loop-
ing behavior gives the execution system a great deal of
robustness in the face of uncertainty and incorrect plan
choice. A method can be tried, and if it doesn't work, it
can be retried or another can be attempted in its place.
There is no substitute for this ability to try methods
over again when an agent's world model is incomplete
and uncertain, because mistakes are inevitable and must
be dealt with routinely. No execution system faced with
real sensors and effectors can expect all actions to work
properly the first time they are tried.

Unfortunately, while repeatedly retrying to achieve a
plan step makes the execution system robust, it raises
another problem: when to stop. If grasping the glass
continues to fail because the arm keeps getting bumped,
it is fruitless to keep trying the same operation over and
over again; some factor must be involved that is not
being taken into account by the current method. This
problem is addressed simply in our execution system.
A futile loop is detected whenever a plan step tries the
same method twice in exactly the same situation (as rep-
resented in the world model) without success. That plan
step then fails in exactly the same way as if it had no
applicable method, and its enclosing plan step is given
a chance to select another method. This is not a com-
pletely satisfactory solution, however, and the problem
of dealing with futile action/environment loops remains
an important problem for all intelligent agent architec-
tures to address.

2.3 Choosing What to Execute

A plan consists of a partially ordered network of goals at
varying levels of detail and choosing which plan step to
refine and execute next is a difficult scheduling problem.

In general, there may be many different goals that can be
worked on next, either because the deliberation system
has not yet committed to a specific ordering, or because
the plan contains several steps that can be carried out
equally well in any order (or even simultaneously).

The best way for the execution system to choose
among possible next plan steps without using any looka-
head is still an open research issue, but a simple algo-
rithm is described in [Firby, 1989]: the deliberation sys-
tem assigns each plan step a priority based on its im-
portance or expected utility. The execution system then
looks at all possible next plan steps and chooses the one
with the highest priority, breaking ties in favor of nearer
deadlines.2 The selected step is either executed directly
or one of its methods is chosen and incorporated into the
current plan at a priority modified by notations in the
method. The plan is now examined again and another
step is selected. If nothing untoward happens, this algo-
rithm has the effect of incorporating actions for a step
into the plan and then selecting and executing those ac-
tions one by one.3 However, the system can shift its
attention to a high-priority step should one arise.

2.4 Monitoring Urgent Situations

The ability of the execution system to shift attention to
higher priority plan steps can be used to recognize and
deal with urgent problems and opportunities. Plan steps
can be augmented with a test for activity and remain
dormant until that test is satisfied in the world model.
Using this device, RAP methods can be written to in-
clude high priority substeps to deal with expected dif-
ficulties, or recognize possible opportunities. By gating
those substeps with appropriate activity tests, they be-
come active at a high priority and interrupt the current
course of action precisely when they are necessary. The
only caveat is that a plan must explicitly include steps
to handle all problems or opportunities that might arise
during its execution. This restriction can be mitigated
somewhat by including default steps in parallel with all
plans to deal with common everyday problems like run-
ning low on gas, or meeting enemy troops. Strategies for
using this method to monitor and protect situations in
the world are discussed at length in [Firby, 1989].

The ability of the execution system to cope with ab-
stract goals can also be exploited to allow quick reaction
to things like loud noises or flashes of light. Assuming
that the sensing system is designed to detect such ba-
sic and threatening events asynchronously, we can auto-
matically generate a new goal at a high priority to deal
with an event when it occurs. This goal can then be

This is actually a simplification. The execution system
also tries to focus its attention on one goal at a time by
prefering to execute all of the actions in one method before
switching to actions in another method. See [Firby, 1989] for
more details.

The execution method of expanding a plan step into more
and more detail until atomic actions are reached bears a
resemblance to many "classical" planning techniques. One
difference is that the expansion is depth first based on the
current situation and backtracking results from trying and
failing in the real world.

62

deliberated upon if there is time, passed directly to the
execution system, or incorporated into the current plan
and effectively passed to both systems simultaneously.
When it reaches the execution system it is treated like
any other plan step and if it has a high priority it will in-
terrupt whatever is being done. A single uniform notion
of plan steps as goals is therefore used both for ordinary
and exceptional situations.

3 Issues in Deliberation

We noted above that deliberation is the process of rea-
soning within the confines of the agent's world model.
In Figure 1 the deliberation subsystem consists of the
planner along with the model manager—the module re-
sponsible for maintaining the agent's model of the world.
Deliberative tasks are therefore three:

1. to propose, repair, refine, or otherwise improve the
agent's plans (future commitments to act)

2. to make predictions about future states of the world
based on what is currently known

3. to react to new information and assess how it affects
the agent's beliefs, plans, and so on.

The three are tightly interconnected: deciding on a
course of action requires predicting future states, and
future states of the world in turn depend on what the
agent will do. We can, however, study the process of
prediction without regard to how current commitments
were arrived at, we can study the process of generating
and refining plans without regard to how the necessary
predictions are made, and we can study the process of
monitoring and belief revision without regard to what
will be done in light of significant changes to the model.
We therefore discuss, in turn, the issues associated with
in the world, and generating commitments to act.

3.1 Probabilistic temporal projection

The general problem of temporal projection is how to
predict whether some proposition <p will be true at some
time point t, using evidence occurring temporally prior
to t. Three sorts of evidence get used in the computation:

1. reports from the sensors

2. symbolic causal rules representing the agent's model
of how things change in the world (both in response
to the agent's own actions and to other events)

3. background information about the "usual" states of
proposition, the occurrence of events, and so on.

We will take the causal rules to be statements of the
form "if event E occurs while some fact P is true, then
Q will become true at the next instant in time." (See,
e.g., [McDermott, 1982].)

Uncertainty can come from a number of sources:

1. one can doubt whether the sensor always correctly
reports on y?'s state

2. one can be unsure as to whether a relevant event E
actually occurred at some point in time

3. one can lack confidence in the rules: perhaps the
rules mentioning ip aren't really necessary and suf-
ficient predictors of i^'s state changes.

We have adopted a probabilistic approach to the prob-
lem and thus compute the quantity P(<pt) w'tn back-
ground information taking the form of prior probabili-
ties. We take into account all forms of uncertainty listed
above: faulty sensors, unpredicted events, and incom-
plete or incorrect causal models.

Important computational problems arise in imple-
menting this approach, in that a tremendous amount
of evidence must be brought to bear in computing the
probability. Sensory observations of p can extend arbi-
trarily far back into the past, as can the relevant causal
rules (since they are implicitly quantified over all time
points). Most of this evidence, however, will not affect
the tp's probability significantly.

Evidence loses its impact—its power to change a prob-
ability estimate—for two reasons:

1. To the extent that the evidence is "unreliable" (a
faulty sensor report or a causal rule whose precon-
dition does not hold), it should not affect the prob-
ability.

2. The more temporally distant a piece of evidence is
(the longer it occurred before t), the more likely
it is that some other event occurred in the mean-
time, changing <p's state and rendering the earlier
evidence irrelevant.

In [Hanks, 1990c] we make precise the notions of relia-
bility, temporal distance, and impact.

Although computing tp's exact probability requires
that we consider a potentially infinite amount of in-
formation, we might expect that under the right
circumstances—sensors that are reasonably reliable and
changes that occur reasonably infrequently—we can
compute a good approximation of the probability using
only a few pieces of evidence. The question is how good
need a "good" approximation be?

This information is provided by the application in the
form of a probability threshold T. The threshold may
be generated as part of the planning process—we may
decide, for example, that plan Px is preferable to plan Po
if the probability of some <p exceeds some value r. For
example, I may plan to drive to work instead of riding
my bicycle if the chance of rain is greater than 60%. In
that case we don't care about an exact answer to the
question "what is the probability of rain," but only to
what side of the threshold (0.6) the exact answer lies. A
"good" approximation is one that reports correctly with
respect to the threshold. We present in [Hanks, 1990c] a
heuristic algorithm for limiting the search for evidence,
the limit being computed on the basis of how close the
current estimate is to the threshold.

Probabilistic assessment is triggered by a "probabilis-
tic query," which is a question of the form "to what
side of threshold r does P(<pt) fall?" Information about
probabilistic assessment is returned in a data structure
called a belief, which says something like "the probabil-
ity of proposition <p at time t is {above,below} threshold
r," and also apprises the application of its current es-
timate for P(<Pt)- Beliefs also represent a commitment
by the model manager to notify the application if new
information changes the system's estimate with respect
to the threshold (see Section 3.4 below).

63

3.2 Plan projection

Plan projection is the process of answering the question
"given what I now know about the world, if I were to ex-
ecute plan P at some future time t, what might I expect
to happen?" or more particularly, "will the intended
effects of my plan actually be realized?"

In some sense the probabilistic temporal reasoning al-
gorithm provides a method for plan projection: a pro-
posed plan is a sequence of events, an action is an event
that can trigger causal rules, and the projection question
becomes a probabilistic query, just as above.

The method is inadequate, however, for reasons both
formal and practical. First of all, the probability calculus
involves several assumptions reasonable for infrequent,
unplanned events, but unreasonable for a series of events
comprising a plan.4 Furthermore the representation of
actions as causal rules (and thus having effects restricted
to binary-valued random variables) is too restrictive: it
does not allow for easy representation of parameters like
a truck's fuel consumption, contents of its cargo bay, and
so on.

As a practical matter, an action (event) in a plan typ-
ically has many effects. Moving the truck takes time,
consumes fuel, wears down the tires and battery, causes
its cargo to move, may cause the truck to become dirty,
and so on. One would have to represent each such ef-
fect as a separate rule, and the program would have to
repeatedly compute the rules' preconditions.

More serious, however, is the fact that the information
returned by a probabilistic query is sparse at best. Sup-
pose a planner put together a course of action, posted it
to the world model, then posed a query about the likeli-
hood of success. Suppose the probability of success was
low, what then does the planner do? The problem is
that the belief returned in response to a temporal query
does not allow the planner to diagnose the likely failure
and repair the plan. The planner needs to know both
that and why plan failure may occur.

To that end we introduce the notion that an action
is a mapping from state descriptions into outcome sets.-
A state description is a formula, but we require that the
descriptions comprising an action's domain partition the
set of possible worlds. Outcome sets are likewise sets of
formulas, but the set of legal formulas has been extended
to represent things like real- and set-valued propositions.
We are thus in the position where given a world state we
know exactly what effects the action will have, but we
may not know which world state will hold at execution
time.5

Our view shifts somewhat: queries cause us to com-
pute the probability that a set of propositions will be

4Basically the assumption is that events will occur infre-
quently relative to the length of time that preconditions to
their rules remain true. See [Hanks, 1990c, Chapter 3],

This is an oversimplification: our action representation
allows for nondeterministic effects by allowing an action's
state-description formula to contain formulas of the form
"chance p" which are always taken to hold with probabil-
ity p. Therefore the probability that this state description
will be realized, and thus what effects the action may have,
cannot be known ahead of time.

true in the (single) future world, whereas projection as-
signs a probability distribution over sets of future worlds,
and within each a proposition is either certainly true or
certainly false. The probability of a goal formula be-
ing true is the probability that the real world will end
up being one of those future worlds in which the goal
is (certainly) true. The result of a projection is a sce-
nario tree: a tree of possible worlds representing alterna-
tive outcomes for the plan. Each path through the tree
(called a "chronicle") indicates one way the plan's exe-
cution may proceed; we can associate a probability with
each chronicle, thus supply the probability that the plan
will succeed. The scenario tree branches every time an
action's effects depend on a prevailing state of the world,
and that state cannot be determined with certainty (at
plan or projection time).

As a practical matter we cannot generate the entire
scenario tree, unless, of course, we have perfect knowl-
edge about what the world will be like at execution time.
We therefore need to keep some of the paths implicit.
Keeping most of the tree implicit saves space and time,
but in doing so we lose the ability to make precise char-
acterizations about the plan's effects. Suppose, for ex-
ample, that driving the truck over a muddy road may
cause it to become dirty, and that we are projecting a
plan that involves a trip over road R. We may or may
not want to represent the two alternatives "truck arrives
clean" and "truck arrives dirty" explicitly. If we do so
we double the number of chronicles in the scenario tree,
but if we don't we can only infer the disjunction "truck
arrives either clean or dirty."

Balancing the need for parsimony against the need to
articulate important distinctions in a plan's outcome is
the problem confronted by the projector. The projector
proceeds under the assumption that no distinctions are
important unless it is provided with information to the
contrary. This policy tends to result in a "fully implicit"
tree. But at some point during the projection or sub-
sequent planning process, "questions" get raised about
the world. These questions can come directly from the
planner ("what is the probability that the plan will suc-
ceed") or they can arise in the projection process itself
when the projector has to compute the probability that
a particular chronicle will be realized. These questions,
which are exactly the probabilistic queries we discussed
in the previous section, tell the projector what aspects of
the world are important, and thus what parts of the sce-
nario tree should be made explicit. The projector exam-
ines the scenario tree and tries to make explicit exactly
those portions of the tree that will allow an unambigu-
ous answer to the query at hand. [Hanks, 1990b] is a
summary of the action and scenario-tree representation
and the projection algorithm.

3.3 Integrated projection and the world model

Note from the discussion above that the process of proba-
bilistic temporal reasoning and projection are intimately
connected: queries initiate projection (scenario-tree ar-
ticulation), which gives rise to more queries, and so on.
We can thus view the planner's world model as a net-
work of belief data structures, each of which is based

64

on evidence consisting of sensory observations, causal
rules, prior probabilities, and hypothetical commitments
to act. Generating these beliefs—answering queries-
involves both projection and probabilistic assessment,
but the planner is never aware of this distinction.

3.4 Monitoring and revising the world model

The deliberation system is responsible for maintaining
the integrity of the world model in light of new evi-
dence. New evidence presents itself in one of two ways:
observations are received from the sensors and posted
to the world model, and new planning commitments are
received from the planner and likewise posted.

In either case the projection/assessment algorithm has
assumed that its current (at the time of assessment) set
of observations and plan commitments are the only such,
events, and it has furthermore posted monitors to the
database to look for interesting new events, each mon-
itor being associated with a belief. A monitor looks
for particular patterns over particular intervals of time
(the form of both depend on the individual assessment).
When new information triggers the monitor it notifies
its belief, which incorporates the new evidence into its
assessment. If the new information causes its informa-
tion to change with respect to the belief's threshold, it
goes on to notify everything that depends on the belief
(which might be other beliefs, or might be application-
supplied functions that would cause a plan commitment
to be questioned).

3.5 Generating planning options

So far the world model has accepted potential plans as
given; eventually we have to confront the problem of
how they are generated in the first place. We have just
begun work on this topic, so our ideas are still tentative,
but it may be worthwhile to point out how the problem
appears within our framework and the direction the work
is taking.

The approach we are experimenting with involves the
synthesis of decision-theoretic choice with transforma-
tional planning. The sequence goes something like this:

1. The agent is given a set of (symbolic) goals, which
suggest initial candidate plan alternatives. These
alternatives will tend to be quite vague at first.

2. Through the projection process the agent tries to
establish, on decision-theoretic grounds,6 that one
of these alternatives is preferable to the others. This
attempt will almost certainly fail at first because
the vague nature of the alternatives will not allow
precise predictions about the future.

3. The result of this attempt—the scenario structures
returned by the projections—will, however, point
out significant gaps in the agent's state of informa-
tion about the alternatives, and may also point out
where an alternative is likely to fail. This informa-
tion will suggest plan transformations, which will
take the form either of changes to an alternative, or

6Essentially this just means that the agent will make its
decision on the basis of tradeoffs between probability of suc-
cess, reward for success, and penalty for failure.

perhaps an indication of where the alternative needs
to be further elaborated.

4. Returning to Step 2, the agent once again tries to
establish a dominating alternative.

5. The process continues either until one alternative
dominates the others, or until no further transfor-
mations apply, or until time pressure forces the plan-
ning process to terminate (see below). Since the
agent will always have estimates of the expected
utilities associated with its current alternatives, it
can at any point choose the alternative with the
highest estimate though it can't be sure that sub-
sequent analysis might reveal that it made a poor
choice.

The existing interface provided by the world-model
manager is well suited to this sort of analysis: probabil-
istic queries are just the sort of information the planner
will need to do the decision-theoretic analysis. Many-
questions remain, however. The first is how to pose the
problem in the language of decision theory. The for-
mulation requires both a probability model and a utility
model of the domain. Much of the work on probabilistic
projection is oriented toward providing the probability
model; the utility model is a topic of current research
[Haddawy and Hanks, 1990], Next the nature of the
plan transformations needs to be explored. Work like
[Linden and Owre, 1987] and [Simmons, 1988] explores
the general technique of iterated transformation and pro-
jection; it remains to be seen how these techniques can
be integrated into our model of probabilistic projection
and decision-theoretic choice.

4 Issues in Coordination

Coordinating the subsystem that interacts with the
world and the subsystem that interacts with the world
model suggests a new set of issues, again involving both
representation and control. The representation issues
center around the question of how the world model
should represent the agent's behavior, i.e. the perfor-
mance of the execution system, and how information
gathered by the execution system should be incorporated
into the deliberation system's world model.

4.1 Representation

We can identify three main requirements for a represen-
tation that will support both deliberation and execution.
The first is that since predicting the future requires a
model of the agent's behavior, whatever representation
is used by the execution system to guide its behavior
must also serve as model of that behavior for the delib-
eration system. Similarly, since influencing the future
requires that the deliberation system affect the behavior
of the execution system, the deliberation system must
be able to communicate to the execution system, using
that same representation, suggestions for future actions.
Finally, since the deliberation system relies on the ex-
ecution system to collect information about the world,
their models of sensors and sensing activities must be
compatible.

65

Recall from Figure 1 that the deliberation and execu-
tion system share the RAP library—it represents instruc-
tions executable by the execution system, the planner's
"plan library," and the projector's "model of action."
Two features of the RAP library system that make it
amenable for all three uses are its hierarchy and its anno-
tations. The hierarchy was discussed briefly in Section 2:
a RAP has associated with it a proposition (condition it
intends to achieve) along with a set of methods any of
which might effect the desired state under the proper
circumstances.

The problem of biasing the execution system arises
when the planner/projector arrives at a good course of
action and needs to ensure that the execution system ac-
tually carries it out. The problems here are more prac-
tical than theoretical. The ways a planner would change
the behavior of the RAP system are two: by choosing in
advance which method to select in executing a particular
RAP, and by specifying an order in which RAP system's
execution agenda, and the only problem is how to relate
the representation of a RAP in the planner/executor's
world model to the actual instantiation of that RAP in
the agenda.

RAP annotations were not discussed in Section 2,
but play an important role in projecting the effects of
the execution system's actions. Each RAP is annotated
with the effects it will have if executed—conditions it
will cause to be true in the world, resources it will con-
sume, and so on. These annotations are exactly what
we meant in Section 3.2 by outcome sets. Of course not
all of a RAP'S effects (outcomes) will be relevant under
every set of circumstances, but the task of the projection
algorithm is to separate the important outcomes and in-
teractions from the irrelevant. The correspondence be-
tween RAP annotation and the projector's action model
is therefore very tight.

The final representation issue involves the sensor
model. The execution system is in charge of the agent's
sensors, and the only way the world model gets infor-
mation about the world is through sensor reports. The
projector's model of a sensor report is that of an obser-
vation, which consists of a proposition, a time point, and
a number indicating the agent's estimate of the sensor's
reliability. Furthermore, the world-model manager gen-
erates monitors in the course of forming beliefs, that are
charged with the responsibility of looking for relevant
observations that might subsequently be added to the
world model, and notifying the appropriate beliefs. The
RAP system also has a concept of monitors, which can
be used to generate sensor operations that check peri-
odically whether a particular condition becomes true in
the world [Firby, 1989, Section 4.7], There is thus a tight
connection between monitors in the execution sense and
monitors in the deliberation sense: deliberation moni-
tors give rise to execution monitors, and thus to sensing
operations. Deliberation monitors further give the exe-
cution system an indication of what sensor reports are
currently relevant to the agent's world model: only sen-
sor reports for which deliberation monitors are currently
active need be passed from the execution system to the
deliberation system.

4.2 Control

We mentioned the fundamental control issue at the be-
ginning of this paper: how does an agent decide whether
to act on the basis of its current state of information or
instead to do further deliberation, information gather-
ing, or both before committing to a course of action.

This decision, called the problem of "decision-
theoretic control," has received a lot of attention in the
literature lately, for example in [Boddy and Dean, 1989],
[Etzioni, 1989], [Horvitz et al, 1989]. The problem is
posed as to whether the agent should spend the next
unit of time in "physical activity" or in "mental activ-
ity," that is in acting or in deliberating. The decision
involves balancing the possible benefit of discovering a
better course of action during that next time unit against
the possible cost of opportunities foregone by not acting.
We argue in [Hanks, 1990a] that it may well be impossi-
ble to make this decision in a principled way, since doing
so requires (1) that we have a good characterization of
the improvement in the plan we expect to realize from a
unit time spent in deliberation, (2) that we have a good
characterization of the opportunity cost associated with
delaying action by one time unit, and (3) that the deci-
sion about whether to plan or to act must be made in a
negligible amount of time.

Our position has been that in many cases the decision
on whether to act, plan, or gather more information will
be clear: the execution system can be charged with the
responsibility of reacting to emergencies like fires, attack-
ing animals, or oncoming cars, and react to them with-
out recourse to the deliberation system at all. Indeed,
to get the response time necessary to avoid catastrophe
the agent cannot refer to any higher-level processes. By
the time the decision-theoretic control systems decided
that it was crucial to act immediately it would already
be too late.

But urgency is not the only reason one wants to stop
working on a plan. The other reason, and one ignored
by the "reactive planners," is that the planner may lack
information necessary to choose one alternative over an-
other. This situation will be noticed during the projec-
tion process in one of two ways. The first arises when
the choice between two alternatives depends on whether
a particular fact will be true or false, but the probability
estimate for that fact is equivocal. In that case the plan-
ner can delay the choice between those alternatives and
schedule an operation to gather the required information
if it knows how to do so. By posting a monitor that is
looking for that new information the planner can ensure
that it will automatically reconsider the choice once new
information is received.

The other way deliberation can be suspended is if the
projection process gets "bogged down." The projector
has associated with each projection a maximum number
of branches allowed for a scenario tree. Expansion of
that tree is suspended when that number is exceeded, a
condition indicating that the agent does not have enough
information about the future state of the world to make
good predictions about the effects of its actions. Once
again, projection can be suspended and resumed when
new information refines probabilities, causing branches

66

to be discarded as improbable.
We conclude, therefore, that the decision to act rather

than deliberate arises in a number of situations, most of
which do not require a conscious decision by the agent
to do one or the other. This is a good thing in our view,
since making that decision in a principled way is not
going to be possible at runtime.

4.2.1 Simultaneous action and deliberation

A strange assumption implicit in the decision-
theoretic-control paradigm is that deliberation and ac-
tion cannot happen simultaneously. There seems to be
no good reason to make this assumption, yet that is the
assumption one makes when one speaks of trading a time
unit of inference (deliberation) against a time unit of ac-
tion. If we relax that assumption things get much more
difficult, in that the opportunity cost of deliberating be-
comes harder to compute. Options like "think about the
problem while acting so as to keep your options open as
long as possible" become available. This kind of behavior
is common in everyday life—waiting in a long line for a
movie, for example, while simultaneously discussing the
possibility of going elsewhere.

When we admit the possibility of simultaneous action
and deliberation our attention focuses on coordinating
the two processes rather than choosing between them.
When should the deliberation system interrupt the cur-
rent course of execution because it has discovered a bet-
ter way to achieve the goal (but perhaps too late)? Sim-
ilarly, when should the execution system interrupt the
deliberation system because it has discovered the plan is
going wrong, and what should the deliberation system
do at that point? How does one facilitate the sharing
of representations (as outlined above) when the two pro-
cesses are running more or less independently? These are
the questions we believe are central to building an agent
that acts, and reacts, intelligently in its world. Our cur-
rent research centers around coordinating the indepen-
dent and simultaneous operation of the execution and
deliberative systems.

5 Related Work

Some of the most influential ideas in the AI literature
come from the "classical planners" such as STRIPS [Fikes
and Nilsson, 1971], NONLIN [Täte, 1977] and DEVISOR

[Vere, 1983]. The basic model behind these systems is to
plan everything in advance and prove that it will work.
There has been a lot of work to enhance these systems in
various ways by adding non-monotonic notions of proof
and domain-dependent search heuristics [Wilkins, 1988,
Dean et ai, 1987] but the notion that a plan cannot be
executed until proven correct remains unchanged. We
claim that this idea is fundamentally flawed because ur-
gency, uncertainty, and exogenous events make it im-
possible for an agent to prove realistic plans correct in
advance. An agent must be able to plan without proof
and let the execution system take care of the details.
Such a plan won't always work, but if you cannot act in
the real world without a provably correct plan, then you
cannot act at all.

In response to the impossibility of constructing a prov-
ably correct plan before acting, some researchers have
been building systems in which explict plans are not re-
quired. The basic idea behind these systems is to use
either a programmer [Brooks, 1987] [Agre and Chap-
man, 1987], or an automatic system [Kaelbling, 1988], to
transform a description of the agent's goals into a ma-
chine to achieve those goals. Within the machine there
is no explicit set of goals, world model, or contemplated
plan of action. Information flows from the machine's
sensors through a decision network to enable or disable
actions; plans and goals appear only implicitly in the
machine's interaction with the world. Using a stateless
decision network ensures fast response to changes in the
environment, but it does not allow action choices to be
influenced by deliberative processes. When goals are not.
represented explicitly, they cannot be changed dynam-
ically and there is no way to reason about alternative
plans for carrying them out. We claim that the ability
to act on changing goals in a reasoned manner is the hall-
mark of an intelligent agent and must not be neglected
in the face of urgency and uncertainty. Our execution
system is designed for quick response informed by a de-
liberate plan.

Numerous viewpoints exist on ways that deliberation
and action might be combined within a single agent ar-
chitecture. These views fall into two broad catagories:
uniform and layered architectures. Uniform architec-
tures use a single representation and control structure for
both action and deliberation while layered architectures
use different algorithms and knowledge representations
to perform these functions in different layers.

One example of a uniform architecture is the PRS sys-
tem [Georgeff et ai, 1986] which interleaves planning
and acting by using the same engine to project the fu-
ture, propose plans, and initiate actions. However, while
PRS allows goals, plans, and world knowledge to be rep-
resented in a common language interpreted by a single
processor, it does not make any commitment as to ex-
actly how planning and acting should be interleaved. All
control decisions are encoded in the PRS language (i.e.
meta-KAs) and PRS itself is intentionally silent on lan-
guage content. Thus, PRS is a framework in which agent
architectures can be couched but it is not itself an agent
architecture. Other researchers have also developed uni-
form frameworks in which control knowledge can be en-
coded as domain specific rules [Hayes-Roth, 1990] but,
as yet, they too have little to say on the general problem
of when to deliberate and when to act.

The Entropy Reduction Engine, [Bresina and Drum-
mond, 1990], is an example of a layered agent architec-
ture. This architecture includes three distinct layers:

• the reactor, which initiates actions based on a plan-
net modified by situated control rules SCRS,

• the projector, which constructs new SCRs to direct
the reactor based on the plan-net and goal con-
straints, and

• the reductor, which generates goal constraints to di-
rect the projector toward solving the system's over-
all goals.

67

Each layer is designed to work independently, but con-
trol information flows from goal to constraint to SCR to
action. The advantage of such an approach is that each
layer constitutes a separate process, and there is no need
to decide between deliberating and acting; the reactor is
always acting and the reductor and projector are always
deliberating.

A problem with the Entropy Reduction Engine is that
each interface between layers involves a different rep-
resentation, and information only flows one way—from
goals to actions. As a result, there is no way for the
activities of the reactor to influence the activities of the
layers above. This is particularly important when the
world model used during deliberation is not complete
(which we argue is inevitable) and actions in the plan
net do not have their usual or intended effects. Suppose
an SCR fires in a certain situation and causes an action
selection that does not change the world in any currently
discernable way. Presumably the same SCR will fire again
and the reactor will be caught in a futile loop, performing
the same action over and over without making progress.
We argue that the unreliability of world models and the
uncertain effects of actions must be accepted as central
aspects of any agent architecture and the execution pro-
cess must be able to recognize problems as they arise and
communicate that knowledge to the deliberation system.

The division between uniform and layered architec-
tures is an interesting one because it reflects a bias as to
which problems the implementors wish to address. Uni-
form architectures such as PRS make the assumption that
deliberation and action are so closely intertwined that
they cannot fruitfully be separated. Within a uniform
architecture, all of the deliberation machinery can nat-
urally and easily be brought to bear on every action de-
cision the system makes. Unfortunately, computational
cost and complexity quickly slow such a system to the
point where it cannot react in a timely manner. To cope
with time pressure the system must begin to make ex-
plicit control decisions about when it should deliberate
and when it should "just act." The problem for such
a system is to decide what it means to "just act" and
then decide how the trade-off between action and delib-
eration should be made. The most common approach
is to make control decisions explicit in the plan repre-
sentation and allow the system to reason about its own
reasoning procedures (e.g. meta-KAs in PRS and control
plans in [Hayes-Roth, 1990]). One must be careful that
such schemes do not lead to an infinite regress of meta-
reasoning.

Layered architectures like the Entropy Reduction En-
gine and that used on the ALV [Payton, 1986] make the
assumption that reaction time is so critical and deliber-
ation is so slow that action must often be taken without
resort to any deliberation at all. As a result, delibera-
tion and, action are separated into pieces that use dif-
ferent algorithms and often different world models and
plan representations. Unfortunately, this division raises
a new communications problem: how can the different
pieces share each other's knowledge and commitments.
The most common approach is to pass ever more detailed
action descriptions down the layers toward the hardware

and then pass success and failure messages back up. One
must be careful that such communication schemes are
made rich enough that each layer does not have to model
the activities of the layer below.

We claim that different reasoning processes are ap-
propriate for acting and deliberation because action is
driven by urgency while deliberation needs time to con-
sider alternatives and consequences. Therefore we have
adopted a partitioned rather than a uniform architecture
and we address the communication problem by using a
shared world model and plan representation. Deliber-
ation and action both manipulate plans and the world
model but use different algorithms focussed on the dif-
ferent problems that each must address.

6 Conclusions

Intelligent agency requires two distinct capabilities: de-
liberating to consider alternative futures when time per-
mits, and acting when urgency or lack of knowledge
demands it. The division between the two processes
is more pragmatic than theoretical but still very real.
Uncertainty, urgency, and the complexity of the world
require adaptability and reactivity when taking action.
The same uncertainty and complexity complicates pro-
jection and the comparison of possibilities while delib-
erating over alternative plans of action. The different
aspects of "planning" that are emphasized during delib-
eration and action require the use of separate systems
and algorithms for their implementation.

Our architecture consists of an execution system based
on RAPS [Firby, 1989] and a deliberation system based
on a probabilistic world model manager and projector
[Hanks, 1990c]. A proposed transformational planner
generates and refines plans based on information sup-
plied by the model manager. These plans are represented
explicitly at all levels of refinement and are available to
guide the execution system as it interacts with the world.
To this end the execution system is charged with the re-
sponsibilities of: (1) making detailed action choices to
carry out planned actions in the face of uncertainty, (2)
coping with the failure of those actions to achieve their
intended results, and (3) watching for and dealing with
urgent problems or opportunities. Similarly, the deliber-
ation system is charged with the responsibilities of: (1)
proposing and refining plans to guide the execution sys-
tem, (2) making predictions about future expected states
of the world, and (3) coping with any plan changes re-
quired when new information arrives or the execution
system detects a problem.

Although the algorithms for deliberation and action
are different, the two activities are parts of the same
process. They share a central world model and a rep-
resentation of plans of action. The world model is a
record of what is currently believed about past, present,
and future states of the world. It supplies the execution
system with the information needed to choose between
methods for a plan step and to confirm that a plan step
has been achieved. It supplies the deliberation system
with the grounding needed for making inferences and
predictions about the future. Sharing the model makes
new information acquired by the execution system avail-

68

able immediately to the deliberation system, and allows
new projections of the future made by the deliberation
system to inform further choices in the execution system.

A common world model lets the deliberation and exe-
cution systems exchange information, but a shared plan
representation is what really ties the two systems to-
gether. Plans are the description of what the agent in-
tends to do and are used by the deliberation system for
projecting the future and by the execution system for
guiding action selection. A shared plan representation
allows any plan under consideration by the deliberation
system to be executed directly, and any plan refinements
generated by the execution system to be incorporated di-
rectly into ongoing deliberations. A shared representa-
tion also allows the deliberation system to use the same
plan library when considering possible futures as the ex-
ecution system uses when selecting actions at runtime.
A common plan representation gives the agent a single
consistent vision and purpose.

6.1 Some Parting Philosophy
The classical planning paradigm makes two very conve-
nient assumptions:

1. That there exists a set of "primitive actions," which
provides a convenient level of abstraction for use in
plans — below that level the planner doesn't have
to worry about execution at all.

2. That the world is certain, simple, and closed, which
leads to an easy criterion for choosing a plan: a plan
is good if it provably works.

Neither of these assumptions are entirely bad. There
probably is some detail the planner should ignore (the
exact position of a glass in the kitchen, for example),
because: (1) it generally won't know details of this sort
before execution time, (2) such details probably won't af-
fect the plan's ultimate success very much, and (3) there
are so many details that the planner will be swamped if
it tries to take them all into account.

Closed-world assumptions are also fairly harmless if
judiciously applied: the agent probably does have control
over and reasonably complete knowledge about many
imporant aspects of the world sometimes, and making
closed-world assumptions makes the process of reason-
ing about possible futures much more efficient [Hanks,
1990c, Chapter 5].

The problem is that these assumptions have been ap-
plied too broadly: primitive actions are taken to be fixed
and complete, and the closed-world assumption is ap-
plied to all propositions at all times. In fact, the situa-
tion is often even worse in that the assumptions are of-
ten actually inherent in the representation itself (e.^. the
situation calculus representation of events, which makes
reasoning about asynchronous non-planned actions very
difficult, and the STRIPS action representation with its
add and delete lists). As such, it becomes impossible
for systems using these representations even to reason
situations in which the assumptions are violated.

What we've tried to do is build a system in which these
assumptions (atomic actions and a closed world) can be
applied when appropriate, where the meaning of "appro-
priate" depends on both the planning problem at hand

and the execution environment. The RAP representation
provides a reasonable and flexible notion of an atomic
action because the execution system ensures that either
(1) the details involved in carrying out a RAP goal are
taken care of "transparently," or (2) the planner will be
notified that some anomaly (planning failure) has been
detected.

The projection susbsystem makes the closed world as-
sumption for particular aspects of the world and over
particular periods of time, but is also sensitive to the fact
that these assumptions might be violated. It is willing to
revise its beliefs if subsequent information, discovered at
execution time, demands it. The projection system also
"knows when it doesn't know enough" to make decisions,
and can pass actions to the execution system that will
provide it with the necessary information.

The important point is that while we attempt to em-
ploy simplifying assumptions appropriately, we know
that these assumptions are too strong in general and
therefore accept that mistakes and inconsistencies will
arise through their application. Much of the planning
process must wait until more detailed information be-
comes available and often an agent's interaction with
the world will uncover new information that invalidates
previous plans. A real agent architecture must allow
a flexible and complex interaction with the world that
the traditional notion of planning and execution cannot
support. We offer a system in which planning becomes
a continuous process of deliberating over evolving par-
tial plans, which are designed to guide an action system,
while at the same time gathering information and acting
on the world to achieve the agent's goals.

References
[Agre and Chapman, 1987] Philip E. Agre and David

Chapman. Pengi: An implementation of a theory of
activity. In Proceedings AAAI, pages 268-272, 1987.

[Boddy and Dean, 1989] Mark Boddy and Thomas
Dean. Solving time-dependent planning problems. In
Proceedings IJCAI. AAAI, August 1989.

[Bresina and Drummond, 1990] John Bresina and Mark
Drummond. Integrating planning and reaction. In
Spring Symposium Series, Stanford University, 1990.
AAAI.

[Brooks, 1987] Rodney Brooks. Intelligence without rep-
resentation. In Proceedings of the Workshop on the
Foundations of Artificial Intelligence. MIT, June 1987.

[Dean et al, 1987] Thomas Dean, R. James Firby, and
David Miller. The FORBIN paper. Technical Report
550, Yale University, Department of Computer Sci-
ence, July 1987.

[Etzioni, 1989] Oren Etzioni. Tractable decision-
analytic control. Technical Report CMU-CS-89-119,
School of Computer Science, Carnegie Mellon Univer-
sity, February 1989.

[Fikes and Nilsson, 197l] Richard Fikes and Nils J. Nils-
son. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intel-
ligence, 2(3):189-208, 1971.

69

[Firby, 1989] R. James Firby. Adaptive execution in
complex dynamic worlds. Technical Report 672, Yale
University, Department of Computer Science, January
1989.

[Georgeff et ai, 1986] Michael P. Georgeff, Amy L. Lan-
sky, and Marcel J. Schoppers. Reasoning and planning
in dynamic domains: An experiment with a mobile
robot. Tech Note 380, AI Center, SRI International,
1986.

[Haddawy and Hanks, 1990] Peter Haddawy and Steve
Hanks. Issues in decision-theoretic planning: Sym-
bolic goals and numeric utilities, 1990. This volume.

[Hanks, 1990a] Steven Hanks. Controlling inference in
planning systems: Who, what, when, why, and how.
Technical Report 90-04-01, University of Washington,
Department of Computer Science, April 1990.

[Hanks, 1990b] Steven Hanks. Practical temporal pro-
jection. In Proceedings AAAI, 1990.

[Hanks, 1990c] Steven Hanks. Projecting plans for un-
certain worlds. Technical Report 756, Yale University,
Department of Computer Science, January 1990.

[Hayes-Roth, 1990] Barbara Hayes-Roth. Dynamic con-
trol planning in intelligent agents. In Spring Sympo-
sium Series, Stanford University, 1990. AAAI.

[Horvitz et ai, 1989] Eric J. Horvitz, Gregory F.
Cooper, and David E. Heckerman. Reflection and ac-
tion under scarce resources: Theoretical principles and
empirical study. In Proceedings IJCAI, pages 1121—
1127, 1989.

[Kaelbling, 1988] Leslie Pack Kaelbling. Goals as paral-
lel program specifications. In Seventh National Con-
ference on Artificial Intelligence, St. Paul, MN, Au-
gust 1988. AAAI.

[Linden and Owre, 1987] Theodore A. Linden and Sam
Owre. Transformational synthesis applied to alv
mission planning. In Proceedings of the DARPA
Knowledge-Based Planning Workshop, December
1987.

[McDermott, 1982] Drew McDermott. A temporal logic
for reasoning about processes and plans. Cognitive
Science, 6:101-155, 1982.

[Payton, 1986] D.W. Payton. An architecture for reflex-
ive autonomous vehicle control. In International Con-
ference on Robotics and Automation, San Francisco,
CA, 1986. IEEE.

[Simmons, 1988] Reid G. Simmons. A theory of debug-
ging plans and interpretations. In Proceedings AAAI,
pages 94-99, 1988.

[Täte, 1977] Austin Täte. Generating project networks.
In Fifth International Joint Conference on Artificial
Intelligence. IJCAI, 1977.

[Vere, 1983] Steven Vere. Planning in time: Windows
and durations for activities and goals. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
5(3), 1983.

[Wilkins, 1988] David E. Wilkins. Practical Plan-
ning: Extending the Classical AI Planning Paradigm.
Morgan-Kaufmann, 1988.

70

Envelopes as a Vehicle for Improving
the Efficiency of Plan Execution*

David M. Hart, Scott D. Anderson, Paul R. Cohen

Experimental Knowledge Systems Laboratory

Department of Computer and Information Science

University of Massachusetts

Amherst, Massachusetts 01003
Abstract profile of a mechanism under various conditions. When the

performance of apian in our system goes outside its envelope,
the plan may no longer be appropriate for the current envi-
ronmental conditions. This paper details the construction
and use of a particular envelope in a multiagent, real-time
problem solving system that fights simulated forest fires. It
also discusses the general utility of envelopes for improving
the efficiency of plan execution.

Envelopes are structures which capture expecta-
tions of the progress of a plan. By comparing
expected progress with actual progress, envelopes
can notify the planner when the plan violates
those expectations. The planner then has the op-
portunity to modify the plan to increase its effi-
ciency given the unexpected progress. This paper
presents a specific example of the construction and
use of an envelope, followed by a discussion of the
general utility of envelopes for improving the effi-
ciency of plan execution.

1 Introduction

Most AI planners test the postconditions of an action after
its completion to see if it succeeded, but in our domain, ac-
tions take so long to execute that advance knowledge of the
probable outcome is valuable. Therefore, we monitor actions
during execution. We represent the a priori expectations of
action progress, which we compare with the actual state, in
structures we call envelopes. By comparing actual progress
to the expectations about progress stored in envelopes, we
can see whether a plan1 is executing better or worse than we
expected.

Inefficiency in plan execution encompasses wasteful use
of resources in a plan that is succeeding, ineffective use of
resources in failing plans, and even the costs of recovering
from a failed plan. Envelopes are chiefly concerned with
the efficiency of plan execution, and only indirectly with the
planning process. In this paper, we will show an envelope
that categorizes the progress of a plan as better, worse, or as
expected. If progress is better than expected, we can increase
the efficiency by reducing resource expenditure; if worse, we
can act to avert plan failure, possibly by adding resources.

The term "envelope" derives from the idea of a "perfor-
mance envelope" in engineering, describing the performance

'This research was sponsored by DARPA-AFOSR con-
tract F49620-89-C-00113; the Office of Naval Research, un-
der a University Research Initiative grant, ONR N00014-
86-K-0764; the Office of Naval Research, contract #
N00014-88-K-0009; and a grant from the Digital Equipment
Corporation.

Because our plans are structures of one or more actions,
we will use the terms interchangeably.

2 Monitoring Plan Execution

There is an obvious advantage to knowing how a plan is
progressing when the planner can act based on that knowl-
edge; if the plan is failing, the planner can either abort the
plan (avoiding throwing good resources after bad) or add re-
sources to the plan so as to avert the failure. In domains
where actions are not interruptible or are of such short du-
ration that there is no time to add or subtract resources from
an action in progress, there is clearly no utility to monitoring
an executing action. But fighting a forest fire can require the
efforts of many agents over many days, so that plans execute
over long time spans and there is ample time to add and
subtract resources. Therefore, in our domain (simulated in a
testbed called Phoenix [l]), it pays to monitor a plan during
its execution.

Doyle's work [2] addresses monitoring, but in a robotics
domain using a STRIPS-style action model with specified
preconditions and postconditions. Monitoring verifies the
truth of the preconditions and postconditions:

... we assume that the successful execution of ac-
tions can be verified by instantaneously verifying
the action's preconditions before its execution and
instantaneously verifying its postconditions after
its execution. This approach proves inadequate for
some actions. [2]

Doyle goes on to describe cases that require just the sort of
continuous monitoring that envelopes are designed for, such
as actions that are extended over time and can fail at any
point, and actions involving looping, which can be viewed as
extended action.2

Our work is closest in spirit to that of Sanborn and
Hendler [6]. Their simulated robot, which tries to cross a

2The example of looping that he gives is of filling a bucket
from a hose, which we believe is more naturally viewed as an
extended action.

71

Elap
Uind

ed T ine: 0:01:13
3kn/hr; Dir:

* 1 1 1 4kn

J$Ü|L "

y^/"^ \T:

Figure 1: A fire (shaded region) has been set in the Phoenix forest, seen here 1 hour 13 minutes afterwards. The wind is
from the East at 3 kph. The polygon of dashed lines marks both the projected shape of the fire after about 17 hours and the
intended placement of fireline for the indirect-attack plan. Other lines are rivers and roads.

busy street, must monitor the objects in the world (cars rush-
ing past) and predict whether they will run over it. We view
this as an envelope around the plan of crossing the street,
attempting to avert the catastrophic failure of the plan, not
to mention the robot. This is a clear case of an extended
action (though performed as a loop of single steps forward
and backward) in which forewarning of failure is critical. The
forewarning is achieved by predicting the location of the cars
and the robot; we will see the significance of prediction for
envelopes below.

Envelopes have been implemented as a general mechanism
in Phoenix. Performance falling outside expected bounds is
termed a "violation," and violations notify the planner so
that its planning knowledge can be brought to bear on the
situation. The purpose of envelopes, then, is to provide infor-
mation to the planner that guides its decision-making during
plan excution. While the planner has a number of options,
it typically responds to violations as we have mentioned—
adding or subtracting resources. Without envelopes, these
opportunities to increase efficiency would go unnoticed.

3 Constructing an Envelope

In Phoenix, simulated forest fires are controlled by bulldoz-
ers cutting fireline around the fire. In some cases, it is too
dangerous for bulldozers to cut a fireline close to the fire,
and so we use what is called "indirect attack," in which the
bulldozers cut a line some distance away. In indirect attack,
a central fireboss coordinates the actions of the bulldozers.

For example, in Figure 1, the intended placement of fireline,
to be cut by several bulldozers, is the polygonal shape sur-
rounding the fire. The fireboss selects a polygon such that
the estimated time required for n bulldozers to cut the line,
BT(n), is less than the estimated time remaining until the
fire spreads to the polygon, FST; the difference is the amount
of slack time in the plan.

Figure 2 illustrates how an envelope for the multiple-
bulldozer, indirect-attack plan is constructed. We define
"progress space" as the percentage of the fireline which is
completed, PFC, versus time (elapsed simulation time, t).
The point at the upper right is the estimated time that the
fire arrives at the polygon, tfa, and 100% of the fireline is
dug. Lines 1 and 2 are defined by the expected rate that some
number of bulldozers can cut fireline: line 1 has a slope of
100/i?T(n), because n bulldozers must cut 100% of the line;
line 2 has a slope of 100/ßr(n-l). iP is the time that these
estimates were made and the envelope was built. U, is the
latest time at which n bulldozers can start digging line and
expect to finish the fireline before the fire arrives.

The filled circle labeled CP represents the current posi-
tion in progress space—(tno„,, PFCn0w)- The location of CP
within the regions of progress space indicates how the plan
is progressing: crossing below line 1 suggests that the plan
will fail, since the bulldozers would need to cut the fireline
at a rate faster than we think they can;3 crossing above line

3The plan will not necessarily fail, since the bulldozers
might do better than we expect, even though they so far

72

100

s a.

Slack Time Build Time {BT(n)}

Fire Spread Time {FSTJ

Figure 2: An envelope for the Indirect-Attack Plan

2 suggests that we should save resources by retiring a bull-
dozer, since n—1 of them should be able to cut the remaining
line in time. The area between the lines is the envelope—the
range of expected performance—and going outside it is a vio-
lation of the envelope, signalling to the agent that something
should be done.4

4 Using Envelopes
The plan library of each Phoenix agent contains skeletal
forms of envelopes as well as plans. Part of the definition of
a plan denotes what envelopes, if any, should be instantiated
to monitor the execution of that plan. Consequently, when
a plan is instantiated at run-time, the associated envelopes
are also instantiated, and the envelopes initialize themselves
from plan variables, such as the BT{n) and t/a variables
above. Each envelope provides a monitor method whose pur-
pose is to updat» the current progress (CP) and locate it in
progress space. Then, while the plan is executing, a periodic
action called "monitor-envelopes" causes the agent to verify
that the plan is progressing satisfactorily by running these
monitor methods.

The monitor method checks sensory information previ-
ously gathered and stored in the plan variables, such as the
current positions of the bulldozers and the fire, and deter-
mines which region CP lies in. If CP is within the region
for acceptable progress, nothing more happens. However, if
CP has crossed into a region of unexpected progress (either
better or worse), the envelope is violated and the monitor

have not, or the fire might take longer to reach the fireline
than we thought, say if it rains.

4Conceptually, the envelope is just that area of progress
space, but we also use the term to describe the data structure
representing this area and associated code for creating the
envelope and updating CP.

method adds an item to the agent's agenda so that the agent
can notice and respond to the violation. In Figure 3, we show
an envelope in which the CP falls into the failure region.

While the fireboss could do many things as a result of this
violation (for example, the fireboss might buy time, say by
dumping fire retardant on the fire or expanding the polygon
around the fire), consider the case in which it sends another
bulldozer to help dig line. A new envelope must be set up
for monitoring this modified plan. The failure boundary for
the new envelope will be determined by a line whose slope is
100/BTn + l. The additional bulldozer is sent, and the fire
is successfully contained within the original polygon, which
means the modified plan has succeeded, where the original
plan would almost certainly have failed.

We have mentioned that multiple envelopes might exist
simultaneously; one way that this occurs is when a plan and
a step in the plan both have envelopes. For example, in the
multiple-bulldozer, indirect-attack plan, each step of digging
a side of the polygon has an envelope. This allows the fire-
boss to apportion the time constraints from the overall plan
to the steps in the plan. A violation of a step's envelope
may indicate a problem with the whole plan, or may simply
mean that other steps will have to do better than expected.
Therefore, the step envelopes do not eliminate the need for
the plan envelope—the latter integrates the information from
step envelopes.

Furthermore, since digging a side of the polygon will in
fact be executed by bulldozers and not by the fireboss, the
envelope for that step must be an explicit data structure that
can be communicated to the bulldozers. We call this an agent
envelope, since it is monitored by the agent who receives
it, allowing the fireboss to turn its attention elsewhere. If
a violation occurs, the agent reports back to the fireboss,
who assesses the significance of the violation by consulting
the plan envelope. Agent envelopes free the fireboss from

73

Simulation Tine (hours)

ENV-nULTIPLE-BULLDOZER-INDIRECT-RTTRCK-1.15

Figure 3: Plot of the Multiple-Bulldozer, Indirect-Attack Envelope in Phoenix, showing a violation at nearly 12 hours into
the simulation. The recent progress is flat because the bulldozers have stopped to refuel.

the task of monitoring the progress of component plan steps
carried out by other agents—the fireboss assumes the agent's
progress is within expectations unless it receives a violation
report from the agent. Powell and Cohen [5] discuss the
use of envelopes to coordinate activities among echelons in
multiagent, operational planning.

Another way that multiple envelopes occur is when data
dependencies exist between envelopes. For example, the es-
timate of when the fire will reach the polygon, tfa, is crucial
to the way that progress space is carved into regions. Un-
fortunately, that estimate is based on inexact information,
because the fireboss does not know exactly where the fire is
or exactly what the local wind conditions are. Therefore,
we put an envelope around our estimate and periodically re-
calculate it. Should the re-calculation indicate that the tf*
estimate is quite wrong, the tfa envelope is violated, and this
causes the envelope on the plan to be revised.

5 Utility of Envelopes

It is intuitively obvious that information about the progress
of a plan cannot hurt and could well prove invaluable. How-
ever, the agent must put effort into gathering this informa-
tion, and therefore the cost of envelopes must be worth their
benefit. To summarize the possible benefits, using envelopes
allows an agent to:

• modify a failing plan so as to prevent its failure

• abandoning a plan that is irretrievably failing.

• retire surplus resources from a plan that is going unex-
pectedly well.

• improve a plan that is going unexpectedly well. For
example, in the multiple-bulldozer, indirect-attack plan,

it can move the vertices nearer the fire so as to reduce
the forest lost.

• reduce communication overhead between cooperating
agents via agent envelopes, that is, by allowing them to
share expectations and only communicate when those
expectations are violated.

Envelopes cost the planner in three different ways: the
cost of setting them up, the cost of monitoring them at time
intervals, and the cost of responding to violations. Assessing
these costs is complicated by the way they can be traded off
against each other. For example, a planner could create a
"quick and dirty" envelope, using estimates that are of low
quality but quick to compute. Employing such an envelope
burdens the planner later, since spurious violations are more
likely and time spent responding to them will be wasted. On
the other hand, a planner can put a lot of time and effort
into creating a great envelope, with precise boundaries based
on the best information, resulting in regions that categorize
the situation quite well. Violations of a high-quality enve-
lope can be better trusted to indicate a problem with the
plan. We can create such high-quality envelopes in Phoenix
for some activities, but the cost of creating them is high. For
example, the speeds with which a buDdozer travels and digs
line can be predicted quite accurately using expensive oper-
ations that iterate over the points on its route and sum the
costs. The benefit is that the envelope reflects very closely
the probable time required to dig a segment of fireline. The
cost is the expense of calculating this information, a cognitive
task that competes with other necessary cognitive activities
for available "thinking" time5. This tradeoff balances the
cost of building an envelope now with the costs of respond-
ing to violations later.

JFor more on Phoenix agents' cognitive structure, see [ll

74

Another tradeoff is in the monitor methods of the en-
velopes. It's important not to make these too time-intensive,
since the cost will be incurred many times over the course of
plan execution. For instance, how old should sensory infor-
mation be before the monitor method discards it and mea-
sures the environment anew? One option is to use quick,
inexact procedures in the monitor method and then, if a vi-
olation occurs, double-check them with better procedures to
verify whether the violation is spurious.

In very time-pressured situations, an agent will probably
want to choose quick and dirty ways of doing things (in-
cluding building, monitoring and responding to envelopes),
while in less pressured situations, it will probably want to
choose higher quality methods; therefore, the Phoenix agent
architecture allows for this choice.

An extreme tradeoff is to eliminate envelopes entirely and
deal with the plan failure when it arises, that is, dispense
with monitoring the progress of the executing plan and rely
on reports from the field that the plan has failed. Clearly, in
Phoenix, we will have to repair or replace the current plan
when the fire is reported to be escaping from the incomplete
polygon. The cost of this failure, besides the time to replan,
is the loss of more forest and the additional time and effort
of bulldozers to control it. The cost of failure must be com-
pared to the costs of using envelopes, which we've noted will
depend on the choices made by the agents. We believe that
on average these costs will exceed the overhead cost of using
envelopes. The same argument can be made with respect to
improving a plan that is succeeding: if we can save a little
forest by moving the vertices towards the fire when the poly-
gon is being dug faster than anticipated, does this outweigh
the cost of using envelopes?

These tradeoffs imply that envelopes have limited util-
ity for some environments and tasks. If the environment is
highly variable, so that the estimates and predictions that are
built into the envelope don't last, and so that any envelope
will be violated shortly, the overhead costs may swamp any
benefits. On deeper reflection, though, since envelopes are
used for actions that assume some constancy to the environ-
ment, such actions would not be used in these highly variable
domains. Predictability is the key issue: prediction, used ei-
ther for planning or building envelopes, is simply not useful
in these unpredictable domains. As we mentioned in Sec-
tion 2, Sanborn and Hendler's simulated robot depends on
the predictability of the cars' paths, even though the domain
is highly variable. Our approach differs from theirs because
they have tightly connected the predictions to the robot's
actions, while we notice a violation and let the planner de-
liberate as long as it wishes over how to solve the problem.
We do this because actions can be quite costly; for example,
sending another bulldozer to the fire is time-consuming and
commits resources which might be required elsewhere.

and obstacles. Performance will be assessed based on a com-
bination of cost factors such as forest burned, bulldozer time
spent, agents lost, and cognitive overhead incurred. We also
intend to experiment with the tradeoffs mentioned above,
such as balancing the cost of setting up an envelope with the
cost of responding to violations.

Another line of research views envelope violations as an
opportunity for learning [3]. Envelopes provide information
about plans vulnerable to failure, as well as an opportunity to
test ways of repairing plans. These repairs, when successful,
can be used to modify the plan library.

We also intend to apply envelopes to the problem of as-
sessing the progress of tasks that involve, not acting in the
world, but thinking. Many thinking tasks in Phoenix, such
as path planning and predicting fire spread, can be computa-
tionally expensive and the time available for them is limited.
If we can model these computational tasks so that we can
predict their progress well enough to use envelopes, we can
control them and increase their efficiency. A brief discussion
of the use of envelopes for real-time control appears in [4].

7 Conclusion

We have shown an example of how to build and use an en-
velope for a plan in a fire-fighting domain. This envelope
notices when the plan is failing or succeeding too well. The
planner can then adjust the plan to the changing conditions,
thereby increasing the efficiency of its execution by minimiz-
ing the loss of forest and other costs. We've argued that
the predictability of the environment indicates whether en-
velopes will be useful: if the domain is too predictable, plans
cannot fail, so there is no point to monitoring them, and if
the domain is too unpredictable, plans would not be of a du-
ration for which envelopes would be useful. For the middle
ground—environments that are uncertain but not too unpre-
dictable, which we think are quite common—we argue that
the benefits derived from the opportunity to increase plan
efficiency will outweigh the costs of creating, monitoring and
responding to envelopes.

Acknowledgements

The authors wish to thank Adele Howe, Dorothy Mammen,
Jerry Powell, and Paul Silvey for helpful comments on drafts
of this paper and also Mike Greenberg and David Westbrook
for their skilled programming support.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was mon-
itored by the Air Force Office of Scientific Research under
Contract No. F49620-89-C-00113. The United States Gov-
ernment is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright
notation hereon.

6 Current and Future Work

We have integrated envelopes into the Phoenix testbed, and
added instrumentation to assess the cognitive load on the
various agents. We will test the utility of envelopes by com-
paring the performance of agents with and without them. In
particular, we will run a number of different fires in the simu-
lator, varying the factors contributing to unexpected success
or failure of plans, such as weather, mechanical breakdowns,

75

References

[1] Paul R. Cohen, Michael Greenberg, David M. Hart, and
A.E. Howe. Trial by fire: Understanding the design re-
quirements for agents in complex environments. AI Mag-
azine, Fall 1989.

[2] Richard J. Doyle, David J. Atkinson, and Rajkumar S.
Doshi. Generating perception requests and expecta-
tions to verify the execution of plans. In Proceedings of
the Fifth National Conference on Artificial Intelligence,
Philadelphia, PA, 1986. American Association for Artifi-
cial Intelligence.

[3] A.E. Howe. Integrating adaptation with planning to im-
prove behavior in unpredictable environments. In Pro-
ceedings of AAAI Spring Symposium on Planning in Un-
certain, Unpredictable or Changing Environments, Palo
Alto, CA, March 1990.

[4] A.E. Howe, David M. Hart, and Paul R. Cohen. Address-
ing real-time constraints in the design of autonomous
agents. To appear in Real-Time Systems, 1990.

[5] Gerald M. Powell and Paul R. Cohen. Operational plan-
ning and monitoring with envelopes. In Proceedings of
the IEEE Fifth AI Systems in Government Conference,
Washington, DC, 1990.

[6] James C. Sanborn and James A. Hendler. Dynamic re-
action: Controlling behavior in dynamic domains. Inter-
national Journal of Artificial Intelligence in Engineering,
3(2), April 1988.

76

Mission Critical Planning:
AI on the MARUTI Real-Time Operating System

James Hendler * and Ashok Agrawala f

Department of Computer Science
University of Maryland

College Park, Md. 20742

Abstract

In this paper we describe preliminary results
from an effort to use the MARUTI real-time op-
erating system as the platform for the develop-
ment of an AI system which can integrate plan-
ning and reaction in complex environments.
This work is motivated by the needs of the
types of mission critical reasoning which must
occur during emergencies which arise in com-
plex domains. The primary thrust of this on-
going research is to enable a system to directly
react to failures and unexpected events. Criti-
cally important is the ability to correctly han-
dle time dependent reasoning (directly modeled
on the MARUTI operating system) and reac-
tion, and to integrate such reaction with higher
level plans for normal operation or error recov-
ery.

1 Motivation

For systems to handle contingencies that might arise in
complex environments, there are three critical capabili-
ties they must demonstrate:

1. Real-time response. Failures have a time criticality
attached to them. The time between the occurence
of a failure and damage (to a mission or a piece
of equipment) resulting from that failure is often
short, but not instantaneous. Thus, for many po-
tential failures there is a "sampling time" which, if
guaranteed, will permit the problem to be detected
prior to the negative results. These sampling times
can be predetermined, but they must be guaranteed
— this is a hard real-time, as opposed to a speed,
requirement.

2. Context sensitivity. The appropriate actions to be
taken upon encountering a failure must be sensitive

'Also affiliated with the UM Systems Research Center.
This work was funded in part by NSF IRI-8907890 and ONR
grant N00014-88-K-0560.

'This work was supported in part by contract DSAG60-
87-C-0066 from the US Army Strategic Defense Command.
The views, opinions, and/or findings contained in this report
are those of the authors and should not be construed as an
official Department of Defense poition, policy, or decision,
unless os designated by other official documentation.

to the overall "mission status" at the time the failure
occurs. For example, in an aircraft control system,
if a minor failure occurs the pilot should usually be
notified and required to authorize the system to take
an appropriate automated repair action. However,
if that same failure occurs during combat, the pilot
(who is too busy to notice) should not be disturbed,
and the repair action should be taken automatically
or delayed. Upon completion of the engagement, the
pilot should be notified about the actions taken or
a request for authorization can then be sought.

3. Planning or rule-based reasoning coupled with re-
action. When a situation requiring an emergency
response occurs, the system must project how re-
pair actions to be taken might effect (i) other re-
pairs or normal operations and (ii) the long range
goals of the mission. Thus, in a fuel critical mis-
sion a repair which might involve an extra engine
burn should not be taken without notifying the pi-
lot that this might cause an additional fuel shortage.
To allow this kind of behavior, the system must use
traditional AI models of expert system rule reason-
ing (for a shallow model) or temporal projection (if
a deep model of the reasoning is required). How-
ever, along with this long-term behavior, the system
must make short term (or "reactive") adjustments
that will preserve mission integrity. Thus, an action
which preserves flight stability must be taken with-
out first spending critical time in reasoning about
long term effects. After integrity is restored, the
long term consequences can be considered.

One way to achieve such behaviors is to implement
AI planning technology, particularly "reactive planning
systems" on a guaranteed scheduling, real-time operat-
ing system. In this manner we are able to take advantage
of the reliability provided by the OS, while using the AI
technology to guide the reactions taken by the system.
Our work in integrating AI and real-time computing fo-
cuses on the joining of two ongoing research efforts: an
AI system designed to provide reaction and a real-time
operating system developed for guaranteed scheduling
in mission critical computing environments. In the re-
mainder of this paper we briefly describe the two systems
being merged (section 2 and section 3). We also describe
some experiments already performed which have shown
the feasibility of implementing the system (section 4).

77

We conclude with a discussion of some of the critical re-
search areas (in both AI and real-time) mandated by the
sorts of applications described in this section.

2 Planning in dynamic domains
The classical approach to building AI planning systems1

has been relatively unsuccessful in application when at-
tempts have been made to extend AI systems to work in
complex domains. These systems have significant prob-
lems with inefficiency - generating complete and accu-
rate plans in even simple domains is an exponentially
hard problem [2], and in more complex domains, par-
ticularly those involving other agents interacting with
the planner, it is undecidable [19]. In addition, the ba-
sic control structure of typical planners, which assumes
that plans can be generated and then separately exe-
cuted, will often fail in such environments. Change in
the world occuring during the running of a plan may
render portions of it either temporarily or permanently
unachievable. Appropriately responding to such changes
in the environment requires a reactive component not
available to most current planners.

As a simple example, consider a robot attempting to
cross a street with a traffic flow. The robot cannot sim-
ply wait until a large enough gap occurs as (a) this may
simply never happen, leaving the robot standing on the
curb ad infinitum or (b) once the gap appears and the
robot starts, one of the oncoming cars might change
speed, direction, etc.

The difficulty in getting current planning systems to
handle these dynamic situations is caused by the reliance
of many of the current planning techniques on some very
strong underlying assumptions:

1. the planner has complete knowledge of the world
relevant to its task,

2. change in the world is brought about only by
the planner's executing primitive plan steps. This
change may be modelled discretely, and the planner
is completely aware of all effects of its actions.

3. the planner acts alone in the world; there are no
outside forces.

Unfortunately, real-world planning situations rarely con-
form to these assumptions. Typically occuring domains
may include continuous change over time, incomplete
specifiability at any point in time, and change due in
part to the actions of other agents. Thus, the traditional
planning paradigm has been shown to be inadequate in
practical situations and much current research focuses
on solutions. (A good set of papers on such work can be
found in the Proceedings of the DARPA Workshop on
Knowledge based Planning, Austin, Texas 1987.)

Our past research has focused on the development of
techniques for managing observation and action in dy-
namic domains, known as dynamic reaction (DR) [9] and
extending it to interact with a planning system via an
abstraction hierarchy which combines monitoring and
planning [10, 2l]. This model is designed for dynamic
worlds, where change is ongoing regardless of an agent's

1A review of these can be found in [ll].

actions - strictly goal-directed methods are inadequate.
Given observations of the world, the planning agent must
coordinate its actions in order to act in harmony with
ongoing events in the world.

In the DR model, an agent performs an activity until
either (i) its goals lead it to select some new action, or
(ii) some event in the world forces it to react. Since non-
determinism is inherent in dynamic worlds, a nontrivial
amount of computation is required to arrive at and keep
track of the current state of the world. The world is
observed as a matter of course in DR, and relevant ob-
servations drive the selection of actions. In this way, the
system does not explicitly track conditions for the safe
execution of its actions. Projected failures are signalled
through ongoing, independent observation provided by
asynchronously processed, entities known as monitors7.

The DR model has been used to handle the interac-
tions arising in the "Traffic World", a rapidly chang-
ing simulation domain in which objects move rapidly
through the simulation under external control. The "re-
acting agent" must cross this environment without being
impacted, but under the control of a higher level direc-
tional goal. A full description of this work can be found
in [9, 19].

In addition to the need for a reactive component, plan-
ning systems must be able to achieve long-term goals and
to preserve the integrity of previously achieved goals. To
handle reaction, the system must reason using a world
model which closely matches the external world (this is,
in fact, the same level as the model we have been using
in the DR system). To interact with a more traditional,
higher-level planner, however, the system needs to ab-
stract away from the actual motions of the vehicles etc.
If the planning system is too sensitive to the short term
changes occuring in the world it is unable to generate
long term plans due to the resulting combinatorial explo-
sion. Coupling of DR with a more traditional planning
model is accomplished via an abstraction-based planning
architecture.

To deal with this problem we have developed a sys-
tem which is capable of reasoning with multiple levels
of abstraction of the world (a full description and for-
malization of this model of abstraction can be found
in [lO]). Keeping these levels consistent with one an-
other, handling the interactions at each level in different
time scales (for example the reactor may need to react in
milliseconds, while the planner can take minutes), and
propagating the perceptual information to the appropri-
ate level are the critical problems which we have been
addressing to allow planners to integrate "high-" and
"low-level" knowledge.

Consider the following situation: a path planning sys-
tem is to prepare a route over some map. The system
designs a set of points to reach and deadlines to reach
them. Such a system need not know the actual loca-
tion of other objects in the world, it simply needs to
know roughly how difficult different regions are to tra-
verse. Once the plan starts executing, however, the sit-

The scheduling of these monitors can be performed in
real-time. This is the essence of the work described in Sec-
tion 4.

78

uation changes drastically. The reactive controller needs
to know what other objects are in the perceptual field,
what their heading and directions are, and when they
will interact with the current path. The high level plan-
ner generates plans like "GET-TO POINT-A DEAD-
LINE: +24min." The reactive controller controls moves
like "PROCEED-LEFT NOW!"

In fact, the path planner itself may have no work to
do during the actual running of the plan (this is a sim-
plifying assumption used in several domain-dependent
planning systems). However, if the world starts to get
complicated, this assumption won't hold. Once, due to
some reaction, the planner is to miss a deadline, it must
replan and decide what route to take. During this re-
planning, however, it may not remain still - the objects
which are causing it to miss the deadline may still be
around!

The solution to handling such problems, lies in design-
ing a system which can be reasoning "simultaneously"
about different levels of the problem. In the DR model a
preprocessed version of low-level perceptual data is sup-
plied directly to the monitors which process it (actually
hierarchically) to check a particular condition (the di-
rection of a particular car, the speed of some object,
whether any new object has appeared, etc.) When a
monitor discovers that some condition holds, it updates
a global "state-of-the-world" model (used for providing
accurate information if needed by the high level planner)
with a symbolic abstraction of what it has seen (for ex-
ample "Speed CAR1 40-60units"). This information is
also reported to higher-level monitors, which are used to
control the actions of the system.

The planning component of our system is invoked via
higher level (more abstract) reactive agents (higher-level
monitors) which compute violations of required condi-
tions. Thus, as the lower level reactors change the di-
rection of movement, this is reported to a higher level
entity which is checking that a deadline can or cannot
be reached. It too updates the state-of-the-world model,
but with higher level information - the information is
kept at a level of abstraction useful to the path planner
(for example, what previous deadlines have been met,
the current location of the object, and the projected time
to reaching the destination). The planner is then able
to take over, when time permits and do the appropriate
replanning. Just as was the original plan, this new plan
is "compiled" down to new monitoring tasks, and the
system continues.

To make this system work, a scheduler must be used
to allow the planning and reacting agents to work to-
gether as time permits. Low-level monitoring must oc-
cur frequently, but for short periods of time. How much
processing is required depends on the number of objects
which the reactor must take into account. The higher
level monitors and the planner itself require more pro-
cessing time, but over longer intervals. Thus, as the time
taken by pure reaction is reduced, the higher levels get
more time. In a "safe" environment, this allows the plan-
ner to take almost complete control. Thus, in a highly
reactive situation (crossing the street) the system is pri-
marily reactive. In a relatively static world, the system

FREQUENCY OF
SCHEDULING

Figure 1: Abstraction and Scheduling

becomes more like a traditional strategic planner. (See
figure 1).

This work was originally implemented to run in a sim-
ulated environment which was an extension to the Traf-
fic World modeling the path planning system described
above [7, 8]. A more ambitious project, currently under-
way, simulates the environment for a household robot
in a world consisting of a large number of objects, sev-
eral agents, and a physical simulation consisting of over
seventy thousand discrete locations. The success of pre-
liminary experiments in this domain is described in [21].
A drawback of this system, however, is that it uses a
simplistic scheduling algorithm which cannot guarantee
the scheduling of requests or provide the sorts of support
afforded by realistic operating systems.

To overcome this, we have begun work which focuses
on the interspersed scheduling of reactive and planning
tasks using the MARUTI real-time operating system. In
the next section we summarize the work done in the
development of the MARUTI system. This is followed by
a description of some experiments performed to examine
the use of the MARUTI system for implementing the
DR-based planning model.

3 The MARUTI Operating System

The MARUTI operating system is designed to support
hard real-time applications on a variety of distributed
systems while providing fault tolerant operation[l4, 5,
15]. Its object oriented design provides a communication
mechanism that allows transparent use of the resources
of a distributed system. Fault tolerance is provided
through a consistent set of mechanisms which support
a number of policies. Most importantly, MARUTI sup-
ports guaranteed-service scheduling, in which jobs that

79

are accepted by the system are guaranteed to meet the
time constraints of the computation requests under the
requested degree of fault tolerance. As a consequence,
MARUTI applications can be executed in a predictable
and deterministic fashion.

The development of hard real-time applications re-
quires that the analyst estimate the resource require-
ments for all parts of the computation and then make
sure that the resources are available in a timely man-
ner to meet the timing constraints. It tends to be a
cumbersome process. As a part of MARUTI system a
set of tools have been developed which support the hard
real-time applications during various phases of their life
cycle.

MARUTI is an object-oriented system whose unit en-
tity is an object. While the concepts of objects and en-
capsulation has been used in many systems, incorporat-
ing these concepts in a hard real-time system required
numerous extensions. Objects in MARUTI consist of
two main parts: a control part (or joint), and a set of
service access points (SAPs), which are entry points for
the services offered by an object. A joint is an auxiliary
data structure associated with every object. Each joint
maintains information about the object (e.g., computa-
tion time, protection and security information) and its
requirements (service and resource requirements). Tim-
ing information, also maintained in the joint, is dynamic
and includes all the temporal relations among objects.
Such information is kept in a calendar, a data structure,
ordered by time, which contains the name of the services
that will be executed and the timing information for each
execution.

An application is depicted by a collection of services
gathered in a computation graph — a directed graph in
which the vertices represent services, and the arcs rep-
resent the precedence (or other relationships) between
vertices, e.g., children are services requested by parents.
A job is defined in terms of a computation graph. It
is submitted to the system by naming the root of the
computation graph. A job may have timing and fault
tolerance requirements associated with it. In MARUTI
a computation graph is associated with each job.

Objects communicate with one another via semantic
links. These links are called semantic because they also
perform some type and range checking in the values they
carry. This concept permits implementation of other se-
mantic checks as a part of the implementation of the
semantic link. Objects that reside in different sites need
agents as their representative on a remote site. An agent
is responsible for the remote transmission of messages
and also for the external data translation of these mes-
sages.

There are two types of jobs in MARUTI , namely real-
time and non-real-time. A real-time job is assumed to
have a hard deadline and an earliest start time. For
non-real-time jobs, no time constraints are specified and,
therefore, jobs are executed on the basis of time and re-
source availability. MARUTI does not consider priori-
ties for real-time jobs and all accepted jobs are treated
equally[23]. (Priorities can be easily incorporated, for
example, by implementing a scheme for the revocation

of jobs or a multi-priority queue.)
MARUTI views the distributed resources as organized

in various name domains. A name domain contains a
mutually exclusive set of resources. This concept is used
in the implementation of fault tolerance using replica-
tion. In addition, this division of resources is useful for
the distribution, load balancing, fault independence, and
feasibility analysis of fault tolerant schemes.

MARUTI is organized in three distinct levels, namely
the kernel, the supervisor, and the application levels.
The kernel is a collection of core-resident server ob-
jects. The kernel is the minimum set of servers needed
at execution time and is comprised of resource manip-
ulators. The main task of the supervisor level objects
is to prepare the jobs for execution by making reserva-
tions through the resource manipulators. The functions
of the kernel are: dispatching, loading, time and commu-
nication. The services provided at the supervisor level
include: allocation, schedule verification, binding, login
service, and name service.

The object principle and the use of the joints allow
each access to an object to be direct, and the binding phi-
losophy of the operating system supports it uniformly.
Access to an executing object is an invocation of a par-
ticular service ofthat object. The joint allows many jobs
to invoke a particular service concurrently, while provid-
ing full access and timing control.

The resources needed for the execution of the applica-
tions are reserved through the resource manipulators at
the supervisor level, prior to the the start-time of the ap-
plication. The communication channels, CPU, memory,
disks, and all other necessary resources are made avail-
able so that contention is ruled out, and timing guaran-
tees can be issued by the system.

The use of joints, and specifically of calendars, allows
verification of schedulability, reservation of guaranteed
services, and synchronization. Projection mechanisms
support propagation of time constraints between differ-
ent localities. These projections, maintain the required
event ordering and assure the satisfaction of the timing
constraints. Furthermore, these data structures facili-
tate the management of mutual exclusion and protection
mechanisms.

Communication among objects is achieved in a dis-
tributed fashion. Related objects at remote sites are
linked through local agents. Each local agent is respon-
sible for communication between its locality and its cor-
responding remote service, as well as for representing
the remote site in the communication for schedulability
verification and reservation ([l, 12, 13]).

Through the use of semantic links exceptions and va-
lidity tests are reduced after a link is established. The
links are created by the binding and loading processes,
and the protection mechanisms are activated and autho-
rizations established prior to run-time. This allows di-
rect access afterwards. Semantic links to remote objects
are established through their respective agents.

Jobs in MARUTI are invocations of services in exe-
cutable objects. The requirement of a reactive system3

3 Reactive systems are those that accept new jobs while
executing already-accepted guaranteed jobs[6]

80

justifies supporting real-time and non-real-time execu-
tion disciplines. We note that the non-real-time jobs are
assumed to be preemptable so that their processing re-
quirements can be satisfied in the time slots which are
available between the executions of real-time jobs.

Fault tolerance is an integral part of the design of
MARUTI. The joint of each object may implement fault
detection, monitoring, local recovery and reporting[l7].
Initially, each joint contains a consistency control mech-
anism to manage alternatives (redundant objects with
state information) or replicas (redundant stateless ob-
jects). The resource allocation algorithm supports a
user-defined level of fault tolerance, where redundancy
can be established temporally (execute again) or physi-
cally (parallel execution of alternatives).

Space redundancy supports node and link failures us-
ing roll-forward recovery techniques. Critical services
may be provided by forum and quorum protocols. Prim-
itives are provided to the user to specify the desired level
of fault tolerance by replication or retries, alternate ser-
vices or different modules, voting mechanisms or ma-
jority queries, backward and forward recoveries. This
flexibility improves the design of resilient systems.

A capability based approach is used for protection and
security [16]. This system is completely predefined prior
to execution of the jobs. The necessary information for
the capabilities are stored in the joint, and the capability
itself is furnished by the user.

Jobs in MARUTI are viewed by the system as compu-
tation graphs. Tools are provided to assist in the design
and verification of application code. To use the primi-
tives and tools developed, a set of language extensions
is required. For that reason, a precompiler is used to
convert a MARUTI program into standard programming
language constructs. The precompiler also automatically
generates the joints. While MARUTI supports many dif-
ferent fault tolerance mechanisms, applications can be
written without knowledge of the policy used.

The MARUTI project is an attempt to examine new
ways of building verifiable systems which provide a com-
prehensive set of services in support of the requirements
of mission critical systems including hard real-time, dis-
tributed operation, and fault tolerance. We started out
with a new design and one of the goals of the project was
to investigate new and different ways of implementing
this system. Our approach has been to start by design-
ing the system in a general way so that new concepts
introduced can be evaluated systematically. The design
incorporates primitive mechanisms but leaves policies to
the application builders. One of the results of this work
has been the first comprehensive formulation of the the-
ory of Time-driven systems (as opposed to the interrupt
driven design of traditional real-time systems). We be-
lieve that time driven design is simpler and more easily
verifiable while directly supporting real-time operation.
Our experience so far has shown that the complexity
of the applications is substantially reduced by this ap-
proach.

MARUTI has been designed as a platform for the
study of real-time systems. Its characteristics facilitate
the development and testing of many different classes of

applications. We organized this project to allow us the
greatest flexibility in using MARUTI as a research tool.
Our first implementation is a prototype on top of Unix ,
running in a distributed environment. This has allowed
us to port MARUTI to a number of platforms and up-
grade to faster and better machines as they become avail-
able. The current prototype has been designed mainly
for functional verification and ease of modification[l8j.

4 Real-time AI

For the planning system described in Section 2 to be
applicable to complex problems a large amount of run-
time support for real-time computing is necessary. The
monitors, viewed as concurrently occuring entities, must
be implemented in one of two ways: either a massively
parallel MIMD architecture must be provided, a pro-
hibitively expensive option for the simple computations
made by the monitors, or a real-time scheduling sys-
tem must be used to allow the monitors to access shared
computational resources (serial or parallel, single or dis-
tributed). In the past year, we have been perform-
ing experiments focusing on the use of the facilities of
MARUTI to support the scheduling needs of the plan-
ning system.

The first experiment tried in the integration of
MARUTI and the planning system was the development
of a simple real-time control demo aimed at exploring
the feasibility of implementing the monitoring capabil-
ities (crucial to the planning system) using MARUTI
objects. A simple "line tracker" was developed, using
the monitors of the AI approach. This example was
then implemented using MARUTI code and run on the
MARUTI operating system. This task had two goals:
first, we wished to find out how difficult it would be to
write monitoring code (formerly developed in Lisp) in
the augmented C provided by MARUTI, an 1 secondly
we wished to make sure that the MARUTI scheduler
could handle the requirements of the monitoring tasks.

The goal of the tracker was to follow the position of
a rapidly moving line. The position of the line was rep-
resented by its X coordinate and it changed with time
which was represented as the Y coordinate. Therefore,
at time 50 if the position of the line was 12, and the
tracker was at 10 it should increase its value for the next
iteration. On the other hand, if its value was 15 then it
should decrease the value.

The system was implemented using three monitors:
Left-monitor, Right-monitor, and Tracker. Tracker
would broadcast the current X position to the other mon-
itors which would compare that X to the observed line
value (globally available). If the line was to the Left of
the current value. Left-monitor would require tracker to
decrement the X value. If the line was to the right of the
current value, right-monitor would require an increment.

We were pleasantly surprised by the results of this ef-
fort. The code was easily developed using the objects and
services provided by MARUTI. Further, the line tracker
worked as predicted, with no augmentations needed to
the current MARUTI system. The tracker, using asyn-
chronous scheduling of the three monitors and a separate
process for moving the line (thus making the tracking

81

1 1 f

o

1°
fiaR

• TRACKER POSITION

O TARGET POSITION

Tracker Position

Figure 2: The line tracker: results

task less deterministic) converged on correct X values
and kept the tracker within a small bounded interval of
the rapidly moving line. Figure 2 shows part of the out-
put of a standard run. The Y dimension represents time,
the filled circles represent the position of the tracker at a
given point in time, while the empty cirles represent the
position of the line. As can be seen, the line is moving
rapidly with respect to the speed of the tracker. Still,
the tracker is able to stay close to the line and make
appropriate adjustments as necessary.

To examine the capabilities of using MARUTI to in-
tegrate monitoring with some (simple) rule-based plan-
ning (using the abstraction technique described in Sec-
tion 2), we have implemented a demonstration of the
use of the MARUTI -based planning system as a more
complex controller. We have developed a simple "pur-
suer/evader" scenario, in which a "plane," controlled in
two dimensions by the planning system, must capture an
"evader" which is separately controlled by a user. In ad-
dition, a set of simple "rules of engagement" are used by
the system to determine behavior. (A schematic view
of the system, along with the rules of engagement are
shown in figure 3).

In the implemented scenario, the pursuer must decide
how to update its course and speed based on a combi-
nation of the actions taken by the evader (which are de-
tected via monitoring information extracted from a sim-
ulated sensing capability) and a user controlled "mode"
over which the pursuer has no control. The system
reaches a decision as to whether to "track" the evader
(converging on a position near the evader and then set-
ting course and speed to be equivalent to the evader's)
or whether to "attack" (setting course and speed so as
to converge on the actual location of the evader). The
system must, of course, be able to switch modes quickly

Modes:

Attack: speed * max; course * Intersect.

Track:

II dlsl(p,e) < Y units

then speed=speed(e)

course s course(e)

else speed = max

course s loc(e) - Y/2.

Rules of engagement:

mode ■ track.

It condltjon(red) & dlsl(e.base) < X units

mode > attack

else-lf conditfon(yellow) & dlstfobase) < X/2 units &

approachlng(e,base)

mode > attack

else-lf condition (green) & dlst(e,base) < X/8 units &

approaenlngte.base)

mode c attack

Figure 3: Pursuer/Evader

if the externally generated condition changes (say from
"red' to "yellow") or if the evader changes direction. In
experiments, the system has reliably been able to pursue
the appropriate course of action and to make appropriate
decisions.

This demo, although still relatively simple, requires
the primary capabilities for mission critical planning (de-
scribed in Section 1):

1. Real-time response. The pursuer must monitor the
evader and the world condition both rapidly and
often enough to guarantee a response before it can
be outmaneuvered.

2. Context sensitivity. The appropriate actions to be
taken by the pursuer are contingent not only upon
the monitored actions of the evader, but also based
on the current mode (attack or track) and the ex-
ternally dictated condition.

3. Planning or rule-based reasoning coupled with reac-
tion. The pursuit control planner, although sim-
ple, makes decisions as to how to set the speed and
direction of the pursuer based on the rules of en-
gagement coupled with the mode. The system must
both react to the evader and make appropriate at-
tack/track decisions and the corresponding course
adjustments.

82

We are currently focusing on extending these capabili-
ties, automating the provision of scheduling information
to the real-time operating system, generating more flex-
ible real-time scheduling (to meet the sometimes chang-
ing demands of the AI system), and demonstrating all of
this in a more realistic demonstration of mission critical
planning.

5 Current Research Directions

The use of the MARUTI-based AI planning system to
perform mission critical emergency response in a more
realistic domain requires new capabilities for both the
AI and real-time components of the system.

5.1 AI Requirements

The scheduling requirements of the monitoring and plan-
ning components of the AI system are currently gener-
ated by hand. Thus, although a description of the nec-
essary monitors and their interactions with the planners
are developed in the original planning, their scheduling
needs are currently computed separately and then added
to the code in an appropriate manner. It is clear that for
such a system to scale up to considerably larger tasks,
the scheduling requirements must also be generated by
the overall planning system.

We are currently working on an approach to this prob-
lem based on a formula for maximum reaction delay
developed by Georgeff and Ingrand [4]. This formula,
AJ? = p/l — nt is used to represent the maximum
amount of time that a system can take in reasoning
about changes in the world without being forced to ig-
nore events. We are currently exploring the use of this
formula in another way, to determine the critical inter-
vals at which the world needs to be sampled given n
events. Thus, a monitor which takes Xm time to exe-
cute its primary condition checking must be scheduled
at intervals of AR with a time of Xm. The Xm's can be
precomputed for each class of monitor, while the values
of AR are computed based on the expected number of
certain types of events in the environment, which can
be computed at planning time (with a known probabil-
ity). Thus, these numbers serve as a reasonable heuris-
tic for generating the scheduling deadlines needed by the
MARUTI system (i.e. the time and frequency require-
ments of each of the objects).

This roproach to computing the scheduling dead-
lines also dovetails neatly with the abstraction-based
approach described in section 2. In such systems, the
change in the world at higher levels of abstraction (such
as a projected missing of some deadline in the path plan-
ning system), can be expected to happen significantly
less frequently than actions at the lowest level (such
as the change in the position of moving objects in the
world). Thus, the scheduling deadlines generated by this
approach will be less frequent for the higher level objects
(which also take longer; Note the correspondence with
Figure 1).

In addition to this applied work, we are currently
working on extensions to a formalization of the abstrac-
tion work which focuses on the recognition of informa-
tion which significantly violates expectations projected

at run-time. We have currently formalized the moni-
toring tasks in a temporal logic which allows the prop-
agation of information between levels using a notion of
abstract logics. We are now working towards extending
this approach to handle non-monotonic abstract logics
and a localized control of inconsistencies arising during
monitoring [22].

5.2 Real-Time Requirements

To support the sort of complex reasoning required by the
mission critical AI planning demonstration described in
this paper, the MARUTI system needs to be extended
to handle more flexible scheduling. While a dynamic
scheduler that could guarantee all requests would be met
would be ideal, such a system cannot be built. Instead,
either a guaranteed request scheduler or a. more dynamic
scheduler can currently be implemented. As the guaran-
teed scheduling is crucial to mission critical computing,
we are currently exploring ways to provide more flexibil-
ity without compromising this important feature of the
system.

One approach we are exploring is the use of non-real-
time jobs (those scheduled by MARUTI as time permits)
to augment the capabilities of the system. Thus, tasks
which are determined to be useful, but not essential, can
be scheduled as non-real-time jobs. These tasks include
both AI related events (such as minor variations on the
plan introduced for optimization) as well as information
gathering and record keeping tasks executed by the real-
time system to provide feedback for the future scheduling
of similar tasks, or to provide a higher level of fault tol-
erance. (This work is somewhat similar to that of Durfee
[3] which has examined the use of a distributed real-time
system to support AI applications. Durfee has examined
the use of "dummy" events, which are scheduled by the
real-time system but which only execute if time allows.)

A more ambitious approach is the use of a context-
switching like approach, which allows a set of schedules
to be predetermined and then switched in response to
information gained at run-time. In MARUTI this facility
is provided as scenario facility in which jobs run in a set
of predefined scenarios. Such a capability would allow
for the AI system to recognize specific situations and
literally change the mode of execution to react to them.
This approach dovetails neatly with the use of cached
plans, a technique currently used in the AI community
to improve the efficiency of reaction in planning svstems
(cf. [20]).

In addition to extensions to MARUTI to support the
AI work, the operating system is being improved in nu-
merous other ways. These include:

1. Support of transparent heterogeneous computing,

2. Support of multiprocessors at a computing node,

3. Native kernel development,

4. Extended program development support environ-
ment.

6 Conclusions

In this paper we have discussed preliminary work in
the implementation of an AI planning/reaction system

83

which can run on the MARUTI hard real-time operat-
ing system. In addition to reviewing both the AI and
real-time technologies, we have performed several sim-
ple demonstrations showing the feasibility of using these
techniques for mission-critical planning systems - those
which must guarantee real-time response in reacting to
complex situations. We also describe some of the chal-
lenges which such guaranteed-response AI systems pose
for both the AI and the real-time computing communi-
ties. Current efforts focus both on a continuing effort to
implement the extensions to both parts of this system,
and on the development of more complex scenarios for
testing these ideas.

References

[1] Agrawala A. K. and Levi S.-T., "Objects Archi-
tecture for Real-Time, Distributed, Fault Tolerant
Operating Systems," IEEE Workshop on Real-Time
Operating Systems, Cambridge, MA, July 1987.

[2] Chapman, D. (1985) "Nonlinear Planning: a Rig-
orous Reconstruction", In Proc. of IJCAI-85. pp.
1022-1024.

[3] Durfee, E. "Towards Intelligent Real-time Control
Systems," In Hendler, J. (ed.) Working Notes of
the AAAI Spring Symposium on Planning in un-
certain, unpredictable, or changing environments.
Technical Report, Systems Research Center, Uni-
versity of Maryland (forthcoming, 4/90).

[4] Ingrand, F. (i) Personal Communication, 5/89 (ii)
Unpublished manuscript, 1/90.

[5] Gudmundsson Ö, Mosse D., Ko Keng-Tai, Agrawala
A. K. and Tripathi S.K.
"MARUTI an Environment for Hard Real-Time
Applications" CS-TR-2328, Department of Com-
puter Science, University of Maryland, College
Park, Maryland, Nov 1989. To appear in Proceed-
ings of the first workshop on Mission Critical Sys-
tems. ACM Press

[6] Harel D. and Pnueli A., "On The Development of
Reactive Systems," Weitzman Institute of Science,
Rehovot. Israel, 1985.

[7] Hendler, J.A."Real Time Planning", Proceedings
AAAI Spring Symposium on Planning and Search,
Stanford, CA. Mar. 1989.

[8] Hendler, J. "Abstraction and Reaction", Proc.
AAAI Workshop on Perception, Planning, and
Knowledge, Detroit, MI, Aug. 1989

[9] Hendler, J. and Sanborn, J. 'Planning and Reaction
in Dynamic Domains" Proceedings DARPA Work-
shop on Planning, Austin, Tx., Dec. 1987.

[10] Hendler, J. and Subramanian, V.S. "A formal model
of abstraction for planning," Submitted to AI Jour-
nal, 4/90.

[11] Hendler, J., Täte, A., and Drummond, M. AI Plan-
ning: Systems and Techniques, AI Magazine Sum-
mer, 1990 (to appear).

[12] Levi S.-T. and Agrawala A. K., "Objects Archi-
tecture: A Comprehensive Design Approach for
Real-Time, Distributed, Fault-Tolerant, Reactive
Operating Systems," CS-TR-1915, Technical Re-
port, Department of Computer Science, University
of Maryland, College Park, Maryland, Sept., 1987.

[13] Levi S.-T. and Agrawala A. K., "Temporal Rela-
tions and Structures in Real-Time Operating Sys-
tems," CS-TR-1954, Technical Report, Department
of Computer Science, University of Maryland, Col-
lege Park, Maryland, Dec, 1987.

[14] Levi S.-T., Tripathi S.K., Carson, S.D., Agrawala,
A.K. "The MARUTI Hard Real-Time Operating
System" ACM Operating System Review, June
1989 Vol 23 No 3

[15] Levi S.-T., and Agrawala A. K. "Real-Time System
Design" McGraw Hill Publishing Co, New York,
1990.

[16] Levy H, "Capability Based Computer Systems"
Digital Press, 1984.

[17] Mosse D. and Agrawala A. K, "On Fault Tolerance
in Real Time Environments" University of Mary-
land, March 1990 (under preparation).

[18] Mosse D., Gudmundsson 0. and Agrawala A. K,
"Prototyping Real Time Operating Systems: a Case
Study," University of Maryland, March 1990 (under
preparation).

[19] Sanborn, J. and Hendler, J. (1988) " Monitoring
and Reacting: Planning in Dynamic Domains", In-
ternational Journal of AI and Engineering, Volume
3(2), April, 1988. p. 95

[20] Schoppers, M. "In defense of reaction plans as
caches", AI Magazine, 10(4), 1989.

[21] Spector, L. and Hendler, J. (1990) "An Abstraction-
Partitioned Model for Reactive Planning" Submit-
ted to the Rocky Mountain Conference on Pragmat-
ics in AI.

[22] Subramanian, V.S. and Hendler, J.A. "An
abstraction-based approach to automated reason-
ing" (Manuscript in preparation).

[23] Yuan X and Agrawala A. K, "A Decompostion
Approach to Nonpremptive Real-Time Scheduling"
CS-TR-2345 Department of Computer Science, Uni-
versity of Maryland, College Park, Maryland, Nov
1989.

84

Responding to Environmental Change4

Adele E. Howe, Paul R. Cohen

Experimental Knowledge Systems Laboratory

Dept. of Computer Science

University of Massachusetts

Amherst, MA 01003

Abstract

Responding to environmental change is perhaps
the most difficult aspect of designing agents to
plan and act in complex dynamic environments.
In this paper, we analyze the environmental re-
sponse requirements of such an environment, pro-
vided by the Phoenix forest fire fighting simula-
tor, and describe three mechanisms that together
address the demands of that environment. The
limitations on response imposed by the environ-
ment are described in terms of "windows of re-
sponse opportunity". This framework matches the
demands of the different types of environmental
change occuring in the environment to the abili-
ties and limitations of the mechanisms intended to
address change. As applied in the Phoenix envi-
ronment, it motivates the design of three differ-
ent mechanisms that address three different types
of change. The three mechanisms, reflexes, lazy
skeletal expansion, and responsive adaptation, are
described in detail, and their interaction with the
environment is illustrated in an example.

1 Introduction

Environmental conditions change. In the most advantageous
cases, the change is caused by the efforts of agents working to
control aspects of the environment. In the least, the changes
are caused by environmental forces, which may or may not be
predictable. Whether the environmental change is detrimen-
tal to an agent depends upon whether the agent's actions,
both thinking and effecting, are responsive to those changes.

Responsiveness requires timely appropriate action in re-
sponse to environmental change. When a truck is driving
toward you in your lane, timely is immediate and appropri-
ate is a simple evasive action. When a hurricane is due to

"This research was supported by DARPA-AFOSR con-
tract F49620-89-C-00113 and the Office of Naval Research,
under a University Research Initiative grant, ONR N00014-
86-K-0764. We wish to thank members of the Phoenix
group, especially Michael Greenberg, David Hart, David
Westbrook, Paul Silvey, Scott Anderson, and Evan Smith,
for their contributions to the design and implementation of
the Phoenix system. We also wish to thank Carol Broverman
and Ross Beveridge for their comments on several drafts of
the paper.

arrive tomorrow, timely is within the next day and appropri-
ate is a complex combination of actions intended to protect
home and family. Different types of environmental changes
require different types of responses. An agent must take ac-
tions appropriate to and within the time frame of the types
of events in its environment. In this paper, we describe how
agents in the Phoenix system are responsive to changes in
their environment.

2 Responding to Change in Phoenix

Agents in Phoenix work to contain simulated forest fires in
Yellowstone National Park[4]. Fires are contained by re-
moving fuel from their paths, causing them to burn out.
This process, called building nreline, requires the coordina-
tion of several field agents to surround the fire with fireline.
One agent, the fireboss, coordinates the activities of semi-
autonomous field agents, bulldozers, to build fireline at many
points around the fire. Fire spread is influenced by many
environmental factors: wind speed, wind direction, terrain
cover, elevation gradient, and moisture content. The fire's
overall shape and spread is determined by these factors, but
so many minute factors are involved in the precise spread of
the fire that it is not possible to predict the exact time at
which a particular point on the map will catch fire.

2.1 Response requirements for the Phoenix

environment

The primary constraint on responsiveness is time. For any
environmental change, there is a "window of response oppor-
tunity", the time during which the agent can respond. In the
example of the truck in the wrong lane, the window is very
narrow and once the window has passed, it is simply too late
to act.

The window starts when an environmental change is per-
ceived (T-uti). It ends when the effects of that change occur
(Twe). These two points define the window, the time delay
between perception of a change, real or impending, and its
effect (shown in Figure 1). For certain classes of environmen-
tal change, the delay will be short (e.g., the truck); for some,
it will be longer (e.g., the hurricane). However, environmen-
tal forces are not the only influence on window size. Actions
often require some start up time or overhead between their
initiation and their effects; for example, the time delay be-
tween deciding to put on the car brakes and the car's stop
is significant enough to require a safe following distance. So,

action
overhead

time to
decide

wb

change is
perceived

■wd we

change effects
are manifest

Figure 1: Environmental Change Window of Response

response overhead (Tw) can narrow the window. The win-
dow that remains is the amount of time left to decide how
to act.

The Phoenix environment includes two qualitatively dif-
ferent kinds of environmental change distinguished by their
response windows. Narrow response windows are common
when environmental change is unpredictable. For example,
when agents work close to the fire, rapid response is neces-
sary if the fire suddenly threatens to engulf them. Wider
response windows are common when environmental change
is gradual. For example, it takes simulated hours or days to
surround even small fires which allows at least hours to make
strategic decisions about containment.

Because agents must respond to both types of change, they
need mechanisms to address both. A narrow window sug-
gests rapid decision making (to minimize the decision time)
and simple action (to minimize the response overhead). If
the window is too narrow, it precludes deliberation and com-
plex responses, but encourages reactivity. A wide window
affords time to deliberate over the best response. Reactive
and deliberative approaches have different fundamental limi-
tations: reactive approaches guarantee response within fixed
time bounds and so cannot use additional time even if it is
available; deliberative approaches cannot guarantee response
within short fixed time, but can exploit additional decision
time. The fundamental differences in time usage for the
two approaches conflict, which precludes incorporating them
both in the same mechanism. Thus, Phoenix agents need
two separate mechanisms: a reactive mechanism, which we
call reflexes and a deliberative mechanism, which we call lazy
skeletal expansion.

Together, reflexes and lazy skeletal expansion form a two-
layer response system. As in Brooks' subsumption architec-
ture [3], each layer provides a particular level of competence.
Reflexes address change that occurs faster than lazy skeletal
expansion can respond to it; lazy skeletal expansion coordi-
nates actions and avoids detrimental plan interactions.

As discussed, the response window is defined by the time
delay between when a change is perceived and when its ef-
fects are felt. The response window assumes that the agent
notices the change at the moment that the window opens
and immediately starts formulating a response. However,
because agents may have already committed to other actions
(e.g., attending to different fires), additional time may pass

Tcb Twb

a: Commitment is flexible within
demands of response window

cb wb wd ce
b: No response flexibility due to

commitment

Figure 2: Environmental Change Window Compared to Re-
sponse Flexibility

between when the environmental response window opens
and the agent notices it. Lazy skeletal expansion attempts
to minimize the additional time by deferring commitment,
as much as possible, to a precise course of action. When
necessary commitments have a duration less than the re-
sponse window, environmental change can be addressed by
lazy skeletal expansion. Figure 2, part a, displays this re-
lationship, with Tcb indicating the commitment beginning
and Tce indicating commitment end; note that the commit-
ment ends before the response window does. When the win-
dow has shorter duration than the commitment, then the
planner may commit to a course of action that may be ren-
dered impossible by the environment (as shown in Figure 2,
part b), thus, resulting in plan failure. Because it isn't al-
ways possible to defer commitment, another mechanism is
required to adapt the commitment structure (i.e., plans)
in response to the detrimental environmental change. We
call this mechanism responsive adaptation because it adapts
plans in progress in response to detrimental environmental
change.

All agents, fireboss and field agents, share a common agent
architecture that includes these response mechanisms. That
architecture consists of four basic components: sensors, ef-
fectors, reflexes and a cognitive component. Sensors perceive
the state of the environment. Effectors take physical action
for the agent in the environment. Reflexes change the set-
tings of effectors to respond within a narrow window. The
cognitive component is responsible for tasks related to delib-
erative response, action coordination and resource manage-
ment. The cognitive component includes both lazy skeletal
expansion and responsive adaptation. In response to envi-
ronmental conditions, it selects plans from the plan library
and adds them to a partially ordered agenda structure, called
the timeline, for later execution (this process is part of lazy
skeletal expansion and wDl be explained in more detail in Sec-
tion 2.3). The information and control relationships among

86

trigger dataflow

reflexive
component

"program program

 program

program program

cognitive component

state
memory plan library

timeline cognitive
scheduler

communication

other agents

Figure 3: Phoenix Agent Architecture

these components are displayed in Figure 3.
The three mechanisms: reflexes, lazy skeletal expansion

and responsive adaptation, account for the range of response
that are demanded by the Phoenix environment. Reflexes
change what the agent is currently doing. Lazy skeletal ex-
pansion changes what the agent is planning to do. Respon-
sive adaptation changes how the agent was planning to do
something. The remainder of this section will describe, in
detail, the three mechanisms that together ensure respon-
siveness in Phoenix.

2.2 Reflexes

Reflexes provide time-bounded responses to critical situa-
tions. They compensate for the time delay between when
a situation occurs and when the cognitive component can
notice and deal with it. As such, they constitute an archi-
tectural component specialized for rapid, simple response.

Reflexes are associations between sensors and effectors me-
diated by two simple functions, one for triggering reflex ex-
ecution based on sensor readings (the trigger function) and
one for changing effector settings based on those sensor read-
ings (the response function). Trigger functions are simple
functions of the sensor readings, such as whether the value
exceeds a threshold or equals some value. Response func-
tions make simple changes to effectors, turning them off or
on or making minor parameter adjustments. These functions
rely only on currently available sensor readings; reflexes re-
tain no persistent state information other than the values
of the operating parameters. These parameters define reflex
sensitivity and are set by the cognitive component.

Reflexes are activated in tandem with the sensors and ef-
fectors. After a sensor executes, trigger functions, which link
the sensor to particular reflexes, are executed to determine
whether the associated reflexes should be activated. The
trigger function may rely on values from more than one sen-
sor; in which case, it simply checks the most recent readings
for the critical sensors. When activated, the reflex executes
the response function to change effector settings. For exam-
ple, when the sense-road-heading sensor has a value different
than the sense-agent-heading sensor, the follow-road reflex
changes the heading parameter of the movement effector to

maintain the road heading.
The time required for response by the reflexes is bounded

by the activation rate of the sensors. Reflexes are executed
immediately after the sensors and require little time to exe-
cute. Thus, the agent can respond as quickly as its sensors
can notice the environmental change, which reduces the re-
sponse time from the cycle time of five simulation minutes re-
quired by the cognitive component, to seconds of simulation
time. This approach can be contrasted with that adopted
in PRS[7]. PRS includes all responses (called KAs) in the
same framework and relies on the most crucial of them be-
ing quickly selected and executed. That is, it relies on fast
KAs for reacting to crucial situations. This produces a guar-
anteed "reactivity delay" of s + t where s is the maximum
time to determine the KAs applicability and i is the cycle
time (as dictated by the maximum time required to execute
a primitive action).

Reflexes respond to environmental changes that have nar-
row response windows. Consequently, imminent disasters
are prevented, but sometimes, at a cost of temporarily stop-
ping progress in a plan. As a result, when reflexes change
the settings of an effector, superseding those of the cognitive
component, the reflexive component sends a message to the
cognitive component warning it of the change. This interac-
tion is described in further detail in Section 2.4.

2.3 Lazy Skeletal Expansion

Lazy skeletal expansion responds to environmental change
characterized by wide response windows. Deferring commit-
ment to a precise course of action maximizes the opportunity
for change to influence decisions. Skeletal plans provide a
structure in which to base action decisions, which expedites
action coordination and minimizes interactions.

Deferred commitment is accomplished by interleaving
three basic activities: find, expand, and execute. Find plan
actions are placed on the timeline as part of plans (to defer
commitment to a particular plan or action) or in response
to exceptional conditions (as noted by messages from the re-
flexive component or from other agents). These actions use
their context within the timeline to search the plan library
for skeletal plans appropriate for the context and the cur-

rent state of the world. For example, if the find plan action
is to get an agent to the fire, the context includes informa-
tion about the type of fire fighting plan it is part of, the
techniques being used to fight the fire, and the coordination
needed with other agents, in addition to the location of the
fire. Expand plan actions instantiate the plan's network of
actions on the timeline. Execute actions calculate variable
values, manage resources, and control the agent's interac-
tions with the world. As the timeline actions are executed,
plans and actions become incrementally added, sensors and
effectors are activated, and the agent pursues the plan. Ac-
tions become eligible for execution only when the siblings
that precede them have already executed; even then, exe-
cution may be deferred until information about the state of
the world is available. Because plans are combinations of
primitive actions and plan expansion actions, this leads to
interleaving of action and planning.

Skeletal plans have four parts: applicability conditions, re-
source requirements, execution methods, and an action net-
work. Applicability conditions describe the conditions un-
der which the action is appropriate. Resource requirements
describe the expected time, information (as represented by
variables), and physical resource needs of the action. Exe-
cution methods are the procedures for executing the action,
i.e., what gets called when the action is chosen for execution.
An action network is a network of problem solving actions as-
sociated by temporal and data dependencies. Figure 4 shows
a "generic" Phoenix plan as it might become expanded on
the timeline. Vertical lines indicate that the higher action
placed the lower action on the timeline. Horizontal lines are
temporal relations between actions. The boxes under the
action further describe some of its characteristics.

Skeletal planning has previously been applied in domains
in which planning and acting are completely separate, can-
cer therapy advice [13] and experiment design [6]. While the
goals and implementation of these other skeletal planning
projects are rather different, the structure of the planning
is much the same. Lazy skeletal expansion is similar to the
planning method employed in PRS[7]. KAs, the represen-
tation for procedural knowledge, include an invocation con-
dition, which specifies when the KA is useful, and a body,
which describes the sequence of subgoals which constitute
the procedure. Thus, the structure of PRS is similar, but
the control is distinct. At each execution cycle, PRS checks
all KAs for applicability, selecting one for execution. In
Phoenix, only actions on the timeline are considered for ex-
ecution. Thus, PRS provides for more reactive planning, but
at the expense of being unable to allocate time and schedule
actions beyond an execution cycle. The timeline structure
in Phoenix was designed to support real-time scheduling of
actionsfll], but does complicate plan modification.

2.4 Responsive Adaptation

When lazy skeletal expansion overcommits to a course of
action and crosses over an environmental response window,
plan failures can occur. Failures occur when the plan either
cannot continue or cannot succeed if it does continue. In
effect, the environmental change response window conflicts
with plan commitment. In Phoenix, this mismatch is a result
of: non-local interactions, uncertain or obsolete information,
unpredicted changes, and novel situations.

Non-local interactions occur when the agent attempts to
respond, in parallel, to different environmental changes and
so overcommits its resources. For example, the fireboss treats
each fire in the environment as a separate situation, mak-
ing decisions about containment largely independently; yet,
the resources for controlling the fires are fixed and must
be shared between the situations. Consequently, decisions
about changing resource allocation to a particular fire impact
and may thwart resource expectations for plans in progress
on a different fire.

Uncertain information causes failure when the agent is
forced to commit resources without being certain of the mag-
nitude of the need. For example, fires that appear at the
periphery of view may look small to a watchtower, but may
actually be conflagrations. Without better information, the
fireboss must take an "educated guess" at the real situation
and commit field agents to contain it, accepting the possibil-
ity that more or fewer agents may actually be needed.

Unpredicted changes naturally produce failure. Fire fight-
ing involves working in constrained situations that are vul-
nerable to unexpected changes. If the wind changes unex-
pectedly, a previously safe area in which to build fireline may
become dangerous.

Finally, novel situations require commitment to plans that
may not actually be best for the situation. When environ-
mental change results in a novel situation, the agent may not
know to respond.

The responsive adaptation mechanism responds to envi-
ronmental changes by adapting plans in progress. Plans pro-
vide the structure for controlling action coordination, unde-
sirable plan interactions and resource use. Thus, the expec-
tations included in the plan structure should be preserved,
while still addressing the changes in the environment; so, re-
sponsive adaptation should change the intended plan by the
minimum required for the agent to resume acting. It should
make the changes as quickly as possible because computa-
tion time is itself a resource and because the response window
may have been closed before the response is computed.

Because the process of adapting plans is an action within
the context of the plan, it should be accessible to other
problem solving mechanisms that direct and constrain the
agent's actions, such as resource allocation. Because respon-
sive adaptation is activated when exceptional conditions oc-
cur, it should provide broad coverage of possible situations;
it is the mechanism of last resort. Georgeff etal in [7] de-
scribe examples of bizarre behavior in PRS that results from
"mis-applying" actions to novel situations. Without a gen-
eral replanning capability, an agent repeatedly performs the
same inappropriate behavior.

2.4.1 Detecting Failures

The agent detects failures when it cannot successfully con-
clude an action or plan. Three mechanisms signal failures:
execution errors, reflexes, and envelopes. Execution errors
occur when an action cannot execute to completion because
the state of the world does not match the assumptions, in-
formation is not yet available, or, for some problem solving
actions, no solution exists. When the agent encounters a
dangerous environmental condition, reflexes change effector
programming to remove or at least reduce the danger. If
this change of programming conflicts with the programming

Find action

use-variable:a,z

Expand
subplan

define-variable:x,y
use-resource:bd

Calculate
variable

set-variable: x

Manage :
resources

set-variable: y
alloc-resource: bd

Find action

use-variable: y,z

Program
effectors

execution-method: ex1
start-time: 10
use-variable: x

Figure 4: "Generic" Phoenix plan as represented on the timeline with information about inter-dependencies

previously set as part of a plan action, then the reflex signals
a failure.

Both execution errors and reflexes signal obvious failure in
that the plan is actually prevented from executing. Deter-
mining whether an on-going action can ever succeed requires
active monitoring of the progress of the action. Envelopes de-
tect impending failures [8; 12]. They perform sophisticated
monitoring of the plan's progress in the world, integrating
the efforts of many agents, to determine whether the plan
can complete within its environmental and resource limita-
tions. If a plan will be unable to complete successfully under
the present conditions, the performance envelope is violated
and an impending failure is signaled.

2.4.2 Responding to failure

The detection mechanisms signal failures by adding ac-
tions that find recovery plans to the timeline, placed in par-
allel with the action that initiated them. These actions in-
clude readUy available information about the failure trigger,
the agents involved, and the error type. Recovery actions
are structured like other planning actions in that they have
a context within other plans; they reference variables and in-
formation available in that context; they are scheduled like
other actions; and they employ the same planning method-
lazy skeletal expansion-for deciding on response. As a type
of planning action, adaptation can be smoothly integrated
into the planning process. As a timeline action, adaptation
has access to the same memory structures and is subject
to the same resource management techniques as are other
timeline actions.

Responsive adaptation in Phoenix searches the plan li-
brary of general recovery plans for one appropriate to the
failure. These plans are represented in the same action de-
scription language as the domain plans and so are interpreted
by the standard execution methods. The plan structure as
it is represented on the timeline (and displayed in Figure 4)
defines a context or locality for action, indicates depen-
dencies between actions and distinguishes decision points.
These structural characteristics provide backtracking points
for adapting the plan. Decision points are actions in the plan

structure that rely on environmental context to direct their
execution. Any action that binds variables or calculates vari-
able values based on context is a decision point. Actions that
select other plans for execution use environmental context to
determine applicability, and so are certainly decision points.
The following recovery plans use the plan structure to iden-
tify decision points and dependencies between the decision
points and the failure point to support recovery:

• Wait and then re-execute the failed action.
• Reinstantiate the action, updating values for its vari-

ables.
• Select an alternative execution method for the failed

action. Some execution methods sacrifice accuracy for
computation speed; sometimes, the accuracy is neces-
sary.

• Re-calculate values for variables used in the action.
Some variables are calculated by actions that were
executed earlier in the plan; this action involves re-
executing a previous action that set a variable used in
the failed action.

• Substitute other variables of the same type as those
used in the action.

• Substitute a similar plan step for the failed action that
produces approximately the same effect in the environ-
ment.

• Allocate additional resources to the plan.
• Re-execute the parent plan selection action, i.e., re-

plan.

The recovery plans make mostly simple repairs to the
structure of the evolving plan. As such, they can be used
in different situations, do not require expensive explanation,
and ensure full coverage of all possible failures-the agent
must be able to do something. SIPE [14] and IPEM [2]
rely on a similar strategy of replanning by general plan re-
pair methods. This strategy sacrifices efficiency for general-
ity and so results in a planner capable of responding to any
failure, but perhaps in a less than optimal manner.

Like any plan in Phoenix, recovery plans have applica-
bility conditions to guide their selection. When a failure is

89

Real World Firemap
40kn

Elapsed Tine: 1 :03:10 *.
Wind: Skivhr; Dir: \

I ' l£kn \

/

\

45kn

Figure 5: Bulldozer building fireline in indirect attack plan

recognized, the find-plan method searches the recovery plans
for the most appropriate and adds it to the timeline at the
current location for execution. Because these responses are
general, they may not always work. Failure of a recovery
plan works much the same as any failure, except that rather
than repair the recovery plan, the system will select another
method to repair the original failure. Thus, responsive adap-
tation should always have some response to environmental
change that has eluded the other mechanisms.

3 An Example from Phoenix

Fires are fought by building barriers to prevent further
spread. Building fireline close to the edge of the fire min-
imizes the loss of forest, but maximizes the agent's vulner-
ability to the fire. A more conservative strategy is to fight
fires with indirect attack, which involves predicting the likely
spread of the fire and building line around it so that the field
agents can completely surround the fire before it reaches the
fireline.

The indirect attack plan determines where to build fireline
to contain the fire at some designated point in the future, al-
locates the field agents needed to do so, and sends the field
agents out to build their first segments of fireline. Relying
then on lazy expansion, the plan is expanded further in re-
sponse to messages from the field agents on their status, e.g.,
if they've encountered problems, need fuel, or have finished
their last assignments. Only when information about field
agents' status is known does the planner commit the agents
to a course of action and so further expand the plan. In this
way, the planner can be responsive to environmental changes
that impact what the agents should be doing and exactly how
they should be doing it.

^ Lazy skeletal expansion may keep agents from being as-
signed to work in a currently dangerous area, but it will not

necessarily keep them from danger if the situation changes.
If the wind has shifted or the fire spread more rapidly than
predicted, the fire may cross the assigned fireline segment.
Figure 5 shows a bulldozer (on the left) building a fireline
segment (shown as a dotted line) which has been crossed
by fire (shaded grey area south of the bulldozers). When
sensors detect fire in the bulldozer's path, they trigger an
emergency-stop reflex. This reflex programs the movement
effector to stop, thus re-setting the programming installed as
part of the plan. The reflex sends a message to the cogni-
tive component which causes a failure signaling action to be
added to the timeline, registering the emergency stop.

When the failure action is noted and executed, the plan-
ner searches for an appropriate response. Several recovery
responses are possible: the plan variable for the fireline seg-
ment could be re-calculated, the build line action could be
replaced by another type of build line action, or the parent
plan could be replaced by another. In this case, the agent
chooses to re-calculate the fireline segment variable because
it is the cheapest action that is applicable. In Figure 6,
the bulldozer has executed this recovery plan and completed
building the fireline while still avoiding the fire. If this action
had not worked because the fire had engulfed the endpoint
of the fireline segment, the bulldozer could replace the origi-
nal build line on path action with an alternative action, build
line parallel to fire action that would change its behavior to
direct attack, or it could have selected a new plan entirely.

4 Understanding Responsiveness in
Phoenix

The three responsive mechanisms in Phoenix cover the range
of environmental change that an agent will encounter in this
environment. These mechanisms work because they are de-
signed to address the demands and exploit the facilitating

90

Real World Firemap

4Qkn 45kn
Elapsed Time: 1:97:40 Jt.
"■i--J- <-„,„. .i-.-.. Dir. \

£kn
Wind: 8km/hr; Dir: \

/

\

Figure 6: Bulldozer completes building line, albeit not in the originally planned location

characteristics of the environment. Reflexes can rely on sim-
ple triggers and make simple responses because rapid catas-
trophic change is easily recognized and can be averted by
simple evasive response. The reactive strategy supported by
reflexes has been successful in other systems operating in
domains with these demands [1; 5]. Moreover, catastrophic
change is relatively rare in the Phoenix environment. Gener-
ally, Phoenix provides a forgiving environment. Agents may
pursue plans that are not the best and still manage to contain
the fire, but at a higher cost. This forgiving nature allows
the agent to use skeletal plans in different situations and to
rely on general methods for responsive adaptation without
risking disaster.

Action in the environment is characterized by stereotypi-
cal plans. Most of the basic strategies for fighting forest fires
in Phoenix can be represented by a relatively small number of
skeletal plans. Additionally, because most actions take place
in different geographic locations, interactions are essentially
limited to resource contention, which can be accommodated
in the plan structure. Thus, we reduced the need for reason-
ing about plan interaction by using skeletal structures that
have "compiled out" that reasoning.

With their responsive mechanisms, agents can respond to
any environmental change. Unfortunately, in the current
state of development, they cannot always recognize change,
and their responses are not always successful. Change is dif-
ficult to recognize when its detection depends on something
not happening or depends on interactions of action and en-
vironmental forces. For example, the fireboss must conjec-
ture that a bulldozer agent has become incapacitated when
it fails to make contact. The fireboss must predict that a
plan will not succeed when the fire starts to expand more
quickly than it can be surrounded. Fortunately, research on
envelopes [8; 12] will address recognizing detrimental envi-
ronmental change, as early as possible, in these difficult to

detect situations.
Responses are not always successful because the plan li-

brary is incomplete. The scope of environmental factors that
define situations and the difficulty of anticipating precisely
the width of response windows for change in different situ-
ations makes it difficult to build a plan library that offers
"best" plans for any situations. The agent should learn ap-
propriate plans for itself by experimenting in its environ-
ment. A project currently in progress seeks to have the
agents do just that [9; 10].

Phoenix provides a rich environment in which to explore
notions of responsiveness. It forces agents to confront quali-
tatively different types of environmental change and respond
to them. Understanding the nature of the response demands
of the environment is crucial to the design of mechanisms for
addressing those demands. The success or failure of agents
depends upon the ability of those mechanisms to respond
appropriately to their environment.

91

References

[1] Philip E. Agre and David Chapman. Pengi: An im-
plementation of a theory of activity. In Proceedings of
the Sixth National Conference on Artificial Intelligence,
pages 268-272, Seattle, Washington, 1987. American
Association for Artificial Intelligence.

[2] Jose A. Ambros-Ingerson and Sam Steel. Integrating
planning, execution and monitoring. In Proceedings of
the Seventh National Conference on Artificial Intelli-
gence, Minneapolis, Minnesota, 1988. American Associ-
ation for Artificial Intelligence.

[3] Rodney A. Brooks. A robust layered control system for
a mobile robot. IEEE Journal of Robotics and Automa-
tion, RA-2(1), March 1986.

[4] Paul R. Cohen, Michael Greenberg, David M. Hart, and
Adele E. Howe. Trial by fire: Understanding the design
requirements for agents in complex environments. AI
Magazine, 10(3), Fall 1989.

[5] R. James Firby. An investigation into reactive planning
in complex domains. In Proceedings of the Sixth Na-
tional Conference on Artificial Intelligence, pages 202-
206, Seattle, Washington, 1987.

[6] Peter E. Friedland and Yumi Iwasaki. The concept and
implementation of skeletal plans. Journal of Automated
Reasoning, 1:161-208, 1985.

[7] Michael P. Georgeff, Amy Lansky, and Marcel J. Schop-
pers. Reasoning and planning in dynamic domains: An
experiment with a mobile robot. Technical Report Tech-
nical Note 380, SRI International, Menlo Park, CA,
April 1987.

[8] David M. Hart, Paul R. Cohen, and Scott D. Anderson.
Envelopes as a vehicle for improving the efficiency of
plan execution. Technical Report 90-21, COINS Dept.,
University of Massachusetts, 1990.

[9] Adele E. Howe. Adapting planning to complex environ-
ments, unpublished PhD Dissertation Proposal, COINS
Dept., University of Massachusetts, September 1989.

[10] Adele E. Howe. Integrating adaptation with planning
to improve behavior in unpredictable environments. In
Proceedings of AAAI Spring Symposium on Planning
in Uncertain, Unpredictable or Changing Environments,
Palo Alto, CA, March 1990.

[11] Adele E. Howe, David M. Hart, and Paul R. Cohen.
Addressing real-time constraints in the design of au-
tonomous agents, to appear in Real-Time Systems,
1990.

[12] Gerald M. Powell and PaulR. Cohen. Operational plan-
ning and monitoring with envelopes. In Proceedings of
the IEEE Fifth AI Systems in Government Conference,
Washington, DC, 1990.

[13] Samson W. Tu, Michael G. Kahn, Mark A.
Musen, Jay C. Ferguson, Edward H. Shortliffe, and
Lawrence W. Fagan. Episodic skeletal-plan refinement
based on temporal data. Communications of the ACM,
32(12):1439-1455, December 1989.

[14] David E. Wilkins. Practical Planning: Extending the
Classical AI Planning Paradigm. Morgan Kaufmann
Publishers, Inc., Palo Alto, Ca., 1988.

92

Planning in Concurrent Domains

Subbarao Kambhampati*
Center for Design Research

and Computer Science Department
^cs.Stanford, edu raod

Jay M. Tenenbaum
Center for Integrated Systems

and Computer Science Department
marty@cis.Stanford, edu

Stanford University
Stanford, CA 94305-4026

Abstract

In many real-world situations, a planner is part
of an integrated problem-solving environment
and must operate concurrently with other plan-
ners and special purpose inference engines. Un-
like the traditional AI planners, planners op-
erating in such concurrent environments have
to contend with an evolving problem specifica-
tion, and should be able to interact and coordi-
nate with the other modules on a continual ba-
sis. This in turn poses several critical require-
ments on the planning methodology. In this
paper we identify the ability to incrementally
accommodate the changes necessitated by the
externally imposed constraints into the existing
plans, and the ability to understand and reason
about the rationale behind externally imposed
constraints at an appropriate level of detail as
two crucial requirements for planning in such
environments. We then explore directions for
extending classical hierarchical planning frame-
work to handle those requirements.

1 Introduction

In many real-world situations, a planner is part of an
integrated problem-solving environment and must oper-
ate concurrently with other planners and special pur-
pose inference engines (collectively referred to as SDMS
in this paper). The SDMS concentrate on different spe-
cialized considerations and interact with the planner
to post various feasibility and optimality driven con-
straints on the evolving plan. Consider, for example,
the problem of generating process plans in concurrent
design environments [Cutkosky and Tenenbaum, 1990,
Kambhampati and Tenenbaum, 1990, Kambhampati
and Cutkosky, 1991].1 A goal of concurrent design is to
do as much manufacturing planning and analysis as pos-
sible during design evolution, rather than waiting for the

*We acknowledge the support of Office of Naval Research
under contract N00014-88-K-0620.

1A process plan specifies the sequence of setup, fixtur-
ing and machining operations for manufacturing a given part
(typically described as a set of machinable features).

design to be complete. A typical planner in this environ-
ment will have to operate concurrently with SDMS spe-
cializing in such considerations as geometric analysis, fix-
turing, tolerancing etc., all of which influence planning.
Another example is the DARPA logistics planning sce-
nario where several disparate specialized planners (such
as evacuation planners, mission planners etc.) are re-
quired to cooperate with each other to make a global
transportation plan.

Planning in these environments a continual rather
than one-shot process as the constraints imposed by the
SDMS on the plan force the planner to contend with a
continually evolving problem specification. The planner
needs to respond to the specification changes in a con-
tinual rather than batch driven mode (i.e., the planner
cannot wait for all the changes to be complete) as the
feedback from the planner often guides the behavior of
the other modules in the environment. Further more,
the planner needs to understand the rationale behind
the externally imposed constraints so that it can play an
active role of coordinating its actions with the SDMS .

The classical planning paradigm [Chapman, 1987] fails
to adequately handle the requirements of these envi-
ronments as it considers planning as a one-shot task of
constructing a partially ordered sequence of actions for
achieving a given set of goals. The planner works un-
der the assumption that it is an isolated module with
all knowledge relevant to plan generation at its disposal.
This paradigm only accounts for the intra-plan interac-
tions, and ignores the interactions between the planner
and the other modules of a problem-solving environment.

To deal with the special requirements of planning
in concurrent environments, the planning methodology
needs to be extended to provide the following capabili-
ties:

• Incremeniality and accommodating external con-
straints

The planner needs to respond to the changes in
its specification and externally imposed constraints
by updating its plan efficiently and conservatively.
During this update process, it needs to be incre-
mental and reuse as much of its existing plan as
possible, as starting from scratch every time some
constraint changes can be prohibitively expensive.
Thus, to function effectively in a concurrent envi-

93

ronment and interact with other modules efficiently,
a planner needs to be incremental in its operation.

• Coordination and understanding rationale behind
externally imposed constraints

To anticipate external interactions and to coordi-
nate its actions with other modules in the environ-
ment, a planner in a concurrent environment needs
to be able to understand and reason about the ratio-
nale behind the externally imposed constraints. To
facilitate this, a systematic interface methodology
between the planner and the other heterogeneous
modules of the environment needs to be developed.

Intuitively, the planner needs to be incremental in or-
der even to survive as a passive module in a concurrent
environment, while it needs the ability to coordinate its
actions with the SDMS to play an active role in guiding
the global problem-solving activity.

To facilitate incremental modification of plans in re-
sponse to evolving specifications, the planner should be
able to analyze the plan at multiple levels of detail
and focus modification at the appropriate level. Fur-
ther, it should use least-commitment strategies dur-
ing planning, as over-constrained plans do not lend
themselves well for flexible reuse [Kambhampati, 1989,
Kambhampati, 1990a]. The criterion for accommodat-
ing external constraints is for the planner to be able to
incorporate the changes imposed by those constraints
while reusing as much of the existing plan as possible
and preserving the correctness of the overall plan.2 This
requires the planner to reason about the effect of the
external constraints on the correctness of the existing
plan and make minimal modifications to it to regain
correctness.3 To analyze the effect of external constraint
on the correctness of the plan, as well as to modify the
plan conservatively, the planner needs to represent and
reason about the internal dependencies of its plans in a
systematic fashion.

Since, hierarchical nonlinear planning (e.g. NOAH

[Sacerdoti, 1977], NONLIN [Täte, 1977], SIPE [Wilkins,
1984]) is the prominent method of abstraction and least
commitment in domain independent planning, in this pa-
per we will explore ways of extending it to handle the
incrementality requirements of concurrent domains. In
section 2, we will develop a precise characterization of
the correctness of the plan in terms of a representation
of its causal dependency structure called the validation
structure and introduce a framework of incremental mod-
ification based on it. In section 3, we will present tech-
niques to accommodate the external constraints which
compute the ramifications of those constraints on the
validation structure of the plan, and repair the plan to
regain correctness.

This is in contrast to approaches such as [Hayes, 1987],
that allow externally imposed constraints to enter the plan,
but do not reason about the effect of those constraints on the
correctness of the plan.

3It should be emphasized here that we are not concerned
with the absolute correctness of the plan, but rather its cor-
rectness with respect to the planner's own model of the do-
main (see [Kambhampati, 1990a]).

Enabling the planner to reason about the rationale
behind the constraints imposed by the SDMS poses spe-
cial problems because of the heterogeneous nature of the
modules in a concurrent environment. Previous research
in distributed planning (e.g. [Durfee and Lesser, 1988,
Corkill, 1979]), black board systems (e.g. [Hayes-Roth,
1987]), embedded systems (e.g. [Georgeff, 1990]) and
multi-agent planning architectures (e.g. [Lansky, 1988]),
mostly addressed the issues of coordinating the actions of
homogeneous planners working on different aspects of a
single problem where each planner can understand and
reason about the rationale behind the constraints im-
posed by other planners. Thus they are not well-suited to
real world concurrent domains with heterogeneous mod-
ules. In section 4, we propose a methodology of inter-
facing the planner and the SDMS that relaxes the strong
assumptions made by these approaches. Our approach
is to enable the planner to understand the rationale at
some appropriate level of abstraction. Accordingly, the
external constraints will be accompanied by explanations
that constitute "sufficient" (rather than necessary and
sufficient) conditions under which the constraint can be
guaranteed to be required by the SDM imposing it. We
will discuss the issues involved in generating and coordi-
nating with such window of applicability explanations.

2 Incrementality

In this section we discuss the issues involved in making
planning "incremental". We will start with a characteri-
zation of correctness of plans in the hierarchical planning
paradigm in terms of the plan validation structure. This
characterization is used to develop a methodology for
modifying a plan to regain correctness. The resultant
incremental modification framework forms the basis for
accommodating various externally imposed constraints
into an existing plan (see next section).

2.1 Validation Structure and Plan Correctness

Hierarchical planning can be seen as a process of re-
duction of abstract tasks into more concrete subtasks
with the help of domain specific task reduction schemata,
and resolving any harmful interactions by introduc-
tion of additional partial ordering relations among tasks
or backtracking over previous decisions [Täte, 1977,
Sacerdoti, 1977]. Given a planning problem [X,Q] where
J is the specification of the initial state and Q is the
specification of the desired goal state (given as conjunc-
tion of literals to be satisfied), we use a structure called
hierarchical task network (HTN) to represent the status
of the plan at any moment. A HTN is a 3-tuple

(V:(T,0,V) ,T* ,D }

where V is a partially ordered plan such that

• T is the set of tasks of the plan (with two distin-
guished tasks tj and tg to denote the input and
goal state specifications respectively)

• O defines a partial ordering over T (with elements of
the form %• —► tj", signifying that tt is a predecessor
of tj)

94

• V is a set of conditions with specification about the
ranges where those conditions should be held true,
and the applicability conditions of tasks of V, or
goals of the overall plan those conditions are sup-
porting. Individual elements of V are called val-
idations. They are represented by 4-tuples v :
(E,ts,C,td), with the semantics that the condition
E, which is an effect of ts, should be held true from
task ts to ti to support the applicability condition
C of task tj.

• T* is the union of tasks in T and their ancestors

• D defines a set of parent, child relations among the
tasks of T* (iff is the parent of a task t, then t was
introduced into the HTN because of the reduction of

tp)
We define the correctness of the plan V in terms of its

set of validations in the following way:
A partially ordered plan V is considered a correct plan
for a problem [I, Q\ iff

• For each goal g £ Q of the plan, and each appli-
cability condition of a task t £ T, there exists a
validation »£V supporting that goal or condition.
If this condition is not satisfied, the plan is said to
contain "missing validations."

• None of the plan validations are violated. That is,
\/v : (E,ti,C,tj) G V, (i) E e effects(U) and (ii)
fiteT s.t. 0(ti -< t -< tj) A effects(a) h ->C (where,
the relation "-<" is the transitive closure of the re-
lation "—►"). If this constraint is not satisfied, then
the plan is said to contain "failing validations."

In addition, we introduce a condition of non-
redundancy as follows

• For each validation v : (E,ts,C,td) € V, there exists
a chain of validations the first of which is supported
by the effects of id and the last of which supports
a goal of the plan.4 If this constraint is not satis-
fied, then the plan is said to contain "unnecessary
validations."

A plan that is correct by this definition is said to have
consistent validation structure. The missing, failing and
unnecessary validations defined above are collectively re-
ferred to as inconsistencies in the plan validation struc-
ture.

Notice that this definition of correctness is concerned
exclusively about the validations that the planner has
established. The plan may be correct by this definition
and still be inapplicable from the point of view of some
SDM . This is in consonance with the philosophy that
the planner in a concurrent environment should primar-
ily be concerned about keeping the plan correct from
its perspective. When changes are necessitated by the

4More formally, Vu : (E,ts,C,td) G V there exists a se-
quence [v1, v2 ... vk] of validations belonging to V, such that
(i) vk : (Ek,tk,Ck,tg) supports a goal of the plan (i.e,
Ck G Q) (ii) v1*-1 : (Ek-\tk-1,Ck-\tk) supports an appli-
cability condition of tk, vk~2 supports an applicability con-
dition of i*_1 and so on, with vk_1 supported by an effect of
td.

externally imposed constraints, the planner should pre-
serve correctness with respect to its validation structure
while accommodating those changes.

2.2 Annotating Validation Structure

To facilitate efficient reasoning about the correctness of
the plan, and to guide incremental modification, we rep-
resent the plan validation structure as annotations on
the individual tasks constituting the HTN [Kambham-
pati, 1990c]. In particular, for each task 1 6 T*, we
define the notions of e-conditions , e-preconditions and
p-conditions as follows: The e-conditions of a task rep-
resent the set of validations that it or its descendents in
the HTN provide to the rest of the plan. If R(t) repre-
sents the set of tasks consisting of t and its descendents
in the HTN (also called sub-reduction)5, e—conditions(i)
is given by the set

{v\v:{E,ts,C,td)eV Ai,€Ä(<) A td <£ R(t)}

The e-preconditions represent the set of validations
that the task or its descendents consume from the rest
of the plan, e—preconditions(i) is given by the set:

{v\v :{E,ts,C,td) eV At, <£R(t) A td € R(t)}

Finally, the p-conditions represent the validations that
should necessarily be preserved by the effects of the task
and its descendents to guarantee the correctness of the
plan, p—conditions(tf) is given by the set

v : {E,ts,C,td)eV A
3U G T s.t. U E R(t) A

ts,td£R(t) A
0(ts -< U < td)

The e-conditions , p-conditions and e-preconditions
(referred to collectively as task annotations) encapsulate
the role played by each task in the HTN of the plan in
ensuring the correctness of the plan.

2.3 The PRIAR Modification Framework

Based on the notion of validation structure, we have de-
veloped a framework for flexible modification of plans
in hierarchical planning called PRIAR [Kambhampati,
1990c, Kambhampati, 1989]. In PRIAR framework, a
plan is modified in response to inconsistencies in its vali-
dation structure. The repair actions depend on the type
of inconsistency, and the type of validation involved in
that inconsistency. They involve removal of redundant
parts of the plan, exploitation of any serendipitous ef-
fects of the changed situation to shorten the plan, and
addition of high level (refit) tasks to re-establish any
failing validations. For example, if the inconsistency
is a failing validation v : (E,ts,C,td), then depending
upon whether or not C can be achieved by the plan-
ner, PRIAR either adds a task tr to the HTN re-establish
the failing validation, or replaces the reductions that
are dependent on C. The annotations on the individ-
ual tasks of the HTN (defined in section 2.2) provide
a systematic framework for locating the parts of the
plan that need to be removed or replaced. Finally, any

5note that R(t) = {t} if t € T

95

refit-tasks introduced during the repair process are re-
duced by the hierarchical planner, which employs var-
ious validation structure based control strategies to lo-
calize this reduction [Kambhampati and Hendler, 1989,
Kambhampati, 1990b].

3 Accommodating External Constraints

In this section, we discuss how the planner accommo-
dates various types of changes necessitated by by exter-
nally imposed constraints. Without loss of generality we
will assume that the planner has an initially correct plan
which it wants to modify to accommodate the changes
and while preserving the correctness of the plan. We
will also assume at this point that the changes imposed
by the external constraints are non-negotiable, in that
they would have to be necessarily accommodated by the
planner. In the previous section, we have shown that the
planners notion of correctness of its plan is intimately
tied to the consistency of the plan validation structure.
Thus, the general strategy followed for accommodating
changes necessitated by externally imposed constraints
is to compute the inconsistencies in the validation struc-
ture that result from those changes and use the PRIAR
framework to modify the plan to remove the detected
inconsistencies. In the following sections we discuss how
changes in the specification the problem, and ordering
relations among the plan steps are handled through this
strategy.

3.1 Changes in Input and Goal Specifications

Often during planning the specifications of the planing
problem are modified to reflect the changes in the state
of the world and the overall goals of the system. From
the definition of correctness of the plan in section 2.1,
it should be clear that the changes in problem specifi-
cations may give rise to missing, failing or unnecessary
validations in the plan validation structure. For exam-
ple if some of the goals of the plan become unnecessary
as a result of changes in the specifications, the valida-
tions supporting those goals become unnecessary; if the
changes necessitate new goals for the plan, that would
lead to a missing validation and finally if the changes
delete some assertions of the initial state then the val-
idations supported by the effects of t% will fail. These
inconsistencies in the validation structure can be located
by simply examining the validations supported by the as-
sertions in the initial state, and goal state. Any detected
inconsistencies are then repaired with the help of PRIAR
modification operations.

3.2 Changes in ordering relations

Often external constraints translate into addition or
deletion of ordering relations among the steps of the
plan. Such changes may be a result of feasibility consid-
erations (for example, in process planning, the geometric
modeler might rule out some infeasible feature orderings
[Hayes, 1987]), or of optimality considerations (eg. SDMS
may group several steps of the plan together for efficient
execution etc., and such groupings may be inconsistent
with the existing ordering relations [Kambhampati and
Philpot, 1990]). In the we provide methods for efficiently

analyzing the ramifications of addition and deletion of
ordering relations on the correctness of the plan.

3.2.1 Deletion of Ordering Relations

Suppose an ordering relation Od ■ ta —> tf, is to be
deleted as a consequence of some externally imposed con-
straint. This leads to a change in the partial ordering
of the plan and some of the tasks which were previously
ordered with respect to each other will now become un-
ordered (parallel).

From the definition of correctness in section 2.1, it
should be clear that failing validations are the only type
of inconsistencies that can result from the deletion of an
ordering relation.6 Since checking each validation «GV
for failure is expensive, we use the following method to
check only those validations which can fail because of
the deletion of o^.

First Od is removed from O and the "-<" relation on
the tasks of the plan is recomputed. The predecessor-
successor fields of the tasks of V before and after the
deletion are compared. For each task t(£ T of V, we
collect the tasks of the plan that become unordered with
respect to it. Suppose t{ becomes unordered with respect
to tasks {t{1,ti2 ■ ■ -tim}- From the definitions of section
2.2, we can show that when previously ordered tasks
become parallel to t(, the annotations of those tasks will
also become p-conditions of 2;.7 In other words, the new
p-conditions of ti are given by

p—conditions" (t,) U I J annotations(i,^)

3

By definition p —conditions^;) comprises the valida-
tions of the plan that must be preserved by the effects
of ti, Thus, to locate the validations that are violated
by the effects of ti it is sufficient to check the anno-
tations of the tasks {t{1,ti2 .. -tim}- If any validations
are actually found to be violated, the PRIAR modifica-
tion methodology is again used to suggest repair actions.
Similar analysis is done for each task in the plan that be-
comes unordered with respect to other tasks because of
the deletion of o<f.

3.2.2 Addition of Ordering Relations
Suppose the externally imposed constraint leads to the

addition of a new ordering relation on : ta —+ tf,. We have

Deletion of ordering relations increases the parallelism in
the plan and this may lead to violation of some established
validations of the plan.

7If a validation v : (E,ts, C, tci) £ V belongs to the anno-
tations of a task t3 g T, then, given that Vi G T R(t}) = {tj},
we have (see section 2.2)

0(ts -< tj ■< td) V (t3 = tj) V (td = tj)

Now suppose tj became unordered with respect to U 6 T.
We have

0(tj -<ti) A 0(ti <tj)

From the two relations above, we can see that if v :
(E, ts, C, td) belongs to the annotations of t3 then it will also
satisfy the relation

0(ts -<ti ■< tj)

which in turn means that v is a p-condition of tj.

96

two possibilities in this situation:
Case 1. The added ordering is consistent with the cur-
rent orderings. As long as U ^ ta in the current plan,
we can add ta —* tt without causing any inconsistencies.
From the definition of the correctness V, we can see that
a consistent new ordering will not affect the correctness
of the existing plan. Thus nothing need be done in this
case.
Case 2. The added ordering is not consistent with the
current ordering. That is U -< ta in the current plan. In
this case, there are some "cycles" in the ordering O on
V. Let

tb ► t{1 . . . Iim *■ ta ► Ij

be a cycle 8. Since o„ has to be necessarily accommo-
dated, the only way of regaining correctness is to break
such cycles by removing some other previously held or-
dering relations in this cycle. Removal of an ordering re-
lation may cause inconsistencies in the validation struc-
ture and those need to be located and repaired as dis-
cussed in section 3.2.1. The analysis of section 3.2.1 can
also be used to decide which ordering relation will ne-
cessitate least amount of repair work upon deletion, and
choose to delete that ordering relation.

4 Coordination through reasoning
about the rationale behind externally
imposed constraints

The techniques discussed in the previous two sections
enable the planner to play a passive role of efficiently ac-
commodating changes necessitated by any externally im-
posed constraints on its plan. As the specifications and
the plan evolve, the external constraints also evolve and
it might be possible to relax some of them under the new
situation. Rather than waiting for SDMS to take the ini-
tiative, the planner should play an active role in guiding
the global problem-solving activity anticipating external
interactions and coordinating its actions with the SDMS .
The simplest approach for this would require the planner
to request all the modules about all the constraints im-
posed by them, when ever anything changes. However,
this could be quite inefficient especially since the anal-
yses performed by some SDMs may be computationally
expensive. In addition, this approach also seriously un-
dermines the autonomy of the planner as it cannot take
any decisions without having them approved by all the
modules.

To take an active role in the global problem-solving ac-
tivity, the planner needs to understand and reason about
the rationale behind the externally imposed constraints.
This requirement is symmetric: when the planner makes
any decisions that affect the outside modules, it should
be able to associate a rationale for that decision. In other
words, a major requirement for a module to work in a
concurrent environment is to be able to provide ratio-
nale for the decisions that can be understood by other
modules in the environment, and to be able to reason
with the rationales provided by the outside modules.

8cycles can be found by scanning the "-
tions of the tasks of the plan

and "-<" rela-

Though the issue of coordination have been addressed
previously in distributed planning and blackboard based
approaches to planning, they generally assume that the
individual planners are all identical and share a com-
mon representation (e.g. [Durfee and Lesser, 1988]) and
that there is a single central knowledge base shared
among all modules and planners [Hayes-Roth, 1987,
Durfee and Lesser, 1988]. Because of these assumptions,
coordination is accomplished in those architectures by
allowing each planner to directly reason about the con-
straints imposed by other modules. This is controlled
either through a central black-board mechanism [Hayes-
Roth, 1987], a hierarchical organization of planners or
through the use of localized representations that explic-
itly circumscribe the effects of the agent's actions [Lan-
sky, 1988].

In concurrent domains, the assumption of homoge-
neous modules holds only in situations whose where the
modules of a concurrent environment constitute a "ver-
tical" decomposition of the domain, where each module
takes all the specialized considerations independently.
However, in concurrent domains, the environment typi-
cally consists of heterogeneous modules which specialize
in various sub-tasks of the overall task. For example, in
a domain like process planning where there are several
specialized considerations (such as geometric, fixturing
etc.) that need to be taken into account, if the planner
itself were to take them all into account during plan-
ning, plan construction could become prohibitively ex-
pensive [Simmons and Davis, 1987]. Further more such
an architecture will often be inconsistent with the natu-
ral structure of the domain. In process planning, even if
the planner is designed to take into account all the ge-
ometric considerations during planning, duplicating all
the geometric knowledge and inference formalisms into
the planner would be very wasteful.

Because of this heterogeneity among the modules , it
is not feasible to have each module understand the ratio-
nale behind the decisions of the other modules, even if it
were provided to them. For example in process planning,
it is infeasible for the planner producing machining se-
quence to understand all the details of constraints posted
by modules specializing in fixturing and geometric rea-
soning etc.

Suppose an external constraint ce (say an ordering re-
lation) is imposed on the plan by the geometric modeler
to ensure that there will be a clear access path to make
a feature feature1. There is no straightforward way for
the geometric modeler to communicate to the planner
that the the constraint ce is imposed to ensure clear ac-
cess path to feature-^ since the planner's domain model
may not give it the ability to reason about the notion
of "clear access path." In the absence of any rationale
accompanying ce, the planner would have to rely on the
geometric modeler to correctly update the constraints
in the event that constraint is no longer needed. This
approach, in as much as it requires frequent geometric
checks, is inefficient.

Thus, for computational tractability and functional
autonomy of individual modules, planner in a concurrent
environment should be able to understand the rationale

97

behind external constraints at some appropriate level of
detail.

4.1 Window of Applicability (WOA)
Explanation

Since the individual modules cannot reason about the
rationale behind the externally imposed constraints di-
rectly, we propose that the rationale be presented as a set
of sufficiency conditions called "WOA (Window of appli-
cability)" explanation for the external constraint. These
sufficiency conditions do not constitute the complete set
of conditions leading to the imposition of the external
constraint, but rather only an abstraction of those con-
ditions that the planner can reason about.

Thus, each externally imposed constraint will be asso-
ciated with a 3-tuple

(c ,sdmCe)

where ce is the constraint (changed specification or or-
dering relation) that the planner needs to accommodate
into its plan, sdmCe is the SDM that is imposing that
constraint, and woaCe is the WOA explanation associated
with ce. The semantics are that

• WOA consists only of predicates that the planner can
reason about 9

• As long as woaCe is holding, ce should necessarily be
accommodated into its plan

• If the planner finds at any point of time that woaCe

is not holding, then it is possible that ce is no longer
required. The planner can then request the sdmCc

to check if the constraint is still required. 10 (If
the sdmCe were to retract the constraint ce, then
the planner can use the methodology developed in
sections 2 and 3 to appropriately modify the plan
to accommodate the change.)

Note that this allows the planner to essentially ignore
outside modules unless the WOA of the constraint posted
by them are affected. This provides functional autonomy
to the planner, by obviating the need to poll each and
every SDM for every change in the environment.

A proposition / is considered reachable ii the planner can
reason about the ramifications of its actions on the truth of
the proposition. The WOA should only consist of reachable
propositions. In TWEAK representation, which does not allow
any domain axioms, a proposition is reachable iff / codesig-
nates with some proposition in the add or delete lists of some
operator template of the planner.

The external constraints may have been voluntarily im-
posed by the external modules or may have been posted to
satisfy some request by the planner. In the process plan-
ning example, either the geometric modeler may have im-
posed ce because it wanted to ensure clear access path, or
alternatively the planner requested it to ensure clear access
path. In the latter case, the planner may model clear access
path as precondition Clear Access (feature) of some task of
V whose truth needs to be computed by an outside module
(cf. "compute-conditions" of nonlin [Täte, 1977]). When
asked to make such a condition true, the geometric modeler
may then impose some constraints (such as ce) on the cur-
rent plan. For the purposes of our current discussion, this
distinction is immaterial.

In the process planning example discussed above, the
planner might be given the WOA explanation

a < length(featurei) < b

for the constraint ce, with the semantics that as long as
the length of the feature feature{ is in the range [ab],
the constraint ce would be required by the geometric
modeler. When the WOA is violated, it does not mean
that the ce is automatically retracted. Instead, the cor-
responding SDM (in this case geometric modeler) will be
requested to repeat the computation to see if ce is still
required in the current situation.

4.2 Classes of WOA Explanations

A critical issue about the WOA explanation concerns
their level of detail: as mentioned above, they should
be at such a level as to allow the planner to reason with
the explanation, and they should constitute sufficient
conditions for assuming that ce is still needed. There
may be a spectrum of such conservative sufficiency con-
ditions for any given external constraint, with tradeoffs
between the informedness of the WOA and the ability of
the outside modules to reason with it.

For instance, in the process planing example above,
the geometric modeler could return as the WOA of the
ordering constraint a representation of the configuration
space in which the ClearAccess(hi) predicate will re-
main. However, that WOA is likely to be at too low a
level of detail to be directly useful to the planner. On the
other hand it could return as the WOA a list of quantities
whose values it used in arriving at ce as the constraint
to be imposed. In this case, the planner would have to
reinvoke the geometric modeler any time any of those
quantities change.

While the former WOA is expressive but difficult to
reason with, the latter is easy to reason with, but very
conservative. The correct level of abstraction of WOA
depends ultimately on the degree of similarity between
the domain models and the inference strategies of the
planner and the SDMS . For example, if all the modules
are identical, as in distributed planning, the WOA can
include both the necessary and sufficient conditions for
ce. While in complex environments with heterogeneous
modules, even a WOA that specifies the quantities on
whose values ce depends, would be of utility.

A promising strategy is to provide WOA explanations
that are at multiple levels of abstraction. This will allow
the planner to choose the abstraction that it can handle,
while still allowing some other SDM to reason with the
WOA at a deeper level of detail.

Careful investigation will be needed to find classes of
explanations that satisfy the conservative (sufficiency)
property of the window of applicability explanations,
while at the same time allowing reasoning at a level suit-
able for other modules.

5 Summary

Planning in many real world situations requires concur-
rent operation between the planners and other modules
of the environment. This poses several requirements that

98

are not supported by the existing approaches to auto-
mated planning. In particular, we identified the abil-
ity to incrementally accommodate changes necessitated
by the externally imposed constraints into the existing
plans, and the ability to understand and reason about
the rationale behind externally imposed constraints at an
appropriate level of detail as two crucial requirements for
planning in such environments. We have then explored
ways of extending the hierarchical planning framework
to handle these requirements. In particular, we discussed
the techniques for making the planning incremental and
for accommodating the externally imposed constraints
by reasoning about their effect on the correctness of the
plan. Next we proposed a methodology for coordination
between planners and external modules that depends on
attaching a set of sufficiency conditions rather than nec-
essary and sufficient conditions as justifications to vari-
ous externally imposed constraints. We have discussed
the issues of generating and reasoning with such condi-
tions.

Acknowledgements

We would like to thank Mark Cutkosky for many help-
ful discussions and comments on a previous draft of this
paper. Andrew Philpot and Randy Wilson also provided
helpful suggestions.

References

[Chapman, 1987] D. Chapman. Planning for conjunc-
tive goals. Artificial Intelligence, 32(3), 1987.

[Corkill, 1979] D.D. Corkill. Hierarchical planning in a
distributed environment. In Proceedings of Sixth IJ-
CAI, August 1979.

[Cutkosky and Tenenbaum, 1990] M. R. Cutkosky and
J. M. Tenenbaum. A methodology and computational
framework for concurrent product and process design.
Mechanism and Machine Theory, 23(5), 1990.

[Durfee and Lesser, 1988] E.H. Durfee and V.R. Lesser.
Predictability versus responsiveness: Coordinating
problem solvers in dynamic domains. In Proceedings
of Seventh NCAI, August 1988.

[Georgeff, 1990] M. Georgeff. Decision-making in an em-
bedded reasoning system. In Proceedings of Eleventh
IJCAI, August 1990.

[Hayes-Roth, 1987] B. Hayes-Roth. Dynamic control
planning in adaptive intelligent systems. In Pro-
ceedings of DARPA Knowledge-Based Planning Work-
shop, December 1987.

[Hayes, 1987] C. Hayes. Using goal interactions to guide
planning. In Proceedings of 6th National Conference
on Artificial Intelligence, pages 224-228, July 1987.

[Kambhampati and Cutkosky, 1991] S. Kambhampati
and M. R. Cutkosky. An approach toward incremen-
tal and interactive planning for concurrent product
and process design. In Proceedings of ASME Win-
ter Annual Meeting on Computer Based Aproaches to
Concurrent Engineering, (To appear) 1991.

[Kambhampati and Hendler, 1989]
S. Kambhampati and JA. Hendler. Control of re-
fitting during plan reuse. In Proceedings of 11th In-
ternational Joint Conference on Artificial Intelligence,
pages 943-948, August 1989.

[Kambhampati and Philpot, 1990] S. Kambham-
pati and A. Philpot. Incremental planning for con-
current product and process design. Technical report,
Center for Design Research and Computer Science De-
partment, Stanford University, CA, (In preparation)
1990.

[Kambhampati and Tenenbaum, 1990] S. Kambham-
pati and J.M. Tenenbaum. Towards a paradigm for
planning in interactive domains with multiple special-
ized modules. In AAAI-90 Workshop on Automated
Planning for Complex Domains, August 1990.

[Kambhampati, 1989] S. Kambhampati. Flexible Reuse
and Modification in Hierarchical Planning: A Valida-
tion Structure Based Approach. PhD thesis, Center
for Automation Research, Department of Computer
Science, University of Maryland, College Park, MD
20742, October 1989.

[Kambhampati, 1990a] S. Kambhampati. A classifica-
tion of plan modification strategies based on their in-
formation requirements. In AAAI-90 Spring Sympo-
sium on Case-Based Reasoning, March 1990.

[Kambhampati, 1990b] S. Kambhampati. Mapping and
retrieval during plan reuse: A validation-structure
based approach. In Proceedings of 8th National Con-
ference on Artificial Intelligence, August 1990.

[Kambhampati, 1990c] S. Kambhampati. A theory of
plan modification. In Proceedings of 8th National Con-
ference on Artificial Intelligence, August 1990.

[Lansky, 1988] A. Lansky. Localized event based rea-
soning for multiagent domains. Computational Intel-
ligence Journal, 4(4), 1988.

[Sacerdoti, 1977] E.D. Sacerdoti. A Structure for Plans
and Behavior. Elsevier North-Holland, New York,
1977.

[Simmons and Davis, 1987] R. Simmons and R. Davis.
Generate, test and debug: Combining associational
rules and causal models. In Proceedings of 10th Inter-
national Joint Conference on Artificial Intelligence,
August 1987.

[Täte, 1977] A. Täte. Generating project networks. In
Proceedings of 5th International Joint Conference on
Artificial Intelligence, pages 888-893, 1977.

[Wilkins, 1984] D.E. Wilkins. Domain independent
planning: Representation and plan generation. Ar-
tificial Intelligence, 22:269-301, 1984.

99

Deadline-Coupled Real-Time Planning*
Sarit Kraus

Institute for Advanced Computer Studies and
Department of Computer Science

Univ. of Maryland, College Park, MD 20742

Madhura Nirkhe
Department of Electrical Engineering and
Institute for Advanced Computer Studies

Univ. of Maryland, College Park, MD 20742

Donald Perlis
Department of Computer Science and

Institute for Advanced Computer Studies
Univ. of Maryland, College Park, MD 20742

Abstract

We have undertaken a project in combining declar-
ative and procedural forms of real-time planning
for novel deadline situations. In deadline situations
the time taken in reasoning toward a plan brings
the deadline closer. Thus the planning mechanism
should take account of the passage of time dur-
ing that same reasoning. This general considera-
tion is also the subject of other work. However,
we are attempting to treat all facets of planning
as deadline-coupled; the problem then is how to
take proper account of the approaching deadline
when any such accounting itself simply takes more
time and seemingly gets in the way of its own ac-
curacy. We employ the mechanism of step-logics
toward solving this problem.

1 Introduction

We have undertaken a project in combining declarative
and procedural forms of real-time planning for novel
deadline situations. In deadline J situations the time
taken in reasoning toward a plan brings the deadline
closer. Thus the planning mechanism should take ac-
count of the passage of time during that same reasoning.
This general consideration is also the subject of other
work.

However, we are attempting to treat all facets of plan-
ning as deadline-coupled; the problem then is how to
take proper account of the approaching deadline when
any such accounting itself simply takes more time and
seemingly gets in the way of its own accuracy. We em-
ploy the mechanism of step-logics toward solving this
problem.

"This is an extended version of our paper [Kraus et ed.,
1990]. This research was supported in part by NSF grant IRI-
8907122, and in part by the U.S. Army Research Olficefgrant
DAAL03-88-K0087).

We do not agree with the claim in [Russell and Wefald,
1989] (page 401) that "the 'deadline' model of time pressures
is overly restrictive, since in reality there is almost always a
continuous increase in the cost of time." We think that many
situations do involve relatively hard deadlines; e.g. getting to
the airport in time, not to mention the more dramatic Nell
and Dudley case below.

Meta-planning is the usual proposal for reasoning
about the reasoning process. But that takes time too!
Maybe the time taken by meta-planning can be kept very
short. But what of highly novel settings in which one
cannot a priori assign expected utilities to various con-
ceivable options or refinements? Then the planner may
have to decide on utilities and other factors in real time.
In these cases it seems unlikely that such meta-planning
will always have a modest time cost. In what follows,we
present an illustrative example; sketch the structure of
our program and show a few important steps of the out-
put.

1.1 An Illustration

To elaborate, we present an illustrative domain, which
we call the Nell and Dudley Scenario: 2 Nell is tied to
the railroad tracks as a train approaches. Dudley must
formulate a plan to save her and carry it out before the
train reaches her. If we suppose Dudley has never res-
cued anyone before, then he cannot rely on having any
very useful assessment in advance, as to what is worth
trying. He must deliberate (plan) in order to decide
this, yet as he does so the train draws nearer to Nell.
Thus he must also assess and adjust (meta-plan) his on-
going deliberations vis-a-vis the passage of time. Since
the setting is novel Dudley does not have a "canned"
procedure rescueJieroine(H) which he can just invoke
with H = Nell. However, Dudley has acquired some
"shelf" procedures for solving simpler subproblems that
are encountered in more routine situations. For exam-
ple, we do not expect Dudley to deliberate on how to
run, he knows that he must take a number of paces de-
pending upon the distance. He also knows that running
is a means of transporting oneself from one place to an-
other. Similarly, axioms come to his aid regarding which
subtasks he must perform to complete the operation of
untying Nell once he reaches the rail track. His total
effort (plan, meta-plan and action) must stay within the
deadline. He must in short, reason in time about his own
reasoning in time.

This problem was first mentioned in the context of time-
dependent reasoning by McDermott [McDermott, 1978].

100

1.2 Related Work

Drew McDermott [McDermott, 1982] and Andrew Haas
[Haas, 1985] have discussed the Nell and Dudley prob-
lem in terms of a surprising difficulty: if Dudley does
not properly distinguish his planned actions from actual
events then he may formulate a plan to save Nell and
then conclude that his plan will save her, hence she is
not in danger, hence he does not need the plan after
all! This bizarre possibility can indeed arise in a highly
limited representational setting, in which plans are not
distinguished from actions.

However, although this is treated in our project, it is
only a small part of the main thrust of our concern, which
is to find effective representational and inferential tools
by which a reasoner can keep track of the passing of time
as he makes (and enacts) his plan, thereby allowing him
to adjust the plan so that neither the plan-formation
that is in progress, nor its simultaneous or subsequent
execution, will take him past the deadline. In terms
of our toy scenario, we want to prevent Dudley from
spending so much time seeking a theoretically optimal
plan to save Nell, that in the meantime the train has
run Nell down. Moreover, we want Dudley to do this
without much help in the form of expected utilities or
other prior computation.

In [Horvitz, 1988], [Horvitz et al, 1989], and [Rus-
sell and Wefald, 1989], decision-theoretic approaches are
used to optimize the value of computation under uncer-
tain and varying resource limitations. In both works,
deadlines and the passage of time while reasoning are
taken into consideration in computing the expected com-
putational utility. However, these works do not account
for the time taken for meta-planning. Indeed, this is
stated in [Russell and Wefald, 1989] (page 402): "Here
we will not worry about the cost of meta-reasoning it-
self; in practice, we have been able to reduce it to an
insignificant level".

Dean [Dean, 1984] proposed a computational ap-
proach to reasoning about events and their effects oc-
curring over time. Dean, Firby and Miller [Dean et al.,
1988] subsequently designed FORBIN, a planning ar-
chitecture that supports hierarchical planning involving
reasoning about deadlines, travel time, and resources.
Dean and Boddy [Dean and Boddy, 1988b] formulated
an algorithmic approach to solution of time-dependent
planning problems by introducing "anytime algorithms"
which capture the notion that utility is a monotonic
function of deliberation time. Here also, the time for
computation is not accounted for : "The time required
for deliberation scheduling will not be factored into the
overall time allowed for deliberation. For the techniques
we are concerned with, we will demonstrate that de-
liberation scheduling is simple, and, hence, if the num-
ber of predicted events is relatively small, the time re-
quired for deliberation can be considered negligible."
[Dean and Boddy, 1988b] (page 50). [Boddy and Dean,
1989] demonstrated deliberation scheduling for a time-
dependent planning problem involving tour and path
planning for a mobile robot.

We refer the reader to [Hendler et al., 1990] for a gen-
eral survey of related work on planning. Some particular

results on temporal planning follow. [Allen and Koomen,
1983] formulated a world model based on temporal logic
which allows the problem solver to gather constraints on
the ordering of actions without having to commit to it
when a conflict is detected. [Dean, 1987] discusses how
a planner can reason about the difficulty of its tasks,
and depending on available time, produce reasonable
if not optimal solutions. [Lansky, 1986] and [Lansky,
1988] use a first-order temporal logic model to describe
complex synchronization properties of parallel multia-
gent domains. In [Dean and McDermott, 1987] a com-
putational approach to temporal reasoning is presented
in which a problem solver is forced to make predictions
and projections about the future and plan in the face
of uncertainty and incomplete knowledge. Time-maps
are introduced here. [Dean and Boddy, 1988a] examine
the complexity of temporal reasoning problems involving
events whose order is not completely known.

Our approach has many similarities with the research
cited above; the main difference is that we are attempt-
ing to account for all the time taken for planning and
acting.

2 The Status of the Project thus Far

2.1 Using Step-logics

Our current project employs the formalism of "step-
logics" introduced by Elgot-Drapkin, Miller, and Perlis
([Drapkin et al., 1987]^ [Elgot-Drapkin and Perlis,
1990], [Elgot-Drapkin, 1988]) where inferences are
parametrized by the time taken for their inference, and
in which these time parameters themselves can play a
role in the specification of the inference rules and ax-
ioms. Step-logics offer a natural representation of the
evolving process of reasoning itself. A step is a funda-
mental unit roughly characterized by the time it takes
Dudley to draw a single inference. Observations, which
are inputs from the external world, may arise at the be-
ginning of a discrete time-step. When an observation
appears, it is considered a belief in the same time-step.
Apart from his observations at the beginning of step i,
the only information available to Dudley is a snap-shot
of his deduction process completed up to and including
step i — 1. During step i Dudley applies all available in-
ference rules in parallel, but only to beliefs at step i— 1;
new beliefs thus generated through applications of infer-
ence rules are not available for use in further inference
until step i+l. For example, consider the following rea-
soning (shown is an application of modus ponens — Rule
8, Appendix B) from step 8 to step 9.

8: Now(8); Run(\7 : 30, dudley, here : there);

Run(\l : 30, dudley, here : there) —+
^(30, dudley, there);

9: Now(9); Run(17 : 30, dudley, here : there)

Run{\l : 30, dudley, here : there)
At(30, dudley, there);
At(30, dudley, there).

101

Although this illustrates the use of modus ponens, in
fact, when Dudley goes to save Nell, he will never have
a belief such as Run(17 : 3Q,dudley,here : there), at
any step prior to 17, since this is a future prediction and
therefore treated as a projection within a plan, rather
than as a fact. Notice that Dudley knows what time it
is, and therefore that knowledge changes at every step.
In effect, step-logics are first-order logics suitably modi-
fied to include a Now(i) predicate, where the value of i
changes at the end of a time-step.

2.2 Structure and Representation of a Partial
Plan

We have created a suitable representational language
for a simple (e.g., we are not yet addressing interact-
ing plans) version of the Nell and Dudley representative
deadline problem.3 The set of axioms and inference rules
can be found in the appendix. ^From an initial unsolved
goal Dudley formulates the first partial plan, and gives
it a name (Rule 2, Appendix B). 4 This name appears as
a parameter in all his reasoning concerning the particu-
lar partial plan, until the goal is achieved or the plan is
aborted as unfeasible. Dudley maintains a set of Facts
which consists of beliefs obtained through direct obser-
vations, and the largest subset of Projection set which
is consistent with the observations and whose time in-
tervals have been passed by step i. At all times Dudley
remembers the hard deadline which he must meet. The
partial plan is a temporally ordered list of action triplets.
Each ordered triplet consists of an action, preceded and
followed, respectively, by its associated condition and a
result. A triplet is written within square brackets [. . .]
and an ordered list of triplets is enclosed within curly
brackets {...} in our notation. An action may be com-
plex or primitive (atomic). A primitive action takes one
step to perform. A complex action must be further re-
fined to the level of primitive actions using axioms. The
condition is a set of wffs that must be true during the
course of the action being performed. The result is a set
of wffs which are expected to be true at the completion
of the action.

2.3 Working Estimate of Time

As Dudley develops a partial plan to save Nell, he con-
tinuously refines his estimate of the time to carry the
plan to completion, making sure it will not overshoot
the deadline. This we call the working estimate of time
(WET for short) 5. The WET is Dudley's calculation
of how long his partial plan (formed as of the previous
step) will take to execute. This he adds to the current
time and compares the result to the deadline to make
sure the plan is not hopeless (Rules 5 k 6, Appendix
B). As long as it is not he declares it Feasible, and con-

tinues refining and/or putting it into execution. Dudley
updates the WET when an action with a fixed non-zero
interval between its start and finish times is made part
of the plan 6. As the plan reaches completion the WET
reaches a realistic estimate for the time necessary for the
execution of the residual partial plan, and thereby helps
Dudley keep track of the time available for deliberation
as well as acting.

2.4 Projection in the Context of a Plan

The set of Facts, along with the actions and the results
contained in the current partial plan together form what
we call the context set of the partial plan. The mecha-
nism by which each predicate from the context set (based
on information from the earlier step) is projected 7 into
the future is as follows (Rule 10, Appendix B). Some
wffs are related to events that have fixed start and fin-
ish times and are not expected to persist beyond their
finish time. An example is Run(T\ : T-2,Y,L\ : L-i). Be-
yond time To we do not expect Run to continue to hold.
There are other wffs which can be projected by default
infinitely into the future. However, the projected time
range of a predicate is trimmed to exclude the time-
overlap with other predicates that can not co-exist in
its presence. For example, looking at Nell as she is tied
to the railroad tracks, Dudley initially projects that she
will remain tied there until infinity, and in particular, at
the instant of the projected arrival of the train. This
causes him to initiate the formulation of the plan. How-
ever, in the context of his partial plan, when the plan
is refined to include Release, the range of persistence of
Tied must be trimmed due to the appearance of result
Not-tied, since the two are mutually exclusive. Dud-
ley maintains the clear distinction that NotJied is true
only in the context of the plan, and still maintains the be-
lief Unsolved(Goal(out-of-danger(Ddl, n, /2))) until the
plan is completed executed. This provides an easy solu-
tion to McDermott's difficulty mentioned earlier, namely
the inability to distinguish between plans and actual
events. Thus, via his projection mechanism Dudley de-
duces supposed changes in the world, thereby revising
some beliefs and retaining others: the familiar issues of
the frame problem. Dudley uses his projection both in
planning and acting.

2.5 Use of Projections in Planning

If a condition CA for a particular action A can be found
in the projection (in the context of the partial plan de-
veloped thus far), Dudley does not attempt to find an
axiom for achieving CA- He marks CA as satisfied
(Rule 11, Appendix B). If CA is not expected to be

3This version has been implemented in PROLOG.
4We will also find the name of the plan useful in later

versions which will consider multiple plans.
5The WET is one of our concessions to procedural meth-

ods: we do not require Dudley to figure out how to do arith-
metic but rather allow that, he already knows. But we do
require him to note the passage of time during the execution
of the procedure.

6Currently, Dudley does not have a procedure to estimate
the duration of tasks with unspecified time intervals.If we
incorporate such a procedure, the time taken to execute it
will also he our concern.

7 Projections (and persistences) have been studied by nu-
merous authors; see eg. [McDermott, 1987], [McDermott,
1982] , [Wilensky, 1983], [Charniak and McDermott, 1985],
[Kautz, 1986] and [Kanazawa and Dean, 1989]. Our treat-
ment is along the lines of time-maps of [Dean and McDer-
mott, 1987], [Dean, 1987],

102

true in the projection, he finds an axiom of the form
B\,.. .,Bk —► CA, the triplets corresponding to fi's are
chained to the triplet for A, and CA is marked satisfied
(Rule 12, Appendix B). A flexible time margin is avail-
able between Rßk (the result of Bt) and CA- At every
step, all conditions marked satisfied are re-examined to
see if a changed projection set has rendered them unsat-
isfied again. An action A whose condition CA is satisfied
using either of the two methods is further decomposed
if it is not primitive, by using an axiom of the form
Di A ... A Dk —► A (Rule 14, Appendix B). A chain of
triplets each corresponding to Di is added in place of the
triplet for A. In the current implementation, we regard
the D\ A ... A Dk as a shelf plan for doing A, and hence
do not allow flexible time margins between the end of
Dj and start of -Dj+i, 1 < j < k.

2.6 Use of Projections and Observations in
Acting

Dudley may start to act on the partially developed plan
as soon as it is possible to perform a primitive action, not
waiting for the plan to reach completion. At the same
time he continues planning [McDermott, 1978],[Georgeff
and Lansky, 1988J. His predicted projections and obser-
vations are compared; conflicts resolved in favor of the
latter (Rule 13, Appendix B). Projections can suffice to
satisfy the condition for a primitive action, when the con-
dition is not directly observed, provided the projections
do not contradict any other observations. For example,
as Dudley takes one pace after another, he does not nec-
essarily observe that he is Ai(L\ + v), At(L\ + 2v) ...;
he can act on the basis of his projections unless he gets
an observation input during the course of his pacing, in-
forming him that a certain pace was faulty and landed
him At(Ls) instead of the desired destination. He can
not proceed with the next pace and must revise his plan
and WET in such a situation. When A is acted upon,
The start_time of the condition CA for A is bound to
Now and other time variables which have a fixed dis-
tance from the start_time are also bound appropriately.

We are currently extending our implementation in var-
ious ways, to involve perceptual reasoning,8 explicit rep-
resentations for extended actions, revising plans when
they are seen to be inadequate, and choosing between
multiple plans.

3 Some Illustrative Steps

To illustrate our efforts in a bit more detail, we present
below portions of the output from our PROLOG pro-
gram that implements the ideas we have been discussing.
Here Nell is a distance of 35 'paces' from Dudley when
he first realizes (step 0) that the train will reach her in
50 time units. He begins to form a plan, seen below in
step 1 as Bpl ('partial plan'), and refines the plan in
subsequent steps. Ddl is the deadline time (50 in the

example) given to Dudley, d is Dudley, and n is Nell.
The subscript obs indicates that the wff it is attached
to is the result of an observation. Subscripted /'s indi-
cate locations and subscripted t's indicate times (step
numbers). A colon between times (as in At(0 : oo,rf,/i))
represents a time interval during which the predicate is
asserted to be true (in this case, that Dudley will be at
location /i from 0 to infinity.

Proj gives Dudley's projections as to what will be true
in the future, based on his partial plan and whatever
Facts he has to work with. The word save that appears
as argument to Ppl, Proj and Feasible in step 1, is
simply a label naming the plan he is forming.

0: F*cts({At(0, d, h)obs,Tied(0, n, l2)0bs}),
Deadline(50), Goal(out-of-danger(Ddl, n, l2))

1: Facts({.42(0, d, h),Tied(0, n, l2)}), Deadline(50),
Unsolved(Goa/(ou<_o/_dan<7er(50, n, I2))),
Ppl(save, 1, {out..of -danger(50, n, h)))}),
Proj(save, {At(0 : 00, d, l\),Tied(0 : 00, n, l2)}),
WET(save,0), Feasible(sawe, 0)

In step 1 the Ppl simply records that Dudley plans
to get Nell out of danger. In his Proj he still
expects to remain where he is (/1 for the indefinite
future ('00') since he has not yet realized in this
first second that he must move to save Nell. Nor
has he realized he must untie Nell, so he also
projects that she will remain tied indefinitely.

2: Facts({^(0 : l,d,h),Tied(0 : l,n,/2)}),
Deadline(50),
Unso\ved(Goal(out-of-danger(bO, n, l2))),

Ppl(save, 2,
Not_tied(t\, n, I2)

Pull(tx :t2,d,n,l2)
Out-of' -danger{t2) n, l2)

{t2 < 50,ii =t2- 1})
Pvoj(save, {At(0 : 00, d, li),Tied(0 : 00, n, /2)}),
WET(save, 0), Feasible(save, 1)

In step 2 Dudley has begun refining his plan,
namely he determines that if Nell were untied then
he could Pull her out of danger; this he infers from
general world knowledge (axioms, not shown). The
times t\ and t2 here are indefinite times that must
satisfy only the conditions shown, so that the
WET is not too long. The column matrix
indicates an action (Pull) with its enabling
condition (NotJ,ied) and result (Out-of-danger).
We skip the next three steps for the sake of brevity.

This ties back to spatial reasoning, and to aspects of
a plan that involve getting more information; for instance
Dudley may have to move in order to see whether Nell is
tied. This in turn relates to existing work ([Kraus and Perlis,
1989], [Davis, 1988]) on ignorance and perception.

103

5: Facts({,4*(0 : 4, d, ll),Tied(Q : 4, n, /2)}),
Deadline(50),
Uiisolved(Goal(out-of„danger(50, n, l2))),

At(t6,d,h)
Run(te : t7,d,li : l2)

At(t7,d,h)

Tp\(save, 5, <

^(<3,rf,/2)
Untiex(tz : t9,d,n,l2)

5«CC_«i(<9)

At(<5, d, /2), 5wcc_tt2(i5)
Untie3(t5 : t4,d, n,/2)

5'wcc_W3(<4), NotJ,ied(t4, n, /2)

NotJied(ti, n, /2)
Pull(ti : t2,d,n,l2)

Out.of^danger(t2, n, l2

{<2 <50,<i = *2- 1,<4<*1,
^5 = <4 — 1,<3 = t4 — 3, ^3 = <9 — 1,

<7 <t3,tS = t7- l,t6 < tT}),
Proj(save, {>li(0 : *8, ^, ^i), -4*(*7 : oo, c/, /2),
Tied(0 : <5, n, /2), N otJied(t4 : oo, n, /2),
Out.of-danger(t2 : oo, n, /2), Pull(ti :t2,d,n, l2),
Release(t3 : t4, d, n, /2), Run(te : t7, d, L : /2)}),
WET(save, 4), Feasible(sat;e, 4).

In step 5, Dudley has been able to infer (from
axioms not shown) that he can refine his plan by
running to Nell from l\ (since he projects' from
earlier steps that he will still be at l\ at step i6) to
/2 and releasing her (which will take him three
untying actions). The numerical subscripts
attached to column matrices show the order in
which they are to be read ; also the subscripts
show some portions have been omitted for ease of
presentation. Note that the result NotMed in the
fourth matrix matches the enabling condition of
the fifth matrix. Notice in Proj at last Dudley
knows he must move to /2 (by some as yet
indefinite time t7, where he then supposes he will
remain.

Facts({.4*(0 : 5, d, h),Tied(0 : 5, n, /2)}),
Deadline(50),
\Jnsolved(Goal(out-of-danger(5Q, n, /2))),

At(t6,d,h)
Pace(t§ : tio, d, l\ : l\ + v)

At(t1Q,d,h + v)

At(ta,d,li + Mv)
Pace(t8 : t7,d,li + 34v : /2)

At(t7,dJ2)

Ppl(save, 6, <

{t2 < 50,*! = h - l,t4 < h,h = U - 1,
*3 = *4 — 3,<3 = *9 — 1,*7 < <3,*8 = *7 — 1,
*6 = t7 — 35, IQ = iio — 1}),
Proj(save, {At(Q : ts, d, lt), At{t7 : oo, d, /2),
Tied(0 : t$, n, /2), NotJ,ied{i4 : oo, n, /2),
Out-of'-danger{t2 : oo, n, /2), Pull{t\ : t2, d, n, /2),
Release(t3 : t4, d, n, /2), Run{t§ : t7, d, l\ : /2),

Succ.ui(ts : oo), 5wcc_u2(<5 : oo),
Succ.u3{t4 : oo), Untiei(t3 : ts, d, n, /2),
Untie2(t9 :ts,d,n,l2),Untie3(h '■ *4, d, n, /2)}),
WET(save, 39), Feasible(save, 5)

In step 6 Dudley has planned his run (35 paces)
and is ready to start enacting his plan. This is seen
by comparing step 6 and step 7; in the latter he no
longer has the plan to do the first pace (from l\ to
/i + v since he has moved this to his 'do' list of
actions (not shown) since (in this case) the Facts
list does not contradict his projected position of l\.
Here v is his velocity (i.e., one pace per second).

Facts({/tt(0 : 6, d, h), Tied(0 : 6, n, /2)}),
Deadline(50),
XJnso\ved(Goal(out„of„danger(50, n, /2))),

At(8,d,h + v)
Pace(8 : 9,d,h + v : h + 2v)

At(9,d,h + 2v)

Pp\(save, 7,

At(41,d,h + 34v)
Pace(4l :42,d,/! + 34t; : l2)

At(42,d,l2)

At(t3,d,l2)
Untiei(tz : t9,d,n,l2)

SuCC-Uiitg)

34

J 35.

NotJied(ti, n, /2)
Pull(t\ : t2,d,n,l2)

Out-of-danger(t2, n, l2)
38

{t2 < 50, fj =t2- l,t4 <tu

<5 = <4 — 1, *3 = t\ — 3, *3 = *9 — 1,
t6=J,tl0 = 8,...,t7 = 42,t7<t3}),
Proj(sat;e, {At(0 : te,d, /i), At(tio, d, li + v),
..., At(t7 : oo, d, /2), Tied(0 : t^,n, l2),
NotJied(t4 : oo, n,l2),
Out-of-danger(t2 : oo, n,l2),
Pull{ti : t2,d, n, l2), Release(t3 : t^, d, n, l2),
Run(t6 '■ t7, d, l\ : /2), Succ-U\(tQ : oo),
Succ-U2{tz ■ oo), Succ-u3(t4 : oo),
Untiei(t3 : t9, d, n, /2), Untie2{t9 : t5,d,n,l2),
Untie3(tz : t4,d,n,l2), Pace(t6 : tio,d,lltli + v),
Pace(tio : ts, d, l\ + v,h + 2v),
Pace(t8:t7,d,l1+2v,l2),})
WET(save, 38), Feasible(save, 6)

We see in step 7 above that now Dudley believes
he will be at /i + v by time 8, having taken the
first pace toward Nell during the one second

) between times 7 and 8. His actions continue, until
by step 47 he has saved Nell.

4 Conclusion and Future Work

Our efforts thus far are preliminary evidence that a logic-
based real-time planner is feasible. Much more needs to
be done, especially regarding multiple/competing plans
and interacting subplans. Our next effort involves al-
lowing Dudley two possible means of saving Nell, and
he must find them and choose between them while also
taking this time spent into consideration.

104

5 Acknowledgement

The authors wish to thank James Hendler for helpful
comments.

A AXIOMS

To facilitate reasoning with triplets, some axioms are
given in two forms.

Axioms related to moving:

1. Run(T : T + (L2 - Lx)/Vy ,Y, Lx : L2) -+

At(T + (L2-Lx)/Vy,Y,L2).

2. condition(Run(Tx :T2,Y,LX : L2), At{Tx, Y, Lx)).

3. result(Run(Tx :T2,Y,LX : L2),At(T2,Y, L2)).

4. Pace(T : T + 1, Y, Lx : Lx + Vy) A

Pace(T+l :T+2,Y,Li + VY :L1+2Vy) A...

APace(T + k- 1 :T+ k,Y,

Lx + (k-l)VY -.Li+kVy)

-+ Run(T:T + k,Y,Lx : Lx + kVy).

5. condition(Pace(T : T + 1, Y, L : L + Vy),

At(T,Y,L)).

6. result(Pace(T :T+l,Y,L: L+Vy),

At(T+l,Y,L + VY)).

7. At(Tx :T2,Y,Lx)^-iAt(Tx :T2,Y,L2).

7. Untiei(T:T+l,Y,X,L)

AUntie2(T+l :T + 2,Y,X,L)

AUntie3(T + 2 : T + 3, Y, X, L)

^Release(T :T + Z,Y,X,L).

8. condition(Untiex(T : T + 1, Y, X, L),At(T, Y, L)).

9. result(Untiex(T : T + 1, Y, X, L), Succ.ux{T + 1)).

10. condition(Untie2(T : T + 1, Y, X, L),

At(T,Y,L)ASucc.ui(T)).

11. result(Untie2(T :T+ 1, Y,X, L), Succ.u2{T + 1)).

12. condition{U ntie3{T : T+ 1,Y,X,L),

At(T,Y,L)ASucc.u2(T)).

13. result(Untie3(T : T + l,Y,X,L),

Succ-u3(T + 1) A Not.tied(T +1,X, L)).

14. Tied(Tx :T2,X,L)-+ -^NotJied(Tx :T2,X, L).

Axioms related to untying and releasing:

1. Pull(T : T + l,X,L) — Out-ofjdanger(T +

l,X,L).

2. condition(Pull{T :T+1,X,L), NotJied(T, X, L)).

3. result{Pull(T :T+1,X,L),

Out-of-danger(T + 1, X, L)).

4. Release{T : T+3, Y, X, L) -* NotJied(T+3, X, L).

5. condition(Release(T : T + 3,Y,X, L),At(T,Y, L)).

6. result(Release(T : T + 3,Y,X, L), Notlied(T +

S,X,L)).

105

B INFERENCE RULES

1. Agent looks at the clock

! + 1 : ..., Now(i + 1)

2. Forms the first partial plan

i : Goal(G)
i + 1 : Ppl(p, i + 1, {G}), feasible(p, i)

3. Finds a triplet whose result matches the goal

i : Ppl(p, i, {G}), result(>l, G), condition(yl, CA)

i+1 :Ppl(p,i+ 1,

4. Finds a triplet whose action matches the goal

CA
A
G

i : Ppl(p, i, {G}), result(G, RG), condition(G, CG)

1 :Ppl(p,i+l,
CG
G

RG
•)

5. Computes WET and checks if feasible

i : Ppl(p, i,{...}), Deadline(Dd/), WET(i) + i < Ddl

'■■ + 1 : Feasible(p, i)

6. Computes WET and checks if unfeasible

Ppl(p, i, {...}), Deadline(Dd/), WET(i) + i > Ddl
i + 1 : -iFeasible(p, i)

7. Observations become instant beliefs

8. Modus Ponens

9. Inheritance

if a is not Now(i).

i + 1 : Facts(..., a); a G OBS(i + 1)

i : . . ., a, a —> ß

z : . . ., a
i + 1 : . . ., a

106

10. Projection

i : Context_set(i),Proj(f)

i + 1 : Proj(f + 1) = {X(S : R,...) | X(S : F,...) € Context.set(i),
F < R, Contextset(i) \f -<X(S : R,...); S : R is the maximum such interval.}

11. Satisfy a condition for an action by looking at projection

i : Ppl(p, «',<...
CA
A

RA

...»,CUeProj(i)

12. Satisfy condition using an axiom

i : Ppl(p, i,
CA(T:...)

A
RA

i + 1 : satisfied(CA)

...\),CA<t Proj(i), ßi,..., Bk(T' : T* ...) - CA(T* : .. .);T* < T

i+1 :Ppl(p,z'+l,

13. Perform a primitive action

CBX

Bl

. RBX

cBk r CA I
Bk A

RBk J . RA .
>), satisfied(C^)

i : Ppl(p, i,
CA
A

RA

. }),primitive(A),CA G OBS(i); or CA € Proj(i) and Facts(i) \f ^CA

i+1 :Ppl(p,J+l, {...})

14. Refine a non-primitive action when its condition is satisfied

i : Ppl(p, i,
CA
A

RA

>), satisfied(CU), Qi A ... A Qk — A

i + 1 :Ppl(p,i+l,

15. A formula from the projection becomes a fact

CQl
QI

RQ>

CQk

Qk
RQ*

...)

i : Facts(i), Proj(i)
i+1: Facts(i + 1) = Facts(i) U X(Ti : T2,...),

if X e Proj(t), T2 < i, and Facts(i) \f -<X(Ti : T2,...)

107

References

[Allen and Koomen, 1983] Allen, J. and Koomen, J.
1983. Planning using a temporal world model. In
Proceedings IJCAI-83, pages 741-747.

[Boddy and Dean, 1989] Boddy, M. and Dean, T. 1989.
Solving time-dependent planning problems. In Pro-
ceedings of IJCAI-89, pages 979-984, Detroit, Michi-
gan.

[Charniak and McDermott, 1985] Charniak, E. and Mc-
Dermott, D. 1985. Introduction to artificial intelli-
gence. Addison-Wesley, Reading, Mass.

[Davis, 1988] Davis, D. E. 1988. Inferring ignorance
from the locality of visual perception. In Proceedings,
AAAI88.

[Dean and Boddy, 1988a] Dean, T. and Boddy, M. 1988.
Reasoning about partially ordered events. Artificial
Intelligence, 36(3):375-399.

[Dean and Boddy, 1988b] Dean, T. and Boddy, M.
1988. An analysis of time-dependent planning. In
Proceedings, AAAI88, pages 49-54.

[Dean and McDermott, 1987] Dean, T. and McDer-
mott, D. 1987. Temporal data base management.
Artificial Intelligence, 32(1): 1-55.

[Dean et al, 1988] Dean, T., Firby, R. J., and Miller,
D. 1988. Hierarchical planning involving deadlines,
travel time and resources. Computational Intelligence,
4:381-389.

[Dean, 1984] Dean, T. 1984. Planning and temporal
reasoning under uncertainty. In IEEE Workshop on
Principles of Knowledge based Systems, Denver, Col-
orado.

[Dean, 1987] Dean, T. 1987. Intractability and time-
dependent planning. In Reasoning about Actions and
Plans, pages 245-266. Morgan-Kaufmann, Los Altos,
CA.

[Drapkin et al, 1987] Drapkin, J., Miller, M., and
Perlis, D. 1987. Life on a desert island. In Proc. Work-
shop on The Frame Problem, in Artificial Intelligence,
pages 349-357. American Association for Artificial In-
telligence.

[Elgot-Drapkin and Perlis, 1990] Elgot-Drapkin, J. and
Perlis, D. 1990. Reasoning situated in time: basic con-
cepts. Journal of Experimental and Theoretical Arti-
ficial Intelligence.

[Elgot-Drapkin, 1988] Elgot-Drapkin, J. 1988. Step-
Logic: Reasoning situated in time. PhD thesis, Univ.
of Maryland.

[Georgeff and Lansky, 1988] Georgeff, M. and Lansky,
A. 1988. Reactive reasoning and planning. In Pro-
ceedings AAAI88, pages 677-682.

[Haas, 1985] Haas, A. 1985. Possible events, actual
events, and robots. Computational Intelligence, 1.

[Hendler et al., 1990] Hendler, J., Täte, A., and Drum-
mond, M. 1990. Systems and techniques: AI planning.
AI magazine, 11(2):61—77.

[Horvitz et al., 1989] Horvitz, E., Cooper, G., and Heck-
erma, D. 1989. Reflection and action under scare
resources: Theoretical principles and empirical study.
In Proceedings of IJCAI-89, pages 1121-1127, Detroit,
Michigan.

[Horvitz, 1988] Horvitz, E. J. 1988. Reasoning under
varying and uncertain resource constraints. In Pro-
ceeding, AAAI88, pages 111-116.

[Kanazawa and Dean, 1989] Kanazawa, K. and Dean,
T. 1989. A model for projection and action. In Pro-
ceedings of IJCAI-89, pages 985-990.

[Kautz, 1986] Kautz, H. 1986. The logic of persistence.
In Proceedings, AAAI86, pages 401-405.

[Kraus and Perlis, 1989] Kraus, S. and Perlis, D. 1989.
Assessing others' knowledge and ignorance. In Proc.
of the Jfih International Symposium on Methodologies
for Intelligent Systems, pages 220-225.

[Kraus ei al., 1990] Kraus, S., Nirkhe, M., and Perlis, P.
1990. Planning and acting in deadline situations. To
be presented in the AAAI-90 Workshop on Planning
in Complex Domains.

[Lansky, 1986] Lansky, A. 1986. A representation of par-
allel activity based on events, structure, and causality.
In Reasoning about Actions and Plans, pages 123-159.
Morgan-Kaufmann, Los Altos, CA.

[Lansky, 1988] Lansky, A. 1988. Localized event-based
reasoning for multiagent domains. Computational In-
telligence, 4:319-340.

[McDermott, 1978] McDermott, D. 1978. Planning and
acting. Cognitive Science, 2:71-109.

[McDermott, 1982] McDermott, D. 1982. A temporal
logic for reasoning about processes and plans. Cogni-
tive Science, 6.

[McDermott, 1987] McDermott, D. 1987. Nonmono-
tonic logic and temporal projection. Artificial Intelli-
gence, 33:379-412.

[Russell and Wefald, 1989] Russell, S. and Wefald, E.
1989. Principles of metareasoning. In Proceedings
of the First International Conference on Principles
of Knowledge Representation and Reasoning. Morgan-
Kaufman.

[Wilensky, 1983] Wilensky, R. 1983. Planning and un-
derstanding. Addison Wesley, Reading, Mass.

108

Toward an Experimental Science of Planning

Pat Langley and Mark Drummond*
AI Research Branch, Mail Stop 244-17

NASA Ames Research Center
Moffett Field, CA 94035 USA

Abstract

In this paper we outline an experimental
method for the study of planning. We argue
that experimentation should occupy a central
role in planning research, identify some depen-
dent measures of planning behavior, and note
some independent variables that can influence
this behavior. We also discuss some issues of
experimental design and different stages that
may occur in the development of an experi-
mental science of planning.

1. Experimentation in Planning Research

Many sciences, such as physics and chemistry, at-
tempt to integrate theory and experiment. For instance,
theoretical physicists make predictions that are tested
by experimental physicists, and when prediction and
observation differ, the theory must be revised. Such
cooperation between theoretician and experimentalist is
a sign of a field's maturity, and it should be encouraged
whenever possible.

At first glance, AI work on planning may appear in-
herently different from the natural sciences. Because
researchers study artifacts over which they have com-
plete control, one might think there is no need for ex-
perimentation and that formal analysis should suffice.
But this view ignores the fact that all theories rely
on assumptions that may or may not hold when ap-
plied to actual algorithms or real-world domains. Test-
ing theoretical predictions through experiments lets one
gather evidence in favor of correct assumptions, and it
can point toward modifications when assumptions prove
faulty. Long-term progress in planning will depend on
such interaction between the theoretical and experimen-
tal paradigms.

Also, the complexity of most planning methods makes
it difficult to move beyond worst-case analyses, suggest-
ing experimentation as the only practical approach to
obtaining average-case results. Thus, the field promises

*Also affiliated with Sterling Federal Systems.

to have a significant empirical component for the foresee-
able future. And unlike some empirical sciences, such as
astronomy and sociology, planning is fortunate enough
to have control over a wide range of factors, making
experimentation easy and profitable.

In any science, the goal of experimentation is to bet-
ter understand a class of behaviors and the conditions
under which they occur. Ideally, this will lead to empir-
ical laws that can aid the process of theory formation.
In our field, the central behavior is planning, and the
conditions involve the algorithm employed and the en-
vironment in which planning occurs. An implemented
planning algorithm is necessary but not sufficient; one
should also attempt to specify both when it operates
well and the reasons for its behavior. Experimentation
can provide evidence on both these issues.

As normally defined, an experiment is a study in which
one systematically varies one or more independent vari-
ables and examines their effect on some dependent vari-
ables. Thus, a planning experiment involves more than
running a planning algorithm on a single problem; it
involves a number of runs carried out under different
conditions. In each case, one must measure some aspect
of planning behavior for comparison across the differ-
ent conditions. Below we consider some dependent and
independent variables that are relevant to planning re-
search. We then turn to broader issues in designing
experiments and in developing an experimental science
of planning.1

2. Dependent Measures of Behavior

To evaluate any planning system, one needs some
measures of its behavior. In most experiments, these are
the dependent variables that one would like to predict.
There are two obvious classes of metrics for planning
algorithms - the quality of the generated plans and the
effort required to generate them.

There exist many variations on the notion of plan
quality. In a classical planning framework, one might

For other discussions of experimentation in AI, see Ki-
bler and Langley (1988) and Cohen and Howe (1988).

109

simply measure the length of the solution path or the
total number of actions. More sophisticated dependent
variables involve the time taken to execute a plan, the
energy required, or the use of other resources. Alter-
natively, one can examine the robustness of a plan, as
would be characterized by its ability to respond well un-
der changing or uncertain conditions.

However, in many domains, finding any plan at all
requires significant search, making it important to mea-
sure the time or effort spent in generating a plan. Mea-
sures of this sort have predominated in recent exper-
imental studies of learning in planning domains (e.g.,
Minton, 1990; Iba, 1989). The simplest measure in-
volves the total CPU time, but this metric can depend
on both machines and implementations. More appropri-
ate measures include the number of nodes considered in
a search tree (Minton, 1990; Mooney, 1989), the number
of unifications required (Allen & Langley, 1990), and the
number of subgoals generated during the planning pro-
cess (Jones, 1989). Of course, such internal measures
are less interesting for intelligent agents that interact
with an external environment; in such cases, measures
of overall external time for planning and execution be-
come relevant, despite possible differences in hardware.

Most measures of plan quality and planning effort im-
plicitly assume that the planner will find a solution to
every problem, but this is unrealistic in resource-limited
situations. In such cases, the agent may be unable to
solve certain problems, and it is important to take this
into account when reporting experimental results. One
response involves explicitly incorporating this result into
the quality measure by giving unsuccessful attempts a
very low score. Incorporating these cases into measures
of effort is more difficult. As Segre, Elkan, and Rus-
sell (1990) have noted, averaging failed problems into
effort scores can bias results in favor of one system over
another. Alternatively, one can simply report the per-
centage of solved problems, treating this as a separate
dependent measure.

3. Comparative Studies of Planning

Informal comparisons among planning algorithms
abound in the AI literature, but there are relatively
few systematic experiments that examine the behavior
of different algorithms on the same problems. However,
such comparative studies have an important role to play
in developing a well-founded discipline.

3.1 GROSS COMPARISONS OF PLANNING METHODS

The simplest form of planning experiment involves
comparing the behavior of entirely different algorithms
on the same problem or problems. In this case, the
independent variable is the particular planning system
being used and the dependent variable is one or more of
the measures described above. For instance, Sacerdoti
compared the behavior of a simple means-ends planner

to that of a planner incorporating means-ends analysis
and abstraction. More recently, Ruby and Datta (1990)
have reported more extensive experiments, comparing
these two approaches in terms of nodes searched and
length of solution path. One can also imagine exper-
imental comparisons between preplanning and reactive
systems, between search-based and case-based methods,
and between specific algorithms within the same basic
paradigm.

In such comparative studies, it is important to place
the systems' behavior in context. To this end, one can
usually compare their performance to that of a 'straw
man' that uses a simple-minded strategy (e.g., a tradi-
tional nonlinear planner) on the same set of problems.
If one of the 'advanced' algorithms actually carries out
more search or generates lower-quality solutions than
this naive approach, this is a cause for concern. Lower
bounds of this sort help calibrate the quality of system
behavior.

3.2 PARAMETRIC STUDIES OF PLANNING

Gross comparisons between different planning meth-
ods have the aura of a competition, in which one method
wins and the others lose. However, a science of planning
should aim not for simple-minded conclusions but for in-
creased understanding. To this end, researchers should
attempt to identify the reasons for success or failure on
a problem or class of problems, attempting to generalize
beyond a specific system and experiment.

This goal requires finer-grained studies of planning
algorithms and their behavior. For instance, many sys-
tems contain a set of user-specified parameters, and in
such cases one can experimentally determine the effect
of the parameter settings on system behavior. A number
of parameters suggest themselves:

• in preplanning systems, the maximum amount of
resources devoted to generating a plan (e.g., limits
on time, memory, or search);

• in reactive systems, the frequency at which the
agent samples its environment;

• in combined systems, the ratio of deliberation to
execution (Maes, in press; Sutton, 1990); and

• in knowledge-intensive systems, the bias toward
modifying stored plans versus dynamically con-
structing new plans.

Ideally, behavior will be 'acceptable' within a wide range
of parameter values, with the system's behavior varying
slowly «is a function of the settings. Hopefully, the same
range of values will work across a variety of domains.

A related issue concerns the evaluation function or
control scheme that a planning system uses to direct
search. If the function contains parameters, then one
can examine their relative importance through simple

110

parametric studies. However, one can also replace the
entire control scheme with different ones in an attempt
to find improved search methods. For instance, in a
case-based system one might compare an existing sim-
ilarity criterion for indexing knowledge with other ap-
proaches, such as Bayesian methods.

3.3 LESION STUDIES OF PLANNING COMPONENTS

Some planning systems contain a number of indepen-
dent components, and one can study the usefulness of
each by removing it from the system. In such a 'lesion'
experiment,2 one runs the system with and without a
given component, measuring the difference in perfor-
mance. If a component does not aid the overall plan-
ning process, then it can be removed without undesir-
able consequences. Some obvious candidates for lesion-
ing include:

• mechanisms for abstraction planning;

• methods for hierarchical planning;

• heuristics for identifying when to replan; and

• techniques for handling special forms of goals.

The above components focus on processes, but one can
also imagine lesioning knowledge from a system. For ex-
ample, some planning systems (Wilkins, 1988) incorpo-
rate constraints that may narrow the search or improve
solution quality, but the influence of these constraints on
behavior is an empirical question. Similarly, case-based
planning systems draw upon a library of plans (Ham-
mond, 1989) or plan components (Jones, 1989) in the
construction of new plans, and one can determine the
change in behavior as one adds or removes cases from
memory.

One special case of lesion studies focuses on learning,
and much of the recent experimental work on planning
falls into this area. In this paradigm, one runs a plan-
ning system with and without a learning component,
then examines differences in performance between the
two variants. Allen and Langley (1990), Iba (1989),
Minton (1990), Ruby and Kibler (1989), and Shavlik
(1990) report evidence that a variety of learning com-
ponents can improve the behavior of planning systems
after sufficient experience in a given domain.

In some cases, researchers have also found negative
results; both Iba (1989) and Minton (1990) have shown
that naive learning methods can actually degrade plan-
ning performance in terms of search required to find
solutions. However, rather than abandoning the use of
learning methods, both used their results to identify the
source of degradation and went on to develop learning
methods that improve performance. This work provides

This approach is common in neuroscience, where re-
searchers excise a specific region of the brain to determine
its effect on behavior.

an excellent role model for those interested in the exper-
imental study of planning. Kibler and Langley (1988)
discuss additional issues that arise in experiments with
learning planners, as do Segre et al. (1990).

4. Varying the Planning Domain

Seldom will one system always appear superior to an-
other, and this leads naturally to the idea of identify-
ing the conditions under which one approach has better
performance than another. To study the effect of the
environment on a planning system, one must vary the
domain in which it operates. Natural domains, such as
path planning for an autonomous vehicle or manipula-
tor planning for an industrial robot arm, are the most
obvious because they show real-world relevance. Also,
successful runs on a number of different natural domains
provide evidence of generality.

The simplest approach to this issue involves designing
a set of 'benchmark problems'. To be scientifically use-
ful, each benchmark problem should highlight certain
problem attributes to help isolate planners' particular
abilities. In addition, a realistic set of benchmark prob-
lems can help the scientific community explain its results
in terms that can make a difference to those concerned
with practical applications. These two goals - foster-
ing scientific comparison and engineering development
- place rather different constraints on a set of bench-
mark problems.

For the purposes of scientific comparison, one must be
able to independently vary different task attributes. To
achieve this, some benchmark problems should involve
artificial domains. For situations that involve planning
and execution, relevant attributes relate to the initial
state specification, the goals, and the domain dynamics.
For instance, one might consider the following sorts of
task attributes:

• the length of the 'optimal' solution path (e.g., the
number of actions in a block-stacking task);

• the effective branching factor (e.g., the number of
actions considered for each plan step);

• the complexity of the environment (e.g., the number
of obstacles in a navigation task);

• the amount of goal interaction in a planning task;

• the reliability of the domain (e.g., the probability
that effectors will have the desired effect); and

• the rate of environmental change not due to the
agent's actions.

However the list of task attributes is constructed, the
set of representative problems should provide a complete
coverage of the task attribute space. Complete coverage
will let researchers choose problems from the set that
highlight the system capabilities they seek to measure.

Ill

The set of task attributes and benchmark tasks should
evolve concurrently.

Artificial domains are gaining acceptance with the
planning community (e.g., Pollack & Ringuette, in
press), since they let researchers systematically study
planning behavior across a wide range of situations.3

Another advantage of artificial domains is that they
specify a variety of domain characteristics. In many
cases, this lets one determine plans having optimal qual-
ity, thus establishing upper bounds on a planner's out-
put. One can then compare the plans generated by ac-
tual algorithms against these upper bounds. If plan
quality approaches this bound, one can also decide
whether additional components or extra computation
are worth minor improvements in this regard.

For engineering development and technology transfer
purposes, tasks that include 'practical' difficulties will
be more useful. Domains involving physical output de-
vices such as robot arms and physical input devices such
as limit switches will prove more useful in terms of val-
idating particular systems. It is important to include
problems in the evolving set of benchmarks that sup-
port such engineering evaluation, but discussion of such
issues is beyond the scope of this paper.

5. Issues in Experimental Design

Basic experimental method suggests that researchers
vary one independent term at a time while holding oth-
ers constant. However, one can repeat this technique
many times to achieve 'factorial' designs that measure
dependent variables under all combinations of indepen-
dent values. Full factorial designs are impractical when
many independent variables are involved, but reduced
experimental designs are also possible.

The advantage of combinatorial designs is that they
let one go beyond the effects of isolated factors and de-
tect interactions between independent variables. For in-
stance, one might find that planning method A behaves
better than method B in environment X, whereas B
fares better than A in environment Y. Alternatively, one
might find that two components of a planning method
lead to synergy, or that the joint presence of two do-
main characteristics make planning especially difficult.
We anticipate that many of the most interesting results
in planning will have this form. The detection of such
interactions does more than establish the conditions un-
der which alternative methods should be used; it can
also suggest hybrid algorithms.

Another issue in experimental design involves the use
of sampling and statistical tests. In the natural sciences,
one can never control all possible variables. As a result,

3One can also view resource limitations (e.g., time or en-
ergy) as independent variables that affect task difficulty. Ex-
perimental studies of 'anytime' algorithms (Dean fc Boddy,
1988) might examine the effect of planning time on quality
of the resulting plans.

researchers must collect multiple observations for each
cell in their experimental design, average the resulting
values, and use statistical techniques to ensure that con-
clusions about differences between cells are justified by
the data. Although in principle one can control all the
factors that influence a planning system, for practical
reasons this will seldom be possible, and planning re-
searchers should consider using them as well.

For instance, seldom can one test a planning system
on all possible problems from a given domain. Thus, it
makes sense to select a random sample, run the system
on all problems in this set, and report the mean and
variance on dependent measures of interest. In some
situations, the effects of the independent variables will
be large enough that formal significance tests are not
necessary. In other cases, the variances may be suf-
ficiently high that statistics should be invoked. And
though exploratory studies are useful, researchers often
design experiments with some hypotheses in mind, and
whenever possible they should explicitly state and test
these hypotheses. In all cases, the experimenter should
use caution and common sense in designing his or her
experiments and in interpreting the results.

6. An Imaginary Experimental Study

An imaginary example may clarify the nature of plan-
ning experiments. Suppose Dr. Calvin has developed
a new planning algorithm, OUTSTRIPS, in response to
limitations of earlier systems, say an inability to scale
to complex problems. In this case, the hypothesis is
that the new method will 'outstrip' other systems as
task complexity increases. This suggests two indepen-
dent variables - the algorithm employed and the prob-
lem difficulty.

At this point, Dr. Calvin must settle on some mea-
sures of difficulty. Rather than using the number of
actions in optimal solutions, she favors a more so-
phisticated metric that incorporates the idea of goal
interaction.4 She also decides to study the systems' be-
haviors in multiple domains, say an idealized manipula-
tion task like the blocks world and an idealized naviga-
tion task. Similar results in multiple domains will lend
credence to her findings, so she includes this as a third
independent variable.

Calvin must also identify the dependent measures she
plans to use, and the explicit hypotheses she hopes to
test. Naturally, she is interested in solution quality,
which she will measure as the number of actions in the
final plan, but she is even more interested in planning
effort. Calvin has implemented OUTSTRIPS on her new
positronic hardware, but she must run the comparison
algorithms (including a straw man) on archaic silicon
machines. Since all the systems involved in the study de-
fine their search spaces in a similar manner, she decides

4 Jones (1989) provides an initial approach to measuring
goal interaction for means-ends systems.

112

to use the number of expanded nodes as her measure of
effort.

In carrying out her experiment, the researcher must
randomly select from problems at each level of difficulty,
since the number of possible problems increases rapidly
with difficulty. However, Calvin is careful to use the
same test problems for each system. For each problem,
she measures the various systems' search and plan qual-
ity, recording the mean and variance for each system-
difficulty combination. She follows this procedure in
each of the planning domains selected for study.

In this case, let us suppose that, for each domain,
OUTSTRIPS requires more search than its competitors
on simple tasks, but that it expands considerably fewer
nodes on difficult problems, with the gap widening as the
difficulty increases. These results constitute evidence in
favor of the original hypothesis that OUTSTRIPS scales
better than other methods. However, Calvin also notes
that her system's plan quality is slightly worse than that
for the more expensive algorithms. As expected, she also
notes that all systems perform better than the straw
man, except on the simplest problems.

In response to these findings, Calvin designs a le-
sion study in an attempt to identify the particular con-
straints used by OUTSTRIPS that lead to its superiority.
To this end, she repeats the above experiment with le-
sioned versions of her algorithm, finding that some con-
straints greatly reduce planning effort, but that one of
them is partly responsible for decrements in plan qual-
ity. As a result, Calvin has not only arrived at a deeper
understanding of her system's success (and how its con-
straints might be transferred to other systems); she has
also determined that deletion of one component actually
produces a superior system with respect to plan qual-
ity. Of course, this is not the end of the story, for ad-
ditional experiments by other researchers may identify
conditions under which OUTSTRIPS fares poorly, sug-
gesting ideas for even better algorithms.

7. Toward an Experimental Science

Different goals are appropriate for different stages of
a developing experimental science. Although planning
work remains in the early steps of this evolution, it is
worthwhile considering the states that may arise on the
path toward a mature scientific discipline.

In the initial stages, researchers should be satisfied
with qualitative regularities that show one method as
better than another under certain conditions, or that
show one environmental factor as more devastating to
a certain algorithm than another. Experimental eval-
uations should become the norm for published papers,
with researchers comparing new algorithms against well-
tested systems that act as 'straw men'. Parametric and

lesion studies should examine the contributions of spe-
cific components, leading to improved algorithms that
build on limitations identified earlier. Comparative
studies that examine different algorithms on the same
domains should proliferate, not to show one method su-
perior to another, but to suggest directions for improve-
ment. Online libraries of representative domains should
encourage such comparisons.

Later stages of planning research should move beyond
qualitative conclusions, using experimental studies to di-
rect the search for quantitative laws that can actually
predict performance on unobserved situations. In the
longer term, results of this sort should lead to theoreti-
cal analyses that explain such effects at a deeper level,
using average-case methods rather than worst-case as-
sumptions. For instance, Segre et al. (1990) outline a
simple mathematical model of search in planning, which
they propose to use in analyzing experimental results.
Other researchers should follow this lead, aiming for ro-
bust theories of planning algorithms that predict behav-
ior in novel experimental situations. Failed predictions
should lead in turn to revised theories, in the same fash-
ion that experiment and prediction interact in the nat-
ural sciences.

In summary, the planning field has already started its
development toward an experimental science, and future
advances should produce improved dependent measures,
better independent variables, more useful experimental
designs, and ultimately an integration of theory and ex-
periment. However, even the earliest qualitative stages
of an empirical science can strongly influence the di-
rection of research, identifying promising methods and
revealing important roadblocks. Research on planning
is just entering this first stage, but we believe the field
will progress rapidly once it has started along the path
of careful experimental evaluation.

Of course, the potential benefits of experimentation
do not mean that empiricists should report gratuitous
experiments any more than theoreticians should pub-
lish vacuous proofs. Whether they lead to positive or
negative results, experiments are worthwhile only to the
extent that they illuminate the nature of planning mech-
anisms and the reasons for their success or failure. Al-
though experimental studies are not the only path to
understanding, we feel they constitute one of planning's
brightest hopes for rapid scientific progress.

Acknowledgements

We would like to thank John Allen for useful com-
ments on an earlier draft. Parts of this paper are similar
to an earlier manuscript on research in machine learn-
ing, co-authored with Dennis Kibler, who has greatly
influenced our ideas on experimentation.

113

References

Allen, J., k Langley, P. (1990). The acquisition, organi-
zation, and use of plan memory (Technical Report).
Moffett Field, CA: NASA Ames Research Center,
AI Research Branch.

Cohen, P. R., k Howe, A. E. (1988). How evaluation
guides AI research. AI Magazine, 9, 35-43.

Dean, T., k Boddy, M. (1988). An analysis of
timedependent planning. Proceedings of the Sev-
enth National Conference on Artificial Intelligence
(pp. 49-54). St. Paul, MN: Morgan Kaufmann.

Hammond, K. J. (1989). Case-based planning: View-
ing planning as a memory task. In B. Chan-
drasekaran (Ed.), Perspectives in artificial intelli-
gence. Boston: Academic Press.

Iba, G. A. (1989). A heuristic approach to the discovery
of macro-operators. Machine Learning, 3, 285-317.

Jones, R. (1989). A model of retrieval in problem solv-
ing. Doctoral dissertation, Department of Informa-
tion k Computer Science, University of California,
Irvine.

Kibler, D., & Langley, P. (1988). Machine learning as an
experimental science. Proceedings of the Third Eu-
ropean Working Session on Learning (pp. 81-92).
Glasgow: Pittman.

Maes, P. (in press). How to do the right thing. Connec-
tion Science.

Minton, S. (1990). Quantitative results concerning the
utility of explanation-based learning. Artificial In-
telligence, 4%, 363-391.

Mooney, R. (1989). The effect of rule use on the utility
of explanation-based learning. Proceedings of the
Eleventh International Joint Conference on Artifi-
cial Intelligence (pp. 725-730). Detroit, MI: Mor-
gan Kaufmann.

Pollack, M. E., k Ringuette, M. (in press). Introduc-
ing the Tileworld: Experimentally evaluating agent
architectures. Proceedings of the Eighth National
Conference on Artificial Intelligence. Cambridge,
MA: AAAI Press.

Ruby, D., k Datta, P. (1990). Reacting to interac-
tions in abstract plans. Unpublished manuscript,
Department of Information k Computer Science,
University of California, Irvine.

Ruby, D., k Kibler, D. (1989). Learning subgoal se-
quences for planning. Proceedings of the Eleventh
International Joint Conference on Artificial Intel-
ligence (pp. 609-614). Detroit, MI: Morgan Kauf-
mann.

Sacerdoti, E. D. (1974). Planning in a hierarchy of ab-
straction spaces. Artificial Intelligence, 5, 115-135.

Segre, A., Elkan, C, k Russell, A. (1990). On valid
and invalid methodologies for experimental evalua-
tions of EBL (Technical Report 90-1126). Ithaca,
NY: Cornell University, Department of Computer
Science.

Shavlik, J. W. (1990). Acquiring recursive and iterative
concepts with explanation-based learning. Machine
Learning, 5, 39-70.

Sutton, R. S. (1990). Integrated architectures for learn-
ing, planning, and reacting based on approximat-
ing dynamic programming. Proceedings of the Sev-
enth International Conference on Machine Learn-
ing (pp. 216-224). Austin, TX: Morgan Kaufmann.

Wilkins, D. E. (1988). Practical planning: Extending the
classical AI planning paradigm. San Mateo, CA:
Morgan Kaufmann.

114

Localized Search for Controlling Automated Reasoning

Amy L. Lansky

Sterling Federal Systems
NASA Ames AI Research Branch

MS 244-17, Moffett Field, CA 94035

Abstract
This paper describes the localized search mechanism
of the GEMPLAN multiagent planner. Both a formal
complexity analysis and empirical results are provided,
demonstrating the benefits of localized search. Localized
search utilizes an explicit domain decomposition to in-
fer constraint localization semantics and, as a result, to
enable the decomposition of the planning search space
into a set of spaces, one for each domain region. Each
search tree is concerned with the construction of a re-
gion plan that satisfies regional constraints. Shifts be-
tween search trees are guided by potential regional in-
teractions as defined by the domain's structure. The
search algorithm must also ensure that all search trees
are consistent, which is especially difficult in the case
of regional overlap. Benefits of localization include a
smaller and cheaper overall search space and heuristic
guidance in controlling seaxch. Such benefits are criti-
cal if current planning technologies are to be scaled up
to large, complex domains. Indeed, the use of domain
localization and localized search are broadly applicable
techniques that can be used by many kinds of domain
reasoning systems, not just planners.

1 Introduction
By now, the algorithmic complexity of domain-
independent planning has become well known [2]. Many
planning researchers have given up completely on pre-
planning frameworks for more reactive action genera-
tion strategies. Yet, there are many domains for which
purely reactive approaches are inadequate. Imagine, for
example, a factory shop floor in which people coordi-
nate their activities simply by dynamically "reacting"
to one another. The shop floor would soon become a
mess. Some amount of preplanning is necessary for do-
mains that require complex coordination of activities,

especially when adherence to coordination constraints is
critical. Such domains are numerous and include NASA
mission planning1, building-construction planning, fac-
tory planning, and planning of defense-related activi-
ties. Given the inescapable need for reasoning about
large complex plans, the planning community faces two
related obstacles: (1) the inherent costliness of plan con-
struction algorithms and (2) the problem of scaling plan-
ning systems up to large domains. Indeed, these obsta-
cles pose problems for any form of planning, whether it
is performed before or during execution.

The focus of_this paper is the use of locality — the
inherent structural properties of a domain — to control
the explosive cost of planning and other forms of reason-
ing. The use of localized reasoning, while quite intuitive
and natural, has not been a fundamental aspect of most
AI systems. A localized domain description is one that is
explicitly decomposed into a set of regions. Each region
may be viewed as a subset of domain activity with an as-
sociated set of "constraints" (properties, goads, or other
requirements that the planner must fulfill) that are appli-
cable only to the activities within the region. We refer to
this delineation of constraint applicability as constraint
localization. Localized planning consists of searching a set
of smaller, regional planning search spaces rather than a
large, "global" space. A GEMPLAN search space may
be visualized as a plan-construction search tree, where
each tree node is associated with a plan and each arc is
associated with a constraint algorithm that transforms
the preceding plan into a new plan (with new actions,
relationships, etc.) that satisfies the constraint.

The GEMPLAN domain representation allows for the
specification of any kind of domain decomposition, in-
cluding the use of regions that overlap, are disjoint,
are organized hierarchically, or form any combination
thereof. Criteria for decomposition are usually suggested

0 This research has been made possible in part by the National
Science Foundation, under Grant IRI-8715972.

'Throughout the rest of this paper, the term "planning" will
be used rather than "planning and scheduling." However, most of
the discussion is equally applicable to the more specialized area of
scheduling.

115

by the innate characteristics of a domain, such as its
physical structure, its behavioral entities (agents), and
its functional elements. Indeed, it is often useful to uti-
lize a decomposition that reflects several criteria simulta-
neously. Consider, for example, a building-construction
domain. Viewed globally, the domain may be described
by a set of constraints, some of which describe the ac-
tual structure and requirements for a specific building,
some of which encode the requirements and capabilities
of contractors and physical resources, and some which
describe the inherent limitations imposed by domain
physics. Clearly, many of these constraints apply only
to a subset of the full set of construction activities to be
planned. One way to naturally decompose the domain
is according to the physical structure of the building -
e.g., to utilize separate regions to model each floor or
room and its associated constraints. Other regions could
model the individual contractors and their constraints.
Figure 1 depicts a possible decomposition for a small
construction domain.

The primary goal of domain localization is to cluster
activities into regions so that constraints are applied as
narrowly as possible. The actual decomposition chosen
will be used to infer the exact scope of applicability of
domain constraints - i.e., each region's constraints ap-
ply only to the activities within that region. As we will
demonstrate, different localization decompositions will
incur different planning costs. While most of our em-
pirical tests to date have utilized user-provided decom-
positions, we are currently developing an algorithm for
automatically learning a good decomposition for a par-
ticular domain as well as more general decomposition
strategies.

The use of localized reasoning has several benefits.
From a representational point of view, locality provides
a solution to some aspects of the frame problem; con-
straint localization may be viewed as a frame rule which
limits the effect of actions and properties upon one an-
other [3,5,6]. Most important, however, locality pro-
vides a rationale for partitioning a potentially explosive
global planning space into a set of smaller, localized plan-
ning spaces. This has three interrelated benefits: (1)
both the size and cost of the union of a set of local-
ized planning spaces is usually smaller than that of a
global, non-localized space; (2) expensive planning algo-
rithms need be applied to much smaller regional plans;
and (3) since a localized domain description provides in-
formation about how constraints and activities interact,
it serves as a heuristic for constraint application. In par-
ticular, only relevant (regional) constraints are applied
to regional plans and movement between regional search
trees occurs only when regions interact. All of these fac-

tors clearly facilitate scaling up to large domains. Other
planning researchers have also looked at related meth-
ods of problem decomposition in order to reduce search
complexity [1,4], but these have focussed primarily on
goal reduction and operator reformulation rather than
search space decomposition.

It should be pointed out that domain localization is
applicable to any kind of domain reasoning that can be
effectively partitioned. Nearly all domains have some in-
herent structure that can be exploited. For example, lo-
calized reasoning could be used by single-agent planners,
reactive systems, schedulers, truth maintenance systems,
learning systems, image understanding systems2 — in-
deed, many reasoning algorithms already utilize heuris-
tics that are provided by domain structure. Our local-
ized search algorithm can thus be applied to many kinds
of reasoning systems. However, we do stress multiagent
domains here for two reasons: (1) the complexity of co-
ordinating multiagent domains makes localization even
more necessary; (2) multiagent domains are typically
easy to decompose.

Of course, the benefits of localized search do have a
price. From a practical point of view, domains can al-
most never be partitioned into simple hierarchies or dis-
joint regions. Pomains of any complexity will have re-
gions that "overlap" - that is, some subregions will be
shared by more than one encompassing region. For ex-
ample, in Figure 1, regions wallA, e-control, and p-control
each belong to more than one region. This complicates
the localized search algorithm because changes within a
shared region must be reflected within the search trees
of all its ancestors. That is, localized search must pay
attention to the problem of interaction and consistency
among search trees.

In addition, constraint localization will yield large
gains only if a domain can be effectively decomposed.
If many constraints naturally belong to a region that
includes a great deal of domain activity, search will re-
main quite expensive. To gain real efficiency benefits,
regions which may seem intuitively "global" should be
composed to include only a minimal amount of activ-
ity. For example, in Figure 1, the general contractor's
constraints apply only to his/her own activities in gc-
control, those in e-control (electrician control activities),
and those in p-control (plumber control activities), not
to all activities in electrician and plumber. Experience
thus far with GEMPLAN (and commonsense intuition
about the structure and function of large organizations)
indicates that effective localization is natural to obtain.

2 A Paris-based firm, Framentec, is building a localized image-
understanding/plan-recognition system based on the GEMPLAN
formalism.

116

e-control

electrician plumDer

7\A
rfallB wallA wallC

p-control

qc (general contractor)

qc-control

electrician plumber

Figure 1: A Localized Construction Domain Description

2 GEMPLAN Overview

GEMPLAN is a planner designed explicitly for multia-
gent domains that require complex coordination. The
current GEMPLAN system is implemented in Prolog
on a Sun workstation and has been applied to several
test domains: multiagent blocks-world problems, the
Tower of Hanoi, and a construction domain. The sys-
tem includes an execution facility, and has the abil-
ity to apply constraints before or during execution. It
may thus be viewed as a combined pre-planner/dynamic-
planner. While the existing system is primarily de-
signed for pre-planning, we will soon begin implementa-
tion of a next-generation GEMPLAN system that spans
the pre-planning/dynamic-planning spectrum in a seam-
less fashion. Our current target applications include
large construction domains and data-analysis planning
for NASA's Earth Observing System (EOS). GEMPLAN
differs from standard hierarchical planners [11,12] in sev-
ered ways:

> GEMPLAN has the ability to satisfy a broad range
of domain "constraint forms," not simply the attain-
ment and maintenance of state conditions (the tradi-
tional notion of "planning"). The system includes a set
of general-purpose constraint satisfaction algorithms
for partially-ordered plans, which may be further aug-
mented by user-supplied constraint-satisfaction meth-
ods. The default constraint algorithms are fully general
- they allow for the addition of and reasoning about
any possible temporal relationship between actions, in-
cluding simultaneity. The current constraint repertoire
includes:

• condition attainment and maintenance (based on
the modal truth criterion [2]) - i.e., the traditional
"planning algorithm." Actions may be defined
to have conditional effects. The algorithm also
includes full protection capabilities.

• action decomposition (i.e., action hierarchies).
GEMPLAN allows for reasoning about actions at
mixed levels of detail, rather than confining itself
to reasoning "one level at a time," as do some hier-
archical planners [12]. Indeed, rather than being
inextricably bound to the planner's search struc-
ture (hiearchical or otherwise), action decompo-
sition is just another kind of "constraint" to be
satisfied by the system, and may be applied at
any appropriate time, including at run-time.

• a variety of temporal and causal constraints, in-
cluding run-time priority constraints.

• attainment of desired patterns of behavior ex-
pressed as regular expressions.

It is these constraint satisfaction algorithms that per-
form the task of plan construction and coordination,
by introducing actions, action interrelationships, and
variable bindings.

> GEMPLAN partitions the global search space into lo-
calized search spaces.

> GEMPLAN has a highly flexible, tailorable search
mechanism. In particular, constraint satisfaction can
be guided by user-supplied heuristics and by the chang-
ing planning and/or execution context, as it develops.

More details on GEMPLAN appear elsewhere [5,6,7,8,9].
The rest of this paper will focus on GEMPLAN's local-
ized search mechanism. Specific instances of plan con-
struction via constraint satisfaction will be demonstrated
in Section 3.

2.1 Search Space Decomposition

As described earlier, a GEMPLAN domain specification
is decomposed with the goal of localizing the applicabil-
ity of constraints as much as possible. For example, the

117

construction domain depicted in Figure 1 has been par-
titioned into regions corresponding to the activities of
the electrician, plumber, and general contractor. These
regions have been further decomposed to include subre-
gions that contain the activities of the electrician and
plumber at various walls as well as contractor "control"
activities (these might include communication actions or
high-level actions that have not yet been expanded into
activities at particular walls). Each wall region would
be associated with constraints and definitions that are
relevant to the actions taking place at that wall. For ex-
ample, in the case of wall A, these may include constraints
relating to coordination of plumber and electrician activ-
ities. Each control region might be associated with per-
sonal communication and planning constraints for that
contractor. The electrician, plumber, and gc region con-
straints, which apply to all their subregions, might de-
scribe more global requirements pertinent to their re-
spective activities. For example, note how the gc con-
straints apply to all the control regions. These might
describe how the general contractor's requests influence
the control activities of each subcontractor.

Rather than searching a single global search space,
GEMPLAN creates a regional search space for each re-
gion. Each search space is concerned with building a plan
for its region that satisfies all regional constraints. The
planner may thus be viewed as a set of "mini-planners,"
tied together as dictated by the structural relationships
between regions.

2.2 Regions

Let us assume that a domain is specified as a set of
regions RI,..., Rn. Each region R is defined by a region
description:

< actions(R), subregions(R), constraints(R),tree(R) >

The set actions(R) consists of the types of actions that
may occur directly within R (but not within a subregion
of R). The set subregions(R) consists of subregions be-
longing to R. For each such subregion Ri, we use the
notation Ri C R. The set constraints(R) includes con-
straints that pertain to activities within R and its sub-
regions. Finally, each region is associated with a plan-
construction search tree tree(R).

2.3 Region Search Trees

Figure 2 depicts portions of GEMPLAN planning search
trees for the electrician and wallB regions. Each tree
reflects search through a space of "plan modification"
operations - i.e., it is a plan-construction search space
(rather than a domain-state search space). Each tree

node is associated with the region plan constructed up
to that point in the search, and each tree arc is associ-
ated with a plan modification or "fix" that transforms
a region plan into a new region plan. Upon reaching a
node during planning search, the planner must choose
a particular regional constraint to check next. (Thus,
an implicit branching factor in the tree is the set of all
relevant constraints at each node.) If the chosen con-
straint is not satisfied by the plan associated with that
node, constraint satisfaction algorithms or "fixes" must
be applied (there may be several fix algorithms for each
constraint, as well as many possible solutions or "fixes"
per fix algorithm), resulting in a set of new region plans
at the next level down in the tree. A GEMPLAN fix typ-
ically adds new actions, relations, and variable bindings
to a region plan, and may also generate new subregions.
Note that fixes may add actions and relations anywhere
within the plan it is working on - the precise temporal
position is determined by the nature of the constraint
and fix.3

GEMPLAN uses, by default, a depth-first search strat-
egy for searching its trees, trying constraints and fixes
in the order supplied in the domain specification. How-
ever, since search should optimally be driven by domain-
dependent information and the structure of the plan it-
self, GEMPLAN allows for flexible user-tuning of tree
search. The order in which constraints and fixes are ap-
plied can be made context dependent. GEMPLAN also
includes a facility that can determine precisely which ac-
tions affect which constraints within a region. This facil-
ity enables only relevant constraints to be applied at each
step, thereby exceeding the kind of "frame" informa-
tion already provided by constraint-localization seman-
tics. This coupling of localized search, where only rele-
vant constraints are checked, with further user-tailoring
of the search, forms an extremely flexible mechanism of
"relevancy-driven-search" - namely, search driven by the
most relevant constraints at any particular time in the
reasoning process.

2.4 Plan Representation

As stated above, each search tree node is associated with
a region plan. Each region plan consists of a local region
plan and a set of subplans (the region plans of its subre-
gions). For example, if RI C R and R2 C R, the region
plan for R will include a local region plan for R and
region plans for RI and R2. GEMPLAN associates all
plan information with the smallest region that encom-

3For example, unlike some planners (typically, those those per-
form state-space search), actions need not be added to the plan in
an order that is in any way related to the order in which the actions
are executed. The fix algorithms may thus be viewed generically
as plan modifiers that grow and refine plans in flexible ways.

118

electrician

Plan I äk check constraint

wallB incarnation
induced by
electrician fix

Figure 2: GEMPLAN Search Trees

passes that information. The region plans of Rl and R2
will thus include all actions, temporal and causal rela-
tions, variable bindings, and other plan information that
deal exclusively with Rl and £2, respectively. The local
region plan of R will then include plan information that
deals specifically with activities in R or that pertains
to relationships among R, Rl, and R2 (and therefore
cannot be associated strictly with Rl or R2).

2.5 Guiding
Trees

Search Among Regional

Search within tree(R) is concerned with (1) assuring that
all of Ä's constraints are satisfied by Ä's region plan and
(2) making sure that Ä's subregions' trees are searched
to find a satisfactory plan for their region plans. Refer-
ring back to Figure 1, it is the role of tfree(electrician) to
make sure that electrician's constraints are satisfied and
that iree(wallB), iree(wallA), and iree(e-control) are all
visited when their constraints may be affected.

How does control transfer among regional trees? This
is done in response to information transmitted to the
search mechanism by a fix. Suppose we are in tree(R).
After applying a fix for one of Ä's constraints to Ä's re-
gion plan, the fix must return a subset of iJ's subregions,
Ä1,..., Rrn, that may have been affected by the fix. The
GEMPLAN search algorithm will then inhibit further
search within tree(R) until tree(Rl)...tree(Rm) are all
satisfactorily searched. As depicted in Figure 2, if electri-
cian affects the subplan for region wallB via the introduc-
tion of new actions there, search within <ree(electrician)
cannot safely proceed until wallB's tree is searched and
its constraints are rechecked and satisfied. Notice how
shifts between parent and child regions induce a parti-
tioning on the child's search tree. We call these search
fragments incarnations - search within the child is "rein-
carnated" each time its constraints are potentially vio-
lated due to a fix in its parent's search tree. Each in-
carnation is thus a subtree initiated by a parent region.

In our example, free(wallB) may be reincarnated sev-
eral times due to fixes for electrician constraints. Each
time iree(wallB) is revisited, wallB's constraints must be
rechecked and satisfied. One restriction on GEMPLAN's
search control mechanism is that sill search strategies
(e.g., breadth-first, dependency-directed, etc.) must be
applied within the confines of an individual incarnation.
This greatly simplifies the problem of search consistency.

As the reader may have noticed, not all regions are
subregions of some enclosing region. In the domain of
Figure 1, this is true of gc, electrician, and plumber. To
simplify search,'GEMPLAN requires that all tree search
ultimately flows from some designated "global" regional
tree.4 Although gc, electrician, and plumber do not log-
ically belong to another region as far as constraint ap-
plicability, we do need to make sure that some region
at least takes "responsibility" for invoking their search
trees. Thus, we include the additional relation Cr to
denote this relationship, and require that each region
except some designated "global" region have a "parent"
that assumes search responsibility for it. In our example,
we shall choose gc as the "global" region, with electri-
cian Cr gc and plumber Cr gc. Although iree(gc) must
make sure that iree(electrician) and free(plumber) are
visited appropriately, gc's constraints apply only to its
region plan, which includes only the subregion plans of
gc-control, e-control, and p-control.5

4
 This does not preclude the possibility of parallel search of in-

dependent subtrees. Our research plans include experimentation
with parallel search in GEMPLAN.

5Readers of previous papers on GEMPLAN will recall that the
GEMPLAN description language includes several types of regions
and modes of access between regions (elements, groups, ports,
etc.). For the purposes of this paper and for the sake of gener-
ality, we simplified the GEMPLAN structural model to include
only the relations C and Cr- The semantics of elements, groups,
and ports can all be captured in terms of C and Cr-

119

2.6 Dealing With Regional Overlap

One of the challenges of localized search is keeping all
regional search trees consistent with each other. This
would be fairly straightforward if domain structure were
strictly hierarchical. However, since we allow for re-
gional overlap, some effort is required to keep trees con-
sistent. For example, if a fix in iree(electrician) affects
region wallA's plan, it is not enough to simply recheck
wallA's constraints and return to tfree(electrician). Re-
gion plumber's representation of wallA's subplan must
also be updated within iree(plumber), and search must
also occur within iree(plumber) to recheck its con-
straints. We call this process of maintaining consistency
completion. Because GEMPLAN allows for quite com-
plex localization structures, the search algorithm must
be very careful to perform completion fully and cor-
rectly. GEMPLAN must update all affected data struc-
tures (in particular, parent tree data) each time it com-
pletes searching an incarnation of a shared region. It
must also make sure that all affected parent region trees
are ultimately reincarnated and that region constraints
are rechecked.

3 Example
More complete descriptions of GEMPLAN's search al-
gorithms are provided elsewhere [9,10]. In this section,
we attempt to clarify the preceding discussion with an
example from the construction domain of Figure 1. Let
us assume that the electrician, plumber, wallA, and wallB
regions axe associated with the following (informally de-
scribed) constraints:6

ELECTRICIAN CONSTRAINTS:

(1) action(install-socket(wallA.locAD)
(2) action(install-socket(HallB,locBl))
(3) action(install-socket(wallB,locB2))
(4) decompose(install-socket(W,L),

-CW.electprep(L) => W. insert socket (L)})

PLUMBER CONSTRAINTS:

(1) action(install-pipe(wallA,locAD)
(2) decompose(install-pipe(W,L),

{W.plumbprep(L) => W.insertpipe(L)})

WALLA CONSTRAINTS:

(1) (forall L)

[(iorall prep:{electprep(L) ,plumbprep(L)})

pattern((prep)*=>)]

(2) icfs([[electprep,insertsocket],
[plumbprep,insertpipe]])

WALLB CONSTRAINTS:

(1) all-matching-precede(electprep,insertsocket)

6Tokens starting with a capital letter denote variables.

The first three electrician constraints require that ac-
tions exist in the final plan that install sockets in par-
ticular walls and locations. Such action constraints
simply result in the addition of actions to the plan.
The fourth decompose constraint requires that each
install-socket(W,L) action be decomposed into an
electprep action followed by an insertsocket action
at wall W, location L. Note that an action of form X. Y de-
notes an action Y occurring at location X. The plumber
constraints are similar. In this case, only one pipe is to
be installed at wallA.7

The two wallA constraints pertain to the coordination
of the electrician and plumber actions at that wall. The
first constraint states that, at wallA, all electprep and
plumbprep actions at the same location follow a certain
pattern - they must be totally ordered by the tempo-
ral relation =>. The second constraint additionally re-
quires that the electrician and plumber have access to
wallA on a first-come-first-serve basis. The constraint
description consists of a set of constraint pairs and has
the following semantics: any required execution order-
ing of the first actions in each pair (in this case, required
orderings between "prep" actions) will determine the ul-
timate ordering of the second actions in each pair (in this
case, the ordering of insertsocket and insertpipe ac-
tions). Since a total ordering is forced on all "prep"
actions at the same location, this will force electricians
and plumbers to insert their devices in common locations
on a first-come-first-serve basis. Finally, wallB requires
that all electprep actions precede all insertsocket ac-
tions. This assures that all electrical wall-prep at wallB
will be completed before any electrical components are
inserted. At wallA, in contrast, prep and insertion ac-
tions may be intermingled, as long as they conform to
the two ordering constraints of wallA.

Given these constraints, we will now run through a
planning scenario. We will assume that all constraints
are imposed strictly in advance of execution. Our dis-
cussion will describe the train of reasoning GEMPLAN
might go through to create the construction plan de-
picted in Figure 3.

Reasoning begins at the "global" region gc, which
in this case has no constraints of its own, but is re-
sponsible for invocation of the electrician and plumber
search trees. Let us assume that electrician is invoked

Since this simple scenario does not contain constraints that
force the electrician activities (nor plumber activities) to be totally
ordered, let us assume, for the sake of realism, that electrician
models a set of electricians (and similarly for plumber). In the
GEMPLAN construction domain application discussed in Section
5, multiple contractors were indeed used. The planner creates a
suitable construction plan given any number of available contrac-
tors, performing contractor allocation as planning proceeds.

120

install-socket(wallA,locAl) •< vallA.electprep(locAl) ==>■ nallA.insertsocket(locAl)

* It
install-pipe(wallA,locAl) <C wallA.plumbprep(locAl) ==>• wallA.insertpipe(locAl)

install-socket(wallB,locBl) < wallB.olectprep(locBl) »alIB.insertsocket(locBl)

install-socket(wallB,locB2) < wallB.electprep(locB2)

Figure 3: A Construction Plan

wallB.insertsocket(locB2)

first. Constraints 1, 2, and 3, are satisfied by adding the
specified install-socket actions to the electrician plan.
Constraint 4 then decomposes these three actions into
the appropriate electprep and insertsocket actions
at wallA and wallB. This causes changes in the wallA
and wallB subplans of electrician. Before search con-
tinues within iree(electrician), search within tree(wallA)
and iree(wallB) must occur. Let us assume that wall A
is searched first. Both wallA constraints are checked,
but both are satisfied. The newly completed incarnation
of wall A therefore does not add any new information to
the subplan for wallA associated with electrician, but the
process of completion causes the new version of the wall A
plan (that includes the changes made by electrician) to
be inserted appropriately into <ree(plumber).

Then iree(wallB) is searched. The wallB constraint
causes the relations electprep(locBl)
=> insertsocket(locB2) and electprep(locB2) =>
insertsocket (locBl) to be added. Search then returns
to electrician, and the electrician's subplan for wallB is ap-
propriately updated. Note that wallB is not a region of
overlap, so no other completion operation need occur.

At this point, all electrician constraints are satis-
fied. Search then bounces back to gc, which in-
vokes search in iree(plumber). The plumber constraints
cause the addition of the inst all-pipe action and
its decomposition into the appropriate subactions at
wall A. After fixing the second plumber constraint, search
must occur for the affected wallA region. This causes
the actions electprep(locAl) and plumbprep(locAl)
to be forced into some total order (in Figure 3,
electprep(locAl) => plumbprep(locAl) was chosen)
and then, as a result of the second wallA constraint, a
similar ordering is imposed on insertsocket(locAl)
and insertpipe(locAl). The now satisfied wallA plan
is appropriately inserted into both iree(electrician) and
tree(plumber) (due to the completion process). All
plumber constraints are now satisfied and search bounces
back to gc. The constraints within electrician are then

rechecked (due to the changes at wallA), but they are
still satisfied. Search then terminates successfully.

4 Complexity Analysis

It is clear that no general definitive complexity result
can be given for localized search - the size and complex-
ity of the planning search trees for a particular problem
will depend on the structure of the domain, the con-
straints associated within each region, the complexity of
their satisfaction algorithms, the domain search heuris-
tics, and the peculiarities of the specific problem itself.
In order to provide some theoretical estimate of the ben-
efits of localized search, however, we provide an idealized
analysis of search for a domain with a very simple local-
ity structure. We provide best- and worst-case search
costs, assuming that constraint algorithms are either all
constant, linear, quadratic, or exponential in cost (obvi-
ously, most domains will have a mixture of these). Al-
though our analysis is quite idealized, it correlates with
the empirical results of Section 5. The reader should
also note that, for most of our empirical tests, search
has been very close to best-case — i.e., our tests have
exhibited very little backtracking. In general, average-
case behavior can be expected to be close to best-case
behavior if good domain search heuristics are employed.

To formally and empirically assess the benefits of lo-
calized search, we must compare it with completely non-
localized search. For our formal complexity analysis, we
utilize the non-localized and localized domain configura-
tions depicted in Figure 4. For both domains we assume
a total of ne constraints, that each constraint has nf
possible fixes, and that the total number of actions in
the final plan is s. The cost of checking any constraint
on a plan of size j is c(j) and the cost of fixing a plan of
size j is f(j). For the localized case, we assume that the
domain has been localized to form a configuration of m
subregions Ri...Rm and a region G. The actions in the
final plan are divided equally among the R\ regions, so

121

nc constraints
n/ fixes
3 plan size

8 repeat factor

KT"

m+l constraints

fixes
mk
mk(r. '±11

plan size

repeat factor

ro+l
nf

»
m
.(m+1)

rone

con
fix«
pi; ai

rep sat

IRL

straint8
s

size
factor

RiTn

Non-Localized Localized

Figure 4: Non-localized and Localized Domains

that each builds a plan of size ^. Each region Ri also
contains a subregion consisting of k actions that over-
laps with region G. Thus, G's region plan consists of
mk actions. The nc constraints of the original problem
are evenly distributed among G, Ri, ...Rm so that each
region is associated with ^f_ constraints.

Let us now consider the cost of a generic region search
tree. Let us assume that, for a region i, there are nCi

constraints, that each constraint has nf fixes, and that
the final size of the region plan is s,-. Because a con-
straint fix may always, in principle, violate previous con-
straints that may have been satisfied, constraints may
need to be repeatedly checked and fixed. The search
thus tends to take the form of a round-robin checking of
constraints. We call the number of times the search must
cycle through the constraints the search "repeat factor."
Assuming that our sample region has a repeat factor of
r,-, its tree depth is rinCi, with average depth to adding
an action being r'n°'. (Thus, we assume that at most
one action is added per fix. In most realistic domains,
many actions are often added per fix.)

To calculate search cost, we assume an implicit search
space that alternately branches due to choice of a con-
straint (the costs c(j) accumulated due to constraint
testing) and choice of a fix (the costs f(j) accumulated
due to constraint fixing). By "best-case search" we mean
depth-first search without backtracking - i.e., the cost of
one path from the root to the leaves of the search space.

The cost of best-case search for region i is

. £ ^Wi)+ /(;))• •*—' Si
°<J<'i

In contrast, worst-case search cost measures the cost of
searching the entire space. For our sample region i this
cost is

£ niiny
lc((j-l) divr-^)+nirif((j-l) div T-^L).

l<j<rinc.
Si

We shall now compare the complexity of these formu-
lae for the non-localized and localized cases. For each
case, we must assume a repeat factor for each region. In
general, this will be a function of the size s,- of the re-
gion plan and the number of constraints for that region
nc;. For this analysis, we will set the repeat factor r,- to
be ■£*— that is, we assume that exactly one action is

added per fix, that the size of the plan is larger than the
number of constraints, and that the depth of the tree is
equal to the number of actions in the plan. In most of
our test situations, however, the repeat factor tends to
be less than this number, with more actions added per
fix and, of course, some subset of actions being added
by overlapping regions. Moreover, less rechecking needs
to be done due to tuning of constraint application. On
the other hand; some amount of additional rechecking
tends to occur due to the completion process. Thus, our
assumption of a repeat factor of £*- may be only slightly

pessimistic. Given this formulation, the repeat factor for
the completely non-localized case will be -^-. For the lo-

122

calized case, we have a repeat factor of -^- = m ^—

for region G and a repeat factor of ±/^p[= '^^ for
each region i?j.

The complexities of all cases are summarized in Table
1. We provide best- and worst-case search results, as-
suming that the complexity of c{i) and f(i) are both con-
stant, linear, quadratic, or exponential. In some cases
we supply only the leading term. For all of the localized
search cases, we must add to the total cost of the search
trees an additional completion cost C. For this idealized
analysis, we assume that completion occurs each time an
action is added within a region of overlap R. The cost
of each completion operation will be a function of the
number of additional regions that include R (this will
not include the region actually adding the action to R)
and the size of the plan data structure for each of those
regions (since completion involves the replacement of cer-
tain pieces of this data structure). In GEMPLAN, the
size of this data structure is a function of the number of
regions in the plan - in this case m+1. So for this prob-
lem, we will assume a completion cost C = mk(m + 1)
or 0(m2k).

As can be seen in the table, localized search is, in gen-
eral, always better than global search - in most cases
significantly better. The only real exceptions are in the
case of constant-complexity best-case search or when the
cost of completion overshadows the cost of the search it-
self. The amount by which localized search wins over
global search is proportional to the amount by which s
dominates both ^ (the size of each subregion Ri) and mk
(the size of G). Thus, increased decomposition is always
worthwhile, except for the cost of increased amounts of
overlap (which is reflected in the size of mk and the cost
of completion C). The overall gains of localized search
increase as the complexity and size of the search space
increases. As we will show in the next section, our em-
pirical tests on a construction domain have shown uni-
versal performance improvement with localized search,
with speedups of greater than 50% using a good decom-
position.

5 Empirical Results
All of our empirical experiences with GEMPLAN cer-
tainly bear out the efficacy of localized search. Our
largest application so far is for a building-construction
domain. This domain includes multiple instances of each
type of contractor as well as multiple walls and footings
to which these contractors must be allocated. The prob-
lem thus manifests both resource allocation and tempo-
ral coordination of access to building components. The
application was used to test a variety of localization con-

figurations, including some that were fairly complex, in-
volving both a great deal of hierarchy and overlap.

Table 2 and Table 3 provide timing results for the
construction domain (on a SPARC workstation). The
"number of regions" column gives the total number of
regions that have at least one constraint and one ac-
tion in the final plan. The "overlap size" column gives
a sum of size measures for each region of overlap. For
each such region, its "size" is the number of actions in
the region multiplied by the number of times it occurs
within another region. For instance, in the domain of
Figure 1, e-control, p-control, and wallA each occur twice
within a parent region. If each region has a total of 2
actions within its plan, the domain's total overlap size
would be 12. The overlap size column gives a good
idea of how expensive the completion process is. The
"largest region" column gives a pair of numbers <number
of constraints,number of actions> for the region with the
largest number of constraints (which, in this case, is usu-
ally also the region with the largest number of actions).
This measure gives an idea of how big the largest search
space in the domain is - i.e., the region space in which
the most search will be conducted.

The two tables provide results for the creation of of a
49-action construction plan and a 97-action construction
plan. Both used the same basic domain decomposition,
with the 97-action plan simply having more walls, con-
tractors, etc. Within each table, the first test case is for
a non-localized version of the domain - all constraints
are applied globally to the entire plan. The localized(l)
test configuration is highly decomposed but also has sig-
nificant amounts of overlap between regions. The local-
ized^) case has less localization and much less overlap.
Case localized(3) has an intermediate level of both lo-
calization and overlap, and attains the best results in
both cases. Interestingly, these results jibe with our for-
mal analytical results; increased localization provides in-
creased benefit, except for the added expense caused by
with regional overlap. However, notice that, in the 97-
action case, localized(l) is faster than localized(2). This
shows how, as plan size increases, the cost of dealing
with overlap is overshadowed by the shear size of the
planning space itself.

123

complexity of
c(i) and f(i)
constant (&)

linear (ib)

quadratic (i2)

exponential (b')

Non-Localized
(best-case)

2bs

6s2

Is3
3s

26'

Localized
(best-case)

2b(s + mk) + C

(5r + (")a) + C
+ (mk)3) + C

2(m6m +bmk) + C

Non-Localized
(worst-case)

b(ncnfy

bs(ncnf)'

d2(ncnfy

(bncnfy

Localized
(worst-case)

b(m(^)- + vimrk)+c
K'(5Sf)*+(5Sf)m*) + g

m \ m -C- ffl* + ("*)2(=Sf)m* + '
»(%&)+(=#)"*+c

Table 1: Non-Localized and Localized Search Complexity

test case (49 actions) number of regions overlap size lavgest region CPU Seconds
non-localized 1 0 <40,49> 113.81
localized(l) 24 134 <4,16> 85.78
localized(2) 16 32 <15,28> 79.23
localized(3) 19 76 <8,17> 62.95

Table 2: 49 Action Construction Plan

test case (97 actions)
non-localized
localized(l)
localized(2)
local ized(3)

number of regions

37
28
31

overlap size
0

236
32
102

largest region
<52,97>
<7,34>
<24,58>
<8,24>

CPU Seconds
905.98
524.97
725.43
442.43

Table 3: 97 Action Construction Plan

124

6 Conclusion

This paper has described a general-purpose technique
for localized search, as well as complexity results and
empirical test results that illustrate how localized rea-
soning can provide substantial gains in performance. I
strongly believe that the principal of domain localization
can be used by a wide variety of reasoning mechanisms.
The idea is quite intuitive and natural, but has, surpris-
ingly, not been a fundamental aspect of most AI systems.
Its application to planning is vital if such systems are to
meet the requirements of large, complex domains.

Acknowledgments

Lode Missiaen helped to design and implement GEM-
PLAN's localized search algorithm. I would also like to
thank Anna Karlin for her assistance with the complex-
ity results. John Bresina, Megan Eskey, Mark Drum-
mond, Monte Zweben, Lode Missiaen, and Guy Boy also
provided astute advice towards improving the quality of
this paper.

References
[1] Bresina, J., Marsella, S. and C. Schmidt. "Pre-

dicting Subproblem Interactions," Technical Report
LCSR-TR-92, LCSR, Rutgers University (February
1987).

[2] Chapman, D. "Planning for Conjunctive Goals,"
Masters Thesis, Technical Report MIT-AI-TR-802,
MIT Laboratory for Artificial Intelligence, Cam-
bridge, Massachusetts (1985).

[3] Hayes, P.J. 1973. The Frame Problem and Re-
lated Problems in Artificial Intelligence. In Arti-
ficial Intelligence and Human Thinking. Edited by
A. Elithorn and D. Jones. Jossey-Bass, Inc. and
Elsevier Scientific Publishing Company, pp. 45-59.

[4] Korf, R.E. "Planning as Search: A Quantitative Ap-
proach," Artificial Intelligence, Volume 33, Number
1, pp. 65-88 (1987).

[5] Lansky, A.L. "Localized Representation and Plan-
ning," in Proceedings of the 1989 Stanford Spring
Symposium, Workshop on Planning and Search
(March 1989).

[6] Lansky, A.L. "Localized Event-Based Reasoning for
Multiagent Domains," Computational Intelligence
Journal, Special Issue on Planning, Volume 4, Num-
ber 4 (1988).

[7] Lansky, A.L. "A Representation of Parallel Activity
Based on Events, Structure, and Causality," in Rea-
soning About Actions and Plans, Proceedings of the
1986 Workshop at Timberline, Oregon, M. Georgeff
and A. Lansky (editors), Morgan Kaufmann Pub-
lishers, Los Altos, California, pp. 123-160 (1987).

[8] Lansky, A.L. and D.S. Fogelsong, 1987. "Local-
ized Representation and Planning Methods for Par-
allel Domains," in Proceedings of the Sixth Na-
tional Conference on Artificial Intelligence (AAAI-
87), Seattle, Washington, pp. 240-245 (1987).

[9] Lansky, A.L. and L. Missiaen, "Localized Search in
GEMPLAN," NASA Technical Report FIA-90-04-
03-2, NASA Ames Research Center, Moffett Field,
CA 94035 (1990).

[10] Missiaen, L. "Localized Search," Technical Note
476, Artificial Intelligence Center, SRI Interna-
tional, 333 Ravenswood Ave. Menlo Park, Califor-
nia 94025 (November 1989).

[11] Täte, A. "Project Planning Using a Hierarchical
Nonlinear Planner," Department of Artificial Intel-
ligence Report 25, University of Edinburgh (1976).

[12] Wilkin8, D.E. 1984. Domain-independent Planning:
Representation and Plan Generation. Artificial In-
telligence, Volume 22, Number 3, pp. 269-301.

125

Transformational Synthesis:
An Approach to Large-Scale Planning Applications

Theodore A. Linden
Advanced Decision Systems

1500 Plymouth St.
Mountain View, CA 94043

linden@ads.com

ABSTRACT

General-purpose planning techniques quickly become
computationally intractable as one tries to increase the
scale of the problem from simple examples to real,
useful applications. Practical solutions lie not so much
in enhancing general-purpose techniques but in finding
ways to exploit the structure of specific problem spaces
without compromising the goals of flexibility,
extensibility, and generality that one is trying to
achieve with planning technology. Transformational
synthesis is a rule-base approach to constructive
problem solving that combines the strengths of both
planning and programming technology and supports the
integration of multiple planning methods. Planning
methods are represented as transformations that evolve a
declarative representation of partially developed plans.
Successful integration requires a common plan
representation and shared approaches for plan evaluation
and for searching among alternative plans. Recent
applications have included a mission planner for
multiple Autonomous Land Vehicles (ALV), daily
scheduling of tactical air fighter resources, and
interactive planning and control for submarines. These
planners mix many of the classical planning
techniques—using each where it is most appropriate,
and different transformations range from generic to
domain-specific. For example, the ALV mission
planner has the domain knowledge and planning
heuristics to plan multiple-vehicle reconnaissance
missions at the three highest levels of abstraction.
Most knowledge about the environment and all
knowledge about the effects of the vehicles' operations
is uncertain and is represented in terms of probability
distributions. These planners exhibit much of the
flexibility and extensibility of general-purpose planners;
yet, they have the run-time performance of special-
purpose planners.

1. Introduction

Recent research on planning technology has been searching
for new paradigms that will enable the field to transcend the
practical limitations of classical planning techniques. In the
process, many of the assumptions involved in the classical
planning methods of the 1970s are being questioned—
indeed, the very meaning and utility of automated planning
has been in question [Swartout 88].

The chief problem with classical planning techniques is
that they quickly become computationally intractable when
they are applied in applications that go beyond simple
examples.' Furthermore, when planning is used in real-
world applications, the planning must be done with very
imperfect knowledge about world states, the planning needs
to be interleaved with execution, and a rapid replanning
capability is needed. While classical planning techniques
can be extended to deal with uncertainty, with replanning,
and with other real-world issues, such extensions only
aggravate an already intractable problem with run-time
performance.

In our approach to planning, we accept the idea that
planning involves the creation and maintenance of a
declarative data structure called a plan. Other agents (either
automated or human) interpret the plan and use it as a guide
for execution and control. We do not assume that the plan
is the only input to the agent executing the plan or that this
agent is a slave to the plan; in fact, one aspect of our
approach toward large-scale planning and control systems is
to give as much autonomy as possible to the execution
agents and defer making decisions that are more
appropriately made by the agents that execute the plans.

Past planning research has focused on generic, domain-
independent planning techniques. While the motivation for
this focus is clear, practical solutions to the computational
intractability of planning are to be found by focusing on
better ways of exploiting the structure of specific problem

* This work was partially supported by the Defense Advanced
Research Projects Agency (DARPA) and the U.S. Army Missile
Command under contract DAAH01 -90-0080 and partially
supported by IR&D funding from Advanced Decision Systems.

Mt has long been clear that there are more than just engineering
problems to be faced when we attempt to scale up planning
algorithms to handle larger applications. See [Chapman 85]
about the theoretical limits of planning algorithms such as
those used in STRIPS and other planners. The Forbin project
[Dean, Miller, & Firby 87] is a recent example confirming that
in practice a general planner quickly encounters intractible run-
time performance problems.

126

spaces without seriously compromising the flexibility,
extensibility, and generality of the planning system.

Exploiting Domain-specific Knowledge. Classical
planning systems assumed that it is feasible to have a
simple separation between general, domain-independent
planning techniques and domain-specific knowledge. In fact,
introspection on human planning does not show any clean
separation into domain-independent planning techniques and
domain-specific knowledge. Humans who are expert
planners in one domain require a long time to become expert
in another domain, and their learning in the new domain
involves learning procedural as well as declarative knowledge
about the domain. One of the contributions of the transfor-
mational viewpoint is that it offers more options for com-
bining general domain-independent knowledge with domain-
specific knowledge. By encapsulating domain-specific
procedural knowledge within transformation rules, we
achieve the efficiency of domain-specific procedural shortcuts
while preserving most of the modularity, generality, and
extensibility that is desired in planning system.

Planning vs. Programming. Classical planning
technology does not take advantage of the structure of the
specific problem in order to control the computational
complexity of the problem. At the other extreme, if
classical programming technology were applied to the same
planning application, one would begin with a requirements
definition that encourages the use of problem-specific
information throughout the design of the application. This
allows domain-specific details to permeate the entire
application design with the result that the application's
flexibility, extensibility, and generality are seriously
compromised.

The transformational viewpoint exploits the strengths
of both planning and programming technology in order to
achieve practical, high performance planning systems that
still have most of the flexibility, extensibility, and
generality that one is trying to achieve with a planning
system. Many of the recent efforts to build high
performance robotic control systems can be criticized as
being simply control programs. But if the robot is to be
"intelligent," then it should at least be

1) very flexible in adapting to a wide variety of run time
situations,

2) extensible in the sense that it can be instructed to behave
in new and different ways without major
reprogramming,2 and

3) general in the sense that some of its knowledge and
behaviors are applicable to more than one application
domain.

Section 2 of this paper is an overview of
transformational synthesis, and Section 3 describes how the

2One would also like the robot to be able to learn from its own
experiences; however, our current goal is limited to making the
software be extensible in the sense that a programmer or a user
can easily add to the functionality of the robot without having
to understand details of its existing functionality

idea has evolved out of work on reasoning about formal
languages and is now being applied in a series of large
planning applications at ADS. In Section 4 we discuss the
contributions that this approach makes to planning
technology. Section 5 describes how to use this approach
when designing large planning applications. Sections 6 and
7 summarize previously published results from the ALV
mission planner which is the largest completed application
of this approach to planning, and Section 8 contains
conclusions about the flexibility, extensibility, and
generality that can be achieved with this approach.

2. Transformational Synthesis Overview

Transformational synthesis is a paradigm for constructing
programs, plans, or other complex conceptual objects by
evolving them through small, independent changes until a
desirable result is achieved. The flow of control for making
these changes is largely data directed; i.e., each
transformation may be invoked whenever a component of
the evolving result matches the pattern specified in the
transformation's preconditions. Transformational synthesis
is a generalization of an approach to constructive problem
solving developed during research on programming
technology; and it has proven to be useful in developing
other AI software that needs to be unusually flexible and
extensible.

When transformational synthesis is used to automate
software development, a program is evolved from its
specifications by a series of small, independent changes or
transformations. When transformational synthesis is applied
to planning, the goals and constraints are represented as an
incomplete plan; then planning techniques—implemented as
transformations—evolve the plan into a form that can be
executed effectively. Many of the transformations package
together the results of knowledge engineering and of domain
specific reasoning that has been done at design time. This
reasoning does not need to be derived again from more
primitive reasoning steps while the planner is executing.

As an approach for building practical, real-world
planning applications, transformational synthesis is not in
competition with specific planning paradigms like case-
based planning or constraint-directed planning. Rather,
transformational synthesis takes the view that plans are
declarative objects that can be generated, refined, evaluated,
and modified by many different planning methods. When
following this approach, the two key steps are to design a
knowledge base and transformations on that knowledge base
such that:

• There is a declarative representation of the plan
maintained in a knowledge base that is capable of
representing the intermediate planning states that occur
as the plan is being developed. A critical problem is to
find plan representations that are expressive enough to
capture all of the information that needs to be shared
among planning methods. In practice, this leads to plan
representations that have multiple viewpoints and
capture knowledge about the goal structures,
abstractions, dependencies, resources, alternatives,
partial decisions, and uncertainties that need to be

127

reasoned about at intermediate stages of a plan's
evolution.

• The transformations that evolve the plan may be
entirely domain independent, they may exploit specific
structures of the problem space, or they may be domain-
specific and result from knowledge engineering activi-
ties that capture the planning shortcuts used by human
planning experts. Other transformations apply algor-
ithms or generic planning techniques. Each transfor-
mation has preconditions that limit its application to
the planning subtasks for which it is effective.

2.1. Comparison with the Blackboard Model
When viewed in these general terms, transformational
synthesis is quite similar to blackboard-based approaches to
incremental planning where the declarative representations
correspond to the blackboard and the transformations
correspond to knowledge sources. Transformational
synthesis shares with blackboards and rule-based approaches
the ability to integrate multiple planning paradigms, to
separate planning functionality from control and
optimization decisions, and to enhance the modularity,
generality, flexibility, and extensibility of the planning
software. Historically, blackboard and transformational
approaches have been applied to different classes of
applications, and these applications have led the two research
communities to focus on different aspects of a common
problem. Unfortunately, the lessons learned from research
in these two communities have often not been transferred
effectively to the other community.

2.2. Summary of Transformational Synthesis
Contributions

The transformational viewpoint, which is based on many
years of research on software technology, brings with it
many practical insights for integrating diverse planning
techniques and scaling up to large applications. As detailed
in the later section on Transformational Synthesis
Contributions, these contributions can be grouped into four
categories.

1) Unifying Formalism for Integration.
Transformational synthesis has evolved out of research
of software technology which provides a unifying
formal theory that can support reasoning about the
correctness and termination of transformational
processes. This basis in software technology also
includes a wide variety of optimization techniques
which will all be needed as we try to scale up planning
technology to handle large, real-world planning and
scheduling problems.

2) Plan Reuse, Replanning, and Contingency
Planning. Alternative approaches to plan reuse,
replanning, and analysis of contingency plans are
supported within the transformational viewpoint
including work on: a) automatic capture of plan
dependencies from the instantiated preconditions of the
transformations that are used to generate the plan and b)
replanning by replay of transformational derivation
histories.

3) Integration around a Common Plan
Representation. This supports the integration of
multiple planning paradigms and the effective use of
domain-specific planning knowledge.

4) Interactive Planning by Co-operating Users.
By using problem-specific abstractions in the
representation of the plan and by developing planning
processes that imitate the steps that human planners use
in manual planning, the evolving plan can be
intelligible to users who interactively assist in
developing and checking the plan as it evolves. The
abstract plan also becomes a context for communication
among co-operating human planners.

3. History of Planning by Transforma-
tional Synthesis

The transformational approach has evolved out of research
on reasoning about formal languages. It has been applied
extensively in the form of transformational implementations
that compile very high level programming languages
[Partsch & Steinbruggen 83, Fickas 85, Balzer 85, Smith et
al. 85, Rich & Walters 85, Agresti 86, Lowry & Duran 89]
and in work on simplifying mathematical expressions
[Silver 86]. Transformations appear as key concepts in
recent commercial programming languages like REFINE and
Mathematica.

We use the term transformational synthesis when this
basic transformational approach is applied in constructive
problem solving. These constructive problem solving tasks
extend the basic transformational paradigm in three ways:

• The transformations implement a variety of different
constructive problem solving steps. The
transformations used in transformational compilers do
mostly simplification, definition expansion, refinement,
and optimization. When the transformations implement
constructive problem solving steps, arguments about
termination and convergence of the transformations
become more complex. For example, in the ALV
planning application discussed later in this paper, the
transformations implement goal elaboration, goal
regression, refinement of abstract operations, plan
evaluation, and plan critics. The design of the
application needs to support an argument that
invocation of the transformations will terminate and
that when no transformation is applicable to the plan
state, a correct plan will have been derived (or an
explicit failure will have occurred).

• The data structures that are being transformed are not as
simple as mathematical expressions and formally-
defined programming languages. In general problem
solving applications, the data structures being trans-
formed involve quite complex representations of a
problem space that may include all the structures of an
object-oriented knowledge base including inheritance of
properties and default values, relations treated as objects,
and declaratively represented constraints.

128

• A planning system needs to explore plans that
eventually prove to be unsuccessful or less successful
than some alternative. Transformational compilers
typically do not search among alternative possible
transformational derivations; however, for most
planning applications we apply transformational
synthesis in the context of an overall search strategy
that generates and evaluates alternative plans.

Recent examples of the extended use of the transformational
approach include the KIDS system for algorithm design
[Smith 90], a project management assistant, and a VLSI
circuit design system. Here we focus on our recent
applications to planning and scheduling applications.

Transformational synthesis was first applied to planning
during ADS' work on DARPA's Autonomous Land
Vehicle (ALV) program. Transformational synthesis was
used to developed a real-world multi-vehicle mission planner
designed to interface with the on-board vehicle control
functionality of future ALVs [Linden & Owre 87, Linden
89, Linden & Markosian 89, Linden 90]. The plan is
synthesized by transforming the goals into plans where the
goal structure, abstraction levels, plan alternatives,
uncertainty representations, and probabilistic plan valuations
are included in the evolving plan representation.

In current work on RADC's Advanced Planning
System (APS), ADS is using transformational synthesis
to implement constraint-directed reasoning. APS is being
implemented as an operational prototype that will partially
automate the daily generation of Air Tasking Orders for
Tactical Air Force Command Centers. The APS
implementation includes extensive constraint propagation
and meta-level reasoning that chooses which transformation
is best applied next. Each scheduling decision (implemented
as a transformation) includes substantial look-ahead to
evaluate the probable effects that the decision would have on
other scheduling decisions. This look-ahead is supported by
the propagation of statistical measures to identify critical
resources in a way that is parallel to recent work by Mark
Fox and others at CMU [Fox et al 89, Fox & Sycara 89].
For this application we expect that, with a good ordering of
the planning and scheduling decisions, it will be possible to
generate good schedules without backtracking.
(Backtracking is usually not acceptable when multiple users
are co-operating to generate the plan interactively.) Plan
critics will be able to undo specific previous decisions and
are included in the system design.

Another feature of APS is mixed-initiative planning
where any planning step can be done either by a human
directly or by the automated planner. This has led to a
strong emphasis on abstraction in the representation of the
intermediate states that occur as a planning session
progresses. Since the human planners participate in the
planning process, they have to be able to interact with the
plan as it is evolving during a planning session. Mixed-
initiative planning requires high level modeling of the
concepts that the humans actually use while they do their
planning.

ADS is also using transformational synthesis on
DARPA's Submarine Operational Automation
System (SOAS) program. A key problem in this appli-
cation is the integration of strategic and reactive planning.
In the initial implementation, reactive plans are represented
using Firby's Reactive Action Packages (RAPs) [Firby 89].
The first phase of this effort produced a reimplementation of
RAPs and included transformations that generate a simple
RAP at run time. A second phase is now underway to
produce a more complete prototype planning system with
transformations being used to generate reactive plans.

In another application of transformational synthesis, we
are designing a planning system for the domain of
transportation planning. The focus of this research is on
representing and reusing reactive plans and programs. It
addresses two common problems in AI planning
applications: the integration of look-ahead planning with
reactive execution, and the reuse and extension of previously
developed plans, planning methods, and programs. As we
extend the prototype planner to integrate solutions for a
series of increasingly realistic and challenging transportation
planning problems, we will measure the degree to which our
planner reuses previous plans and the degree of program
extensibility that we achieve as we extend the planner to
new problems and new domains.

In all of these planning applications, the key to success
is in the representation of the problem space and of the
intermediate states of the plan together with the goal
structure, abstractions, dependencies, resources, alternatives,
partial decisions, and uncertainties that need to be reasoned
about as the plan is evolved. Similar representation
techniques were used in ADS' work on AirLand Battle
Management (ALBM) program where ADS has recently
completed a three year project to demonstrate that it is
feasible to provide effective automated assistance to staff
planners at the Army Corps level [Stachnick & Abram 88].
The planning process employed in ALBM closely parallels
the manual Army planning process.

Each of these applications is quite different in terms of
the specific planning techniques that are most appropriate for
the application. The ALV and ALBM applications involve
plans with complex goals, multiple abstraction levels, and
reasoning about sequences of actions to be performed by
multiple agents. A simplifying feature of these applications
is that control structures for the planning process can be
decided at design time based on knowledge engineering that
extracts the planning processes actually followed by expert
human planners in that domain. The planning process
control has to be highly conditional so that it can adapt to
the particular planning situation; however, the adaptability
that is appropriate does not require explicit meta-level
reasoning at run time.

In APS the structure of the plans being developed is
much simpler (the complexity arises from resource
allocation and scheduling constraints, not from variability in
the structure of the plans), and much of the domain
knowledge is naturally expressed as constraints. Manual
planning processes in the APS domain do adapt to the
constraints that are most critical; and, in automating these

129

processes, we have focused heavily on meta-level reasoning
that decides on the order in which scheduling decisions can
best be made.

On the SOAS project, much of the focus is on the
selection and execution of reaction plans. Much of the
domain knowledge can naturally be expressed as reactive
plans ("in this situation, a commander would do such and
such"), so many of the reactive plans are naturally built in
as part of the system's knowledge base. Some of the
reactive plans need to be generated automatically as the
system is executing. Route plans are the chief example
because they are difficult to express as conjunctions of rules
that associate actions with situations, and RAPs that express
route plans for the submarine are best developed in the run
time situation.

The overall lesson from these applications is that the
most effective way to express the available domain
knowledge is different for different kinds of applications.
Sometimes it is most effective to embed the domain
knowledge directly in plan fragments, sometimes it is best
to incorporate it in the processes that generate plans, and
sometimes domain knowledge is best expressed as
constraints that are used at a meta-level to control the
planning processes. A given application may involve
domain knowledge expressed in each of these ways, and the
transformational viewpoint makes it easy to include domain
knowledge in any or all of these forms.

4. Transformational Synthesis
Contributions

In this section we summarize the advantages of adopting the
transformational viewpoint. Many of these advantages can
and have been pursued in other planning research; however,
the transformational viewpoint gives a sound theoretical
basis for developing verified plans while using computa-
tionally tractable planning methods. The main idea is to
develop and verify transformations that encapsulate large
chunks of planning knowledge. From a formal viewpoint,
verified transformations are like parameterized lemmas that
can be applied at will in a powerful theorem proving
system. They allow much of the reasoning required for plan
generation and replanning to be done once and then reused as
needed during planning processes. By embedding appropriate
planning knowledge in the transformations, we expect that
run time costs for plan generation and replanning will scale
up to real-world planning and scheduling applications. By
using transformations that can be verified to preserve
correctness with respect to formal goals and constraints,
correctness is preserved as an invariant property of plans as
they are generated.

4.1. Unifying Formalism for Integration.
By drawing on a long history of research on formalizing
programming processes, transformational synthesis is
supported by a unifying formalism for reasoning about
planning processes and for exploring the tradeoffs between
efficiency and generality.

Correctness, Convergence, and Termination.
Case-based approaches to planning use transformations that
tweak or modify previous plans to fit the current situation.
Success has been demonstrated on simple problems; but, as
we scale up to modify plans for large, real-world
applications, we will encounter replanning processes that do
not terminate or that are unstable in that alternative
execution sequences or minor changes in the situation cause
the tweaking to converge to distinctly different plans. We
need a sound theoretical basis for reasoning about
incremental plan modifications, and I believe this can be
achieved by taking the transformational viewpoint where
there is already a rapidly developing theoretical foundation.
In addition to other theoretical results about transformational
approaches, by interpreting transformations as statements in
the UNITY program specification language, the logic for
reasoning about UNITY programs [Chandy & Misra 88]
can be applied to reason about the correctness, convergence,
and termination of planning processes.

Integration of Procedural Knowledge. Since
transformations are integrated as a construct within a
programming language, it is relatively easy to make
tradeoffs between procedural, transformational, and purely
declarative representations of information. Transformations,
which may encapsulate procedural information or may be
purely declarative statements about preconditions and
postconditions, have advantages that are intermediate
between procedural and declarative representations. It is also
possible to evolve an application toward a high-performance,
large-scale system by designing it initially using mostly
declarative representations and transformations, and then, as
the appropriate problem solving strategies become better
understood, migrating the implementation toward more
efficient but less extensible procedural representations.

Compile-time optimizations. Within the
transformational approach there has been research on explicit
meta-level reasoning to choose the most appropriate
transformations (e.g., [Silver 86]); however, experience with
transformational approaches indicates that it is better to bind
many of these control decisions at design time or at
compilation time because run-time reasoning about control
can itself become a performance problem. Run-time meta-
level reasoning about control is sometimes needed, and when
it is needed it may improve performance dramatically;
however it is only one of many important techniques that
are needed for high performance, large-scale planning and
scheduling systems. Others include compilation of abstract
data structures and of control reasoning.

Infusion of Software Technology. When
transformational synthesis is used both to build plans and to
compile the planning system software, the plans and
programs are represented in the same knowledge base, and
the tools applicable to compiling and optimizing programs
are also available for compiling and optimizing the plans.
Some transformations that are commonly used for software
optimization transfer to the planning domain; for example,
an analogue of a transformation that does loop jamming on
a program appears to be useful in plan optimization. By

130

building on the transformational technology, other results
from software research will also transfer more easily into the
planning community; for example, some research on case-
based planning appears to be missing the lesson from
programming research that when there are strong
dependencies within a plan, modification of the plan may be
more difficult and time consuming than regenerating the
plan by replaying the relevant portions of its development
history.

4.2. Plan Reuse, Replanning, and Contingency
Planning.

There are three alternative approaches to automated plan
reuse, replanning, and contingency planning (in order of
increasing flexibility):

1) selection and instantiation of parameterized plans,

2) incremental modification of previous plans using an
explicit record of plan dependencies, and

3) replanning by replay of previous transformational
derivation histories.

The first of these approaches is easily supported with any
approach to planning, a transformational viewpoint is
natural for the other two approaches..

Capturing Plan Dependencies. For incremental plan
modification, transformations provide a systematic way of
capturing the assumptions and dependencies behind
components of the plan. These assumptions and
dependencies, which are also the conditions that may need to
be monitored during plan execution, appear in the
instantiated preconditions of the transformations that
generated the plan. When multiple planning paradigms are
integrated in the context of a transformational approach, this
gives a uniform and systematic way of capturing and
recording the plan dependencies as the plan is constructed.
Research on this topic will need to distinguish essential
preconditions from others. It will be important to determine
whether this way of capturing the assumptions and
dependencies leads to representations that are manageable for
real-world applications. There is an argument that for most
resource allocation and scheduling problems, the external
assumptions deal mostly with resource availability and the
internal dependencies between different entities to be
scheduled are not so complex that they will be
unmanageable when captured and represented explicitly.

Replanning by Replay of Previous Planning
Processes. Research on replanning in the planning
community has focused on instantiating parameterized plans
and then tweaking or modifying previous plans. Research
on programming and design, however, has found that it is
frequently better to reuse the program derivation history
rather than to reuse a fully detailed program. Replay of
transformational derivations is a topic of current research on
problem solving [Carbonell 86], programming [Goldberg
89], algorithm development [Smith, 90], and design
[Mostow, 89]. We expect that for planning problems, the
replay of transformational derivation histories will offer a
more general alternative to replanning. In particular, when

developing contingency plans for an alternative situation,
the alternative situation is likely to cause changes that are
quite pervasive through much of the plan. Rather than
"tweaking" the plan from the mainline situation, we
hypothesize that it will frequently be faster and more
effective to replay the derivation history of that plan (or of
some other plan). If users participated in developing the
main line plan, they may only need to ratify that their
planning decisions can be reused in the contingent situation.
Experimental results are needed to evaluate this trade off
between plan reuse and replan of the derivation history.

4.3. Integration around a Declarative Plan
Representation

By capturing in a declarative representation the intermediate
state information that is needed by different planning
paradigms, one can integrate many separately written
planning components.

Integration of Multiple Planning Paradigms.
Different planning paradigms are appropriate for different
subproblems within a complex planning application.
Decision-theoretic planning is appropriate for reasoning
about alternative courses of action when there are many
uncertainties. Constraint-direct reasoning is often best for
detailed resource allocation and scheduling subproblems.
Case-based planning can avoid the regeneration of plans
similar to previous plans. Situated planners adjust the
planning process to real-world time and information
constraints. Generative planning is needed to deal with
unique and unexpected situations where other planning
methods fail. Real-world planning systems need to use the
appropriate planning methods for each subproblem.
Attempts to stretch a planning paradigm to handle
subproblems for which it is not the best paradigm leads to
complex, inefficient planning systems.

Effective use of domain-specific planning
knowledge. By keeping the general-purpose and domain-
specific knowledge in separate transformation rules, the
domain-independent portions of a planning application can
still be transferred between applications (assuming
compatible representations for the evolving plans). Thus,
within the transformational synthesis viewpoint it is
practical to explore many uses of domain-specific
information not only to represent facts about the problem
domain but also in all of the following roles which are
critical in reducing computational costs:

1) Identifying useful abstractions. Effective abstractions
can reduce an exponential search problem to one that
can be solved in linear time [Korf 87] [Lowry & Duran
89]. Some of these abstractions can be developed
through knowledge engineering activities at design
time, others need to be generated dynamically at run
time [Lowry 90]. Abstractions appear in many different
forms and lead to multiple hierarchical structures within
an application. In addition to abstraction by ignoring
preconditions, there is abstraction by aggregation of
resources or other domain objects, there are "genus-
species" and "part of hierarchies, and there are
abstraction levels where terms for higher level goals and

131

operations are defined within their own semantic
theories and have implementation relationships to lower
level objects.

2) Dividing the problem into independent subtasks. It is
important to take advantage of domain-specific insights
that allow the problem to be divided into subproblems
that can be planned almost independently.

3) Declarative representations of constraints and
dependencies. Many development environments include
trigger or demon mechanisms that can implement
constraint checking and propagation; however, this is a
procedural representation of the domain constraints and
leads to very messy planning systems that are not
general and extensible. Automatic compilation of
demons from declarative constraints combines the
advantages of declarative representations with the
efficiency of a more procedural representation.

4) Implementing large inferencing steps. Domain-specific
information can be encapsulated in transformations and
then reused to take large steps in reasoning during plan
generation or replanning. The planner needs to execute
these large inferences efficiently; it does not need to
derive them from more general principles each time a
plan is generated. These large inferences correspond to
lemmas in an inferencing system.3

5) Focusing the control flow within the inferencing.
Experience from automatic theorem proving and from
real-world AI applications shows that extensive domain-
specific information is needed to focus and control the
inferencing strategy.4

4.4. Interactive Planning by Co-operating
Users.

By emphasizing declarative representations for all of the
information about the current state of the plan including its
goal structure, abstractions, dependencies, alternatives,
partial decisions, and uncertainties, the transformational
viewpoint makes it easier to support user visibility into the
current state of the plan and to allow users to interactively
assist in the plan development. The plan representation
also becomes a context for communication between multiple
users who are working co-operatively and for
communication between users at multiple sites and multiple
levels of a hierarchical command structure.

J Case-based reasoning is one way for a planner to make a very
large step in inferring the right plan by using historical
information from either the same domain or from analogous
situations in other domains. In many cases, one can achieve
even higher performance by incorporating in a transformation
the generic lesson learned from previous cases. Then the run-
time planning system does not have to repeat the reasoning that
generalizes from cases to planning rules.
4 For a discussion of why general purpose search guiding and
pruning techniques have failed to have more than a minor effect
on curbing the combinatorial explosion in theorem proving,
see [Bundy 83], especially Chapter 7 "Criticisms of Uniform
Proof Procedures," pp. 82-95.

User Visibility into the Developing Plan:
Assuming that the plan representation includes the
abstractions actually used by human planners in the domain,
and assuming that it includes the goal structure,
dependencies, alternatives, and other information that
humans think about as they plan, it is possible to let users
participate actively in the planning process. There is still a
user interface problem to make the plan representation
intelligible to users, but once the user can understand the
intermediate states of the plan as it is being evolved, then
users can make some of the planning decisions directly and
can direct the transformational development process. The
KIDS system [Smith, 90] is a large, working example
where a user interactively directs a transformational
development process.

Context for Communication among Multiple
Human Planners: Once users can understand the state of
a fully represented plan as it is being developed or modified,
then that plan representation provides an effective context for
communication among the users. Users who have
specialized areas of expertise can make planning decisions
when the plan evolves to the point where the preconditions
for that decision are valid and the decision becomes
appropriate. These users may operate at different levels of
abstraction or at different levels of a hierarchical command
structure.

A final advantage of the transformational viewpoint is that
tools to support it are more mature and stable than current
blackboard tool environments. REFINE has now been
available as a supported commercial product for four years,
and it is in its third release. It is being used in a wide
variety of programming applications using both the
transformational paradigm and other programming
paradigms. The REFINE knowledge base is tuned for high
performance, and in the KIDS system, it routinely manages
knowledge bases with over 130,000 object instances.

5. Integration of Domain-Specific
Planning Knowledge

This section contains general advice about how to use
transformational synthesis in a planning application. Since
transformational synthesis is an approach to design and not a
design, many details about how it is applied depend on the
application.

Integrating Solutions to Independent Subtasks.
If a large scale planning application has a computationally
tractable solution, then it is possible to break the problem
into many almost independent subproblems. This
decomposition of the problem into subproblems can take
advantage of many different kinds of hierarchies:

• Subtasking. Plan representations should support the
decomposition of tasks into subtasks.

• Abstraction Levels. The plan representation should take
advantage of all of the abstractions that are applicable in
the domain. Abstract operations are especially

132

important, and many transformations are devoted to
refining abstract operations to primitive operations.

• Reflection. Systems that do planning and control have
a natural hierarchical organization based on levels of
reflection—with levels devoted to acting, planning,
meta-planning, etc. This reflection hierarchy for
planning systems is largely orthogonal to subtask
hierarchies and abstraction hierarchies.

One needs to integrate solutions to the different subproblems
in a way that does not compromise the flexibility,
extensibility, and generality of the system. Most
approaches toward building integrated systems require that
the interfaces between the different components of the
system be designed early in the system's life cycle.
Unfortunately, for planning systems it is almost impossible
to identify all of the independent subproblems during the
early stages of system design. If one is forced into early
decisions about the planning system's components and the
interfaces between them, the future flexibility and
extensibility of the system is seriously compromised.

When the software is designed as a set of
transformations of a declarative representation, procedural
knowledge can be encapsulated within the transformations.
If the software designers adhere to the goal of keeping the
transformations independent so they interact only through
the declarative representations, then it is relatively easy to
add new transformations and to modify existing ones. Thus,
new additional planning methods and heuristics can be added
throughout the development and operational use of the
application.

While transformational synthesis provides a framework
for modularizing planning systems, there are still several
elements of the system that need to be shared by all the
transformations; and these elements need to be designed
carefully.

1) The knowledge base representation, especially the
representation of the evolving plan.

2) A way of testing and evaluating evolving plans.

3) Search mechanisms.

4) The control discipline that determines when
transformations are invoked.

Representing Evolving Plans. When using transfor-
mational synthesis, much early design work is devoted to
designing the knowledge base representations. It is
important to take advantage of domain-specific abstractions
in the choice of these representations. It is usually much
harder to represent the partial and incomplete plans that
occur at intermediate stages of planning than it is to
represent the final plan.5

A knowledge base representation for the partial plans can be
quite complex. The plan representation for ALBM
represents goals, subgoals, tasks, subtasks, resources, plan
alternatives, and constraints—and relationships between all
of these objects.

Plan Evaluation. Testing and evaluation of plans is
separable from the transformations that evolve the plan.
Since projection of a plan's effect usually involves a lot of
uncertainty, some form of reasoning with uncertainty is
likely to be needed in the evaluation process. A specific
approach that was used in the ALV mission planner is
discussed in a later section.

Search. In a planning application, one usually cannot
design the transformations so they make linear progress
toward a good plan. Thus there needs to be an overall search
strategy within which the transformations operate. In our
applications thus far, we have been able to use heuristics
that keep the overall search space quite narrow—imitating
the human planner's approach of only exploring the most
promising alternatives.6 When the search can be kept
narrow, it is possible to maintain the alternative plans
within the knowledge base representation and the
transformations can be used to evolve these alternative plans
in parallel. Interim evaluations of the alternative plans are
used to focus the transformations on the alternatives that are
more likely to succeed.

Control. Transformations, like any rule-based approach,
allow control decisions to be separated from functionality.
Ideally, one wants the functionality of the planner to be
independent of the order in which the transformations are
tested and applied; then the run-time performance of the
system can be optimized by being smarter about the order in
which preconditions are tested. The optimizations can be
done by meta-level planning; however, it is often as
effective if they are done late in the development cycle by
the application's designers once the planning system is
functioning and the appropriate problem solving strategies
are understood.

Once the semantics of the transformations have been
used to optimize the control flow within the planning
application, any extension of the planner's functionality may
require that the optimization decisions be redone.

6. The ALV Mission Planning Problem

This section summarizes the scope of the planning problems
that were handled in the ALV multi-vehicle mission planner.
This ALV planner forms the largest completed application
of transformation synthesis to a real-world planning
application. Results from this work are documented in
previous publications [Linden & Owre 87, Linden 89,

-'Most programming languages are examples of representations
that are good at expressing the final results of a development
process but are seriously inadequate at expressing what has been
decided at intermediate stages of the development leading up to
that result.

"When broader search algorithms are appropriate for specific
subproblems, we have applied a search algorithm within the
postconditions of a single transformation so that the
transformation's effect contains the results of this search
algorithm applied to a narrowly focused subproblem.

133

Linden & Markosian 89, Linden 90]. One of the problems
with evaluating approaches to large planning applications is
that it takes years to try out ideas on large applications.
Implementation work APS and SOAS is still underway.

The Multi-vehicle ALV Mission Planner generates
plans for reconnaissance missions by a group of
autonomous land vehicles. Army personnel defined the
reconnaissance mission scenario as appropriate for future
ALV demonstrations. Thus, transformational synthesis was
applied to meet the needs of this given planning scenario;
the planning scenario was not tailored to the capabilities of
our approach.

The problem is to generate plans for a set of
autonomous vehicles that are to carry out reconnaissance
missions in areas well in advance of friendly lines. The
vehicles are to travel to appropriate observation points where
they are to hide and observe designated reconnaissance areas.

The current planner selects the observation points that
are to be used, decides which vehicle will go to each
observation point, and plans travel routes for each vehicle.
All of these planning tasks are interdependent; for example,
the choice of the preferred observation points depends on the
vehicles' starting locations and their possible routes to the
alternative observation points. The plan should minimize
risk while traveling to and hiding at the observation points,
and it needs to deal with constraints on fuel and time of
arrival. In addition, the vehicle's knowledge of its own
position degenerates as it travels, and it needs to re-establish
its approximate position periodically by passing near known
landmarks. The planner does have information about
potential observation points and routes—derived from a
digital map—but all of this information is uncertain. A plan
to have a vehicle move to an observation point at a specified
time must deal with this uncertainty.

Abstraction Levels. Our initial planner has the domain
knowledge and heuristics to develop plans for these missions
at the top three levels of abstraction; namely, the levels
dealing with:

1) goals and evaluation criteria,

2) abstract plans that include selection among available
observation points and assignment of ALVs to observa-
tion points, and

3) route plans down to the level of intermediate waypoints.

The planner is designed to be extended down to lower
levels of abstraction and thus integrate with the lower-level
planning and perception capabilities that were being
developed on the ALV program. Research had already been
done on many of these lower-level capabilities—especially
road following, route planning [Linden et al. 86], and
contingency planning [Linden and Glicksman 87].

The plans that are generated for these reconnaissance
missions do not involve extensive interactions between the
vehicles—this feature of the planning scenario is due to
expected vehicle limitations and we believe it is not a
limitation of the transformational synthesis approach. Our
design for the APS system does plan for mutual support and
other interactions between the different aircraft.

Mission Planning Challenges. The ALV mission
planning problem at the top three levels of abstraction is
hard enough to seriously challenge past planning
technology—especially since we were looking for a general
solution that extends easily to other ALV applications and
to the lower levels of abstraction. We were faced with the
following challenges:

• Continuous state variables. Most of the information
about the state of each ALV changes continuously; e.g.,
fuel, position, and position error.

• Uncertainty. Essentially all knowledge of the
environment is uncertain. Projections of future
positions, fuel usage, and arrival times are all uncertain.
Planned routes and observation points may turn out to
be unusable.

• Time. It is easy to plan routes that minimize travel
time, but that is not as relevant as trying to arrive at the
observation point by some specified time—even when
all the information about travel times is uncertain.
Sometimes the departure time is so constrained that
minimizing time is important, but often the planner
must pick the best departure time.

• Goals and evaluation criteria. The planner needs to
understand how to make trade-offs between risk,
mission accomplishment, arrival time, and other fac-
tors.

• Constraints. Reducing fuel usage, travel time, or
position error is important only when there is danger
that some threshold will be exceeded.

Our planner deals with all of these challenges—except that
in handling uncertainty it does not currently develop
contingency plans that foresee the dangers that might arise
from blocked routes or unusable observation points.
Contingency planning to deal with blocked routes—
including avoidance of routes that may require costly
detours—was demonstrated in a previous project [Linden &
Glicksman 87], but that capability has not yet been
integrated with this mission planner.

Additional complications that the planner handles are:

• Night travel. Traveling at night involves less risk than
daytime travel, so it may be advantageous for a vehicle
to travel to a forward position at night and wait there
until needed—although waiting behind enemy lines also
involves risk.

• Emergency mode. The vehicles have the option of
traveling in an emergency mode that reduces travel time
at the expense of additional risk.

One important feature of this mission planning problem is
that one cannot decide at system design time what factors are
going to be most important when planning a given mission.
Minimizing risk will frequently be important, but for some
missions it will be more critical to reduce travel time,
conserve fuel, plan routes that pass landmarks, or deal with a
combination of these factors. Purely algorithmic solutions
break down when there are many dimensions to be dealt with

134

(enough so straightforward optimization is intractable) and
one cannot design the system to solve the problem in a few
dimensions that are determined at system design time and
then extend that solution into the other dimensions. A key
aspect of our planner is that we delay until plan generation
time the decisions about which dimensions are most
important in solving today's particular mission planning
problem.

7. Operator Semantics, Uncertainty, and
Plan Valuations

In order to project the results of executing a plan, each
operator needs a semantic definition that defines its effects.
Since the effects of our operators are uncertain, we make
extensive use of probability distributions in defining the
semantics of the operators so that we can use well
established probability theory to compose the effects of
sequences of operations and do other internal computations.
Of course, what is known about the operators is not a
precise probability distribution about its effect but rather a
vague statement like "a vehicle traveling from A to B will
use about 10 gallons of fuel, give or take a gallon." After
this is translated into a probability distribution, the results
of the computations have to be interpreted based on the
precision of the input data, but the idea of specifying the
number of significant digits in a result is a very old and
standard scientific method.

A complete description of our probabilistic
representations of the semantics of operators is beyond the
scope of this paper. We have, however, found that it
provides a uniform way of handling several important
problems. It allows us to characterize uncertainty in both
the domain knowledge and in the effects of the operators.
Furthermore, abstract operators have more uncertainty than
more primitive operators, in fact, the effects of an abstract
operator should be more uncertain than the cumulative
effects of a sequence of primitive operators that refine the
abstract operator. Thus one of the effects of refining an
abstract plan is that the variance in its effects is reduced. It
is useful to be able to reason explicitly about this change in
variance. Also, as the effects of a plan are projected further
into the future, those effects become less predictable. This
is modeled effectively by the increasing variance as
probability distributions are composed.

Once we have a representation for the semantics of our
operators (both abstract and primitive), we can project the
effects of executing a plan and then evaluate that plan in
terms of the probability that the mission will be
accomplished and that the vehicle will not be destroyed. In
our current implementation, we do the projection backwards
from the goal and then evaluate the plan by comparing its
required preconditions with the available start conditions.
This is a form of backwards symbolic execution and is
equivalent to a forward projection of effects. Except for our
use of probability distributions in the calculation, this has
strong similarities with symbolic execution studied with
respect to the formal semantics of programming languages.

8. Conclusions about Flexibility,
Extensibility, and Generality

Transformational synthesis exploits the strengths of both
planning and programming technology in order to achieve
practical, high performance planning systems that still have
most of the flexibility, extensibility, and generality that one
is trying to achieve with a planning system. A goal of the
transformational synthesis approach is to drive into
declarative representations as much of knowledge about the
problem space and problem solving methods as possible—
while still being practical for large-scale applications.

In contrast to many other planning paradigms,
transformational synthesis emphasizes incrementally
maintaining plan correctness at intermediate stages of plan
development. Furthermore, much of the reasoning that is
required to assure these properties of a plan can be done once
at transformation design time and embedded in validated
transformations. Since the validated transformations
encapsulate much of the reasoning that would otherwise
have to be done at plan generation time, we anticipate
transformational planning will scale up to handle large, real-
world planning and scheduling problems.

One goal of our work is to demonstrate an extensible
planner that can handle large-scale applications and grow
with the application. It will take time to demonstrate
extensibility for large applications, but we believe the ALV
planner would easily extend to generate complete plans at
lower levels of abstraction and for a much wider variety of
missions. It is usually easy to extend the planner by adding
transformations that handle additional subproblems and
lower levels of abstraction. The limiting factor is the plan
representation; extensions that require changes or major
extensions in the underlying knowledge representation are
difficult—which is why it remains important to design these
representations carefully.

A good planner should be general enough so that it can
generate plans in situations that were not fully anticipated
by the planning application designers. While the ALV
planner has domain-specific methods for dealing with many
planning problems, we expect that it will be able to handle
combinations of problems where the particular combination
had not been foreseen. It incorporates searching, subtasking,
and abstraction levels as basic generic techniques. Further-
more, when designing specific transformations, we have
tried to use general techniques that will be applicable for
more than just the current problem on which we were focus-
ing. We believe that this generality will pay off as the
planner is extended to cover other mission types.

Additional flexibility and generality can be achieved by
developing more flexible plan representations. Most of the
kinds of relationships that are needed between plan nodes
such as subtasking, abstraction levels, sequential ordering,
temporal constraints, dependencies, and justifications appear
to be independent of the particular application, and we
believe that much leverage can be obtained by developing
general plan representations applicable to a wide class of
planning applications.

135

References

[Agresti 86] William W. Agresti, "New Paradigms for
Software Development, IEEE Computer Society
Tutorial, IEEE Catalog Number EH0245-1, Washington,
DC.1986.

[Balzer 85] Robert Balzer, "A 15 Year Perspective on
Automatic Programming," IEEE Trans, of Software
Engineering, Vol. SE-11, No. 11, Nov., 1985, pp.
1257-1268.

[Bundy 83] Alan Bundy, The Computer Modeling of
Mathematical Reasoning, Academic Press, London,
1983.

[Carbonell 86] J. Carbonell, "Derivational Analogy: A
Theory of Reconstructive Problem Solving and Expertise
Acquisition," in R. Michalski, J. Carbonell, and T.
Mitchell, editors, Machine Learning: An Artificial
Intelligence Approach, Morgan Kaufmann, Los Altos,
CA, 1986, pp. 371-392..

[Chandy & Misra 88] K. Mani Chandy and Jayadev Misra,
Parallel Program Design, A Foundation, Addison-Wesley
Publ. Co. Reading, MA, 1988

[Chapman 85] David Chapman, "Planning for Conjunctive
Goals," MIT, AI Lab Memo AI-8902, 1985.

[Dean, Firby, & Miller 87] The Forbin Paper, Yale Univ.
Computer Science Dept., YaleU/CSD/RR #550, July,
1987.

[Fickas 85] Stephen F. Fickas, "Automating the
Transformational Development of Software," IEEE
Trans, of Software Engineering, Vol. SE-11, No. 11,
Nov., 1985, pp. 1268-1277.

[Firby 89] R. James Firby, "Adaptive Execution in
Complex Dynamic Worlds," Ph.D. Thesis, Yale
University, May 1989.

[Fox et al. 89] Mark S. Fox, Norman Sadeh, & Can
Baykan, "Constrained Heuristic Search," AAAI 89, pp.
309-315.

[Fox & Sycara 90] Mark S. Fox and Katia P. Sycara,
"Knowledge-based Logistics Planning and Its Application
in Manufacturing and Strategic Planning," RADC-TR-
89-215, Jan 1990.

[Goldberg 89] "Reusing Software Developments," 4th
Annual RADC KBSA Conference, RADC, Sept. 1989.

[Korf 87] Richard E. Korf, "Planning as Search: A
Quantitative Approach," AI Journal, 33,1, 1987, pp. 67-
88.

[Linden et al. 86] Theodore A. Linden, James P. Marsh, and
Doreen L. Dove, Architecture and Early Experience with
Planning for the ALV, IEEE Inter. Conf. on Robotics
and Automation, San Francisco, CA, April 7-10, 1986,
pp. 2035-2042.

[Linden & Glicksman 87] Theodore A. Linden and Jay
Glicksman , "Contingency Planning for an Autonomous
Land Vehicle," Proc. IJCAI-87, Morgan Kaufman Publ.,
Vol. 10.

[Linden & Owre 87] Theodore A. Linden and Sam Owre,
"Transformational Synthesis Applied to ALV Mission

Planning," Proc. of the DARPA Knowledge-Based
Planning Workshop, Austin, TX, Dec. 8-10, 1987, pp.
21-1 to 21-11.

[Linden 89] Theodore A. Linden, "Planning by
Transformational Synthesis," IEEE Expert, 4,2 Summer,
1989, pp. 46-55.

[Linden & Markosian 89] Theodore A. Linden & Lawrence
Z. Markosian, "Transformational Synthesis Using
Refine," AI Tools and Techniques, ed. M. Richer, Ablex
Press, 1989, pp. 261-286.

[Linden 90] Theodore A. Linden, "Transformational
Synthesis: A Paradigm for Building Large-Scale
Planning Applications," Planning Systems for
Autonomous Mobile Robots, ed. D. P. Miller and D. J.
Atkinson, Prentice Hall, to appear 1990.

[Lowry & Duran 89] Michael R. Lowry and Raul Duran
"Knowledge-based Software Engineering," The Handbook
of Artificial Intelligence, Vol. 4, ed. by A. Barr, P.
Cohen, and E Feigenbaum, Addison-Wesley Publ. Co.
1989

[Lowry 90] Michael R. Lowry, "Abstracting Domains with
Hidden State", to appear in Proc. of Workshop on
Automatically Generating Abstractions and
Approximations, AAAI-90

[Mostow 89] Jack Mostow, Design by Derivational
Analogy, Artificial Intelligence, Vol. 40, No. 1-3, Sept.
1989.

[Partsch & Steinbruggen 83] H. Partsch and R.
Steinbruggen, "Program Transformation Systems,"
ACM Computing Surveys, Vol 15, No. 3, Sept. 1983,
pp. 199-236.

[Reasoning 87] Reasoning Systems, "REFINE
Programmer's Reference Manual," Reasoning Systems,
1987.

[Rich & Walters 86] Charles Rich and Richard C. Walters,
editors, Readings in Artificial Intelligence and Software
Engineering, Morgan Kaufmann Publ., Los Altos, CA,
1986.

[Silver 86] B. Silver, Meta-level Inference: Representing and
Learning Control Informatin in Artificial Intelligence,
North Holland, 1986.

[Smith et al. 85] Douglas R. Smith, Gordon B. Kotik, &
Stephen J. Westfold, "Research on Knowledge-Based
Software Environments at Kestrel Institute," IEEE Trans.
of Software Engineering, Vol. SE-11, No. 11, Nov.,
1985, pp. 1278-1295.

[Smith 90] Smith, D.R., KIDS: A Semi-Automated
Program Development System, to appear in IEEE
Transactions on Software Engineering special issue on
Formal Methods, September 1990.

[Stachnick & Abram 88] G.L. Stachnick and J.M. Abram,
"Army Maneuver Planning: A Procedural Reasoning
Approach," Command and Control Research
Symbposium, June, 1988.

[Swartout 88] William R. Swartout "Summary Report on
the DARPA Santa Cruz Workshop on Planning," AI
Magazine, Summer 1988.

136

Combining Reactive and Strategic Planning through Decomposition
Abstraction*

Nathaniel G. Martin and James F. Allen
Computer Science Department

University of Rochester
Rochester, NY 14627

Abstract

Recent proposals for reactive execution mod-
ules provide difficulties for traditional strategic
planners. We discuss a technique which uses
statistics gathered from the execution of plans
to guide the appropriate description of the plan.
The plan is elaborated until the strategic plan-
ner is sufficiently confident that this plan will
indeed achieve its goals based on the previous
behavior of the executor. This plan is then
given to the execution module.

1 Introduction

Traditionally, planning has been defined as the process
of generating a sequence of actions to be executed me-
chanically. In this paradigm, an intelligent "planning
module" generates a sequence of actions that are car-
ried out by a simple "execution module." Such plan-
ners, called "strategic planners," have been successful
in limited domains. In more realistic domains strategic
planners are less successful. The high cost of generating
plans makes strategic planning problematic in highly dy-
namic domains.

Reactive systems have been proposed to overcome the
difficulties inherent in strategic planners. Reactive sys-
tems increase the power of the simple execution module
in the hopes that it will allow a simplification of the
planning module. The increased capabilities of the ex-
ecution module improves the situation in routine cases.
In commonly occurring cases the planner can rely on the
execution module to perform correctly. The planner can
generate a high-level description of the steps to be taken
towards achieving a goal and assume that the execution
module will fill in the required details. The generation
of such high level plans should be less computationally
complex than the generation of detailed plans. Increas-
ing the power of the execution module allows it to deal
with contingencies that are unknown or unknowable by
the planning module.

Unfortunately, generating plans for such a powerful
system introduces new complications. Unless the plan-
ner can decide what problems it needs to reason about

"This work was partially supported by the Office of
Naval Research under contract N00014-82-K-0193 and by
ONR/DARPA contract N00014-80-C-D197.

and what problems the reactive execution system can
deal with, planning for the richer execution language
may be no more tractable than the traditional approach.

Moreover, if execution modules are sufficiently com-
plex that they cannot guarantee the success of the activ-
ities they undertake, the task of generating sequences of
actions that have a desired result will be difficult. The
strategic planner must now recognize that the actions it
decides to execute may fail, and that it cannot rely on
the results of those actions.

We address both of these problems using a technique
based on decomposition abstraction. This technique pro-
vides a method of deciding what aspects for the planning
problem the reactive execution module is capable of han-
dling on its own based on the prior performance of that
execution module. It uses statistics on the execution
module's prior performance to constrain the probability
that the execution module can accomplish a particular
task. If it can, the planner need not reason about that
task. If it cannot, the planner must discover the likely
causes of failure and specify a plan that avoids them.

2 The Two-Level Model

We assume a model consisting of two semi-independent
systems that operate in parallel and interact with each
other through a limited communication channel. One of
these systems can be thought of as a strategic planner
similar to traditional planning systems such as NOAH
[Sacerdoti, 1975], STRIPS [Fikes and Nilsson, 1971] and
their descendants [Chapman, 1987, Wilkins, 1988]. It
is not important for this paper, or the general frame-
work, how the planner operates as long as it supports
action decomposition as defined in hierarchical planning
systems. The other system is the reactive control sys-
tem. This system consists of a set of sensory/motor pro-
cedures for executing various actions, and is similar to
various reactive systems that have been proposed (e.g.
[Brooks, 1985, Firby, 1987, Georgeff and Lansky, 1987,
Kaelbling, 1988, Chapman, 1990]). At first glance, the
two-level architecture is similar to that of the Shakey
system [Nilsson, 1984], where the abstract plan reasoner
is the STRIPS system, and the control system is the in-
terpreter for the ILA and LLA procedures that actually
controlled the robot. There are, however, two important
differences.

First, both systems in the two level model execute con-

137

currently. The control system always has a set of goals
guiding the agent's activity in real time. Many of these
goals will have been generated by the abstract plan rea-
soner, but there may also be "built-in" goals, such as
avoiding danger, that the reactive system always main-
tains. The abstract planner rarely reasons about these
goals, so the agent's actual behavior is only partially de-
termined by the plans the strategic planner creates.

The second and more important difference is there is
no fixed level of action primitives. In the Shakey sys-
tem, the ILAs were all fairly small scale motor actions.
In our proposed system, the control level may be able
to execute quite complex actions that have been learned
through extensive experience. For example, most piano
players can play a C scale without considering playing
each note or the individual finger movements. Such a
pianist could reason about the decomposition of this ac-
tion, but, besides wasting computation time, the result-
ing plan will probably execute less efficiently as it ignores
the practiced motor routines for the complex action. As
an even more extreme example, consider the skills re-
quired for driving a car. Novice drivers spend consider-
able time learning the motor skills necessary for driving,
while more experienced drivers might not even know how
to do all the individual actions in isolation. Yet clearly
the novice is not the better driver. The challenge is to
allow for such complex learned "reactive" behavior and
yet still have the agent responsive to its planned abstract
goals.

As can be seen from the above discussion, the abstract
plan reasoner must decide whether or not to decompose
actions. Given a goal to play a C scale, should the plan
reasoner execute the action PlayCScale as a unit (i.e.
send the goal as is to the control component), or should
it decompose this complex action into its individual sub-
parts, Play(C), Play(D), and so on, and execute them?
The answer depends on the plan reasoner's experience.
A novice should decompose the action into its sub-parts
because each sub-part is simpler to execute. The skilled
pianist, however, is better off executing the motor rou-
tine learned for playing scales. Note that at the abstract
plan level, both the novice and the expert might have
the same definitions of the action and its decomposition.
The differences arise from their ability to execute these
actions.

The abstract plan reasoner maintains statistics on the
reactive system's success as it attempts various actions,
and computes estimates of success for similar actions
from these statistics. The key point is that in decid-
ing whether or not to decompose an action, the agent
compares its estimate of success for executing the action
with its estimate of success for executing the component
sub-actions. The agent can then decide, based on its
previous experience, whether to decompose the action
or not.

3 The Formalism

We will develop only enough of the representation to
make the points in this paper. We use a logic with rei-
fied events based on interval temporal logic [Allen et al,
To appear 1990, Allen, 1983]. The events of interest are

those that consist of an agent attempting to perform an
action. With respect to the two-level model, we say that
an agent attempts an action if it instructs the reactive
system to perform the action. The reactive system then
executes a routine. For example, the predicate PlayC-
Scale(a,e) is true when event e consists of the agent a
instructing its reactive level to perform the PlayCScale
action. The assertion that John attempted to play a C
scale at time T\ would be written as:

3(e)[PlayCScale (John,e) A Time(e) = Tx].

In other words, there is an event in which the action
of John playing a C scale occurs, and the time of this
event was the interval T. The occurrence of the action
indicates nothing further. For example, John playing the
C scale may not have resulted in any sound because his
amplifier was turned off.

We collect statistics about the effect of actions using
a probability theory based on Kyburg [1974, 1983b] and
similar to that used by Loui [1987], Bacchus [1988] and
Weber [1989]. Suppose we have a set of events in which
an action occurred, E&, and subset of these events in
which that action had the desired result, ER. The suc-
cess rate ofthat action would be the ratio of the number
of times the action was attempted to the number of times
the action had the desired result. This is written %{ER \
EA)- By associating the sets characterized by a pred-
icate with that predicate %(CScalePlayed(Time(e)) |
PlayCScale(John,e)) could be the proportion of times
John successfully plays a C scale when he attempts it.

As Kyburg [1983a] points out, access to these ratios
is usually unavailable. At no particular time can one as-
certain how often John will successfully play a C scale;
the best one can do is calculate the constraints John's
past performance places on all performances both past
and future. Confidence intervals [Neyman, I960] are
a well known technique for capturing such constraints.
Our technique involves treating these confidence inter-
vals as interval valued probabilities. For example, sup-
pose Mary has been successful 960 of the 1000 times she
has attempted a C scale. One can be 95% confidence
that the probability she will successfully play a C scale
on any particular trial lies in the interval [.95,.97]. We
capture this information in two functions Experience()

and Pro&950. Mary's experience playing C scales is ex-
pressed as follows:

.Krpenence(CScalePlayed (Time(e)),

PlayCScale (Mary,e)) = (960,1000).

Furthermore, the %95 confidence interval induced by this
experience will be expressed:

Pro6.95(CScalePlayed (Time(e)) \

PlayCScale (Mary,e)) = [0.95,0.97].

Hanks [1990] and Haddawy [1990] also develop sys-
tems for reasoning about actions in time probabilisti-
cally. Both Hanks and Haddawy use point valued prob-
abilities. Hanks calculates point valued probabilities by
choosing the maximum entropy distribution consistent
with the observed data. Haddawy generates probabil-
ities through a real valued measure function over the

138

possible worlds. Though point valued probabilities are
well ordered, and therefore easy to compare, the partial
order provided by intervals gives the system the ability
to represent a kind of meta-knowledge. The width of the
interval gives the system the ability to represent how ac-
curate its knowledge is. Comparison is more complicated
when using intervals, however, because they only induce
a partial order. When comparing two interval probabil-
ities, we say that [a,b] is greater than [c,d] if a is greater
that d. If [a,b] and [c,d] overlap we will say they are
incomparable.

The effects of an action are those propositions for
which statistics are collected when the action is at-
tempted. Thus CScalePlayed(Time(e)) is a possible ef-
fect of the PlayCScale action. Preconditions are similar;
they are propositions for which conditional statistics are
collected. Thus, in general, information about precondi-
tions, P i(x).. .P n(x), and effects, E i(x).. .E m(x) of
an action A are related by statements of the form:

n m n

P7^b.95(A /\ P i(x) f\ E ,•(*) I A /\ P i(x)) = [a, b]
i = l » = 1

For simplicity, we ignore preconditions here, but see
Martin and Allen [1990].

A decomposition is an axiom stating that achieving
a set of sub-goals under certain constraints leads to an
effect of an action. These axioms can be used to reason
that, in addition to executing the action, the effects of
an action can be achieved by executing actions which
achieve the sub-goals. The planner may reason about
the probability of successfully executing the actions that
achieve the sub-goals.

For example, a decomposition of playing a C scale is
playing each of the notes in quick succession. Follow-
ing Kautz [1987], decomposition axioms consist of direct
components (DC) and constraints («). The direct com-
ponents are predicates that may be satisfied by execut-
ing sub-actions, and the constraints describe the circum-
stances under which these sub-actions will result in the
action being accomplished. For example, a decomposi-
tion axiom for the action, PlayCScale, might be:

V(a,fi,<2,*3, • •-,^9)

[Played (a, C, h) A Played (a, D, t2) A ... A

Meets (t\,t2) A Meets (^2,^3) • • •
=> CScalePlayed (0,^9) A

Begins (ti, <9) A

Ends (*8,*o)]

This axiom says if the agent manages to produce all the
notes in quick succession, then the agent has played a C
scale, and temporal extent of this playing stretched from
the beginning of the first note to the end of the last note.
In this decomposition the Played(a, note, e,) predicates
comprise DC; the temporal constraints comprise K.

Throughout this paper, constraints are usually over
simplified for clarity, and the axioms are summarized
using a more conventional STRIPS-style operators. An
operator has three parts, the preconditions, P, the ef-
fects, E, and the body, B. The preconditions are con-
straints on the applicability of the operator expressed

as a formula; the effects are the results of applying the
operator for which statistics are gathered; and the body
is a set of decompositions. As an example, consider the
operator, Act:
Act(sc)

P: P(x,h)
E: E(x,t2)
B: Bx(x),B2(x)...Bn(x).

This operator is well founded if:

3(c,x,<i,<2) [P(2,*i)AAct(x,e)
Meets (<i,<3), ATime(e) = t3]

That is, the operator is well founded if there is an as-
signment to the variables so that the preconditions held
immediately before the actions and the action was at-
tempted. The conditional probabilities associated with
the operator require an event of the type described by
the operator exists. If none exists, the probability is
not defined because the denominator of the formula for
calculating conditional probabilities will be zero.

The body of an operator is a list of lists of predicates
which are considered to be sub-goals for the planner to
achieve. Each of these lists of sub-goals represents a
decomposition of the action. For example, one of the
of the lists of sub-goals of Act above, say Bi, might be
(Qi(x,to)',Q2(x,ti). Such a list of subgoals in the body
of operator represents the decomposition:

V(to,ti,h,t3)
[P(x,t0)AQl(x,t1)AQ1(x,t1)A

Meets (to,ti) A Before (<i, <2)
=> E(x,t2)A

Begins (t1,t3)
Ends (t2,t3)].

That is, the body of an action states that achieving the
sub-goals in order achieves the effects of the operator.

Consider again the example from the last section. Sup-
pose Mary is a pianist while John has only played once
or twice and that these facts are captured by following
statistics:

Experience(CScalePl&yed (Time(e)),

PlayCScale (Mary,e)) = (960,1000)
jE,xyenence(CScalePlayed (Time(e)),

PlayCScale (John,e)) = (1,3).

This experience will produce the following approximate
probabilities:

Profc. 95(CScalePlayed (Time(e)) |
PlayCScale (Mary, e)) = [0.95, 0.97]

Prob 95(CScalePlayed (Time(e)) \

PlayCScale (John,e)) = [0.06,0.79].

(i.e. Mary nearly always successfully plays a scale,
whereas it is highly uncertain whether John can play
a scale or not).

139

Suppose further that both John and Mary have the
same competence in playing a single note, that

fr~ob.95(P\a.yed (N,Time(e)) | Play (John,N,e))

CityB

Pro6.95(Played (N,Tirne(e))

[.98, .99]

Play (Mary, N, e))

The question of whether each agent should decompose
the PlayCScale action now reduces to the question of
whether the estimated success of executing PlayCScale
directly is higher or lower than the estimated success of
executing the eight individual notes. For Mary, the es-
timate of successfully playing the scale directly is [0.95,
0.98], whereas the estimate for successfully playing each
of the eight individual notes would be the multiplication
of the estimate for each individual note, namely [0.98,
0.99], which produces the estimate [0.85, 0.92]. Clearly
Mary should not decompose the action as the former
estimate is invariably better that the latter. For John,
however, decomposing is better as it produces the esti-
mate of [0.85, 0.92], while directly executing the action
is estimated as [0.06, 0.79].

We now describe the operation of a hierarchical strate-
gic planner that works concurrently with a reactive sys-
tem and that has no fixed set of primitive actions as
described above. At each step, the planner looks at the
set of operators that achieve its current goal. One of
these operators is selected, and the planner decomposes
the operator into a sequence of smaller steps by finding
operators which achieve the direct components. Con-
straints on the sub-goals insure these actions do not in-
terfere with each other. For simplicity, we do not discuss
selecting the appropriate operator. For details about this
process see [Martin and Allen, 1990].

4 The TRAINS Domain

To make the development more concrete, the second ex-
ample is expressed in the TRAINS domain under devel-
opment at Rochester. The TRAINS domain is a fairly
complex simulated rail transport system. Rather than
having a single control system, the planner interacts with
multiple control systems, each one playing the role of a
train engineer. For the purposes of this paper, however,
we will use only a single train engineer. The train engi-
neer's behavior is defined by a set of reactive procedures
that execute to accomplish goals. When it is given a
goal, it selects a procedure that accomplishes this goal
according to some simple heuristic and executes the pro-
cedure.

The example shows how reactive and strategic systems
can work together to solve problems; it is not a realistic
problem in routing trains. Such an example would in-
volve complex temporal reasoning about schedules and
deadlines that would obscure the problem of interfacing
the strategic and reactive parts of a planner. This ex-
ample is helpful, however, because one can put oneself
in the place of either the reactive system (i.e. the en-
gineer) or the strategic planner. The same issues arise
in robotics domains but intuitions are harder to develop
because the reactive system must perform actions about

Track 2 Track 3

CityD

Track 5
Track 4

CityC

Figure 1: Layout for TRAINS example

which people rarely introspect. As in robotics, the plan-
ners only access to information about the TRAINS world
comes from the engineer's reports. In a robotics domain,
visual routines play the part the engineer's reports play
in the TRAINS domain.

The example situation is shown in figure 1. The plan-
ner must direct an engine at CityA to the factory at
CityD. Let us assume that the direct route between
CityA and CityD is poor quality track, and, when the
weather is bad, the train runs a serious risk of derailing
on that route. Furthermore, switches in CityB are often
broken, causing difficulties with this route.

The engineer has access to the same map the plan-
ner does, and, using that map, the engineer can choose
routes given a destination. The sample statistics arise
from the following scenario. Though neither the engi-
neer nor the planner know the true probabilities, the
route through CityB and the direct route leads to suc-
cess half the time. The route through CityC is better
with success 80% of the times it is tried. The route
through CityC fails in inclement weather which the en-
gineer can forecast, but which the planner cannot. The
engineer chooses routes according to the following heuris-
tic of which the planner is unaware. The engineer always
chooses to go through CityB if that option is available,
otherwise it will chose to go through CityC unless the
weather is bad and it has a choice. If the weather is bad
and it can choose it takes the direct route.

The planner's decisions are based on it's experience
with the engineer. If the engineer usually chooses a good
route, the planner tries to leave as much leeway as pos-
sible in the plans it specifies. If, on the other hand, the
engineer is often mistaken, it will specify plans as rigidly

140

I

as possible.

5 Planning in the TRAINS domain
In the initial state for this example, Trainl is in CityA.
The planner's goal is to make In(Trainl, CityD) true.
Only the Move operator has the desired effect, so the
planner instantiates it as shown below:

Move(Trainl, CityA, CityD)
P: In(Trainl, CityA,t0)
E: In(Trainl, CityD, U)
B: (At{CityD, <i))

(At(CityB, t2); At(CityD, h))
{At(CityC, t2); At(CityD, h))

There are three different decompositions of this operator,
each one corresponding to a different route.

The planner can fill out each decomposition by choos-
ing operators representing actions that will achieve the
sub-goal. It does this by looking through the available
operators for the one with the highest probability of
achieving that sub-goal. Once the planner has filled in
the decomposition with operators, it must consider two
issues: first, should it decompose the operator, and sec-
ond, if it decomposes, which decomposition is best? It
may send any one of the decompositions, or it may send
a disjunction of decompositions. As we shall see below,
sending a disjunction of decompositions allows the plan-
ner to take advantage of the reactive system's decision
making abilities.

The other operator used in this example is:

• Traverse(train, cityl, city2)
P: Exiting(train, cityl, to)
E: At(train, city2, t^)
B:()

This operator has no decompositions so the planner's
only option is to specify execution of the Traverse ac-
tion.

Consider the system planning to get Trainl from
CityA to CityD. The decompositions can all be accom-
plished by using various instantiations of the Traverse
operator for each subgoal. For brevity, we name the de-
compositions in which the sub-goals have been replaced
by actions:

Plan-A = (Traverse(Trami, CityA, CityD))

Plan-B = (Traverse(Trainl, CityA, CityB);

Traverse(Trainl, CityB, CityD))

Plan-C = (Traverse(Trami, CityA, CityC);

Traverse(Trainl, CityC, CityD))

The planner's decision procedure is to decompose a
plan only when it has negative experience with the com-
pound operator. In particular, if the approximate prob-
abilities are incomparable, it will not decompose. In-
comparability indicates that the planner has insufficient
information to make a choice so it defers the decision to
the reactive system hoping that the reactive system will
have better information. Though the reactive system

performs less complex reasoning than does the strategic
planner, the reactive system may have better informa-
tion as it has access to the real world. For example,
the engineer is better able to determine if there is an
obstruction in the tracks directly ahead of the train.

Suppose we have the following experience based on the
scenario described above:

Experience (Plan-A)

Experience(Plan-B)

Experience(P\a.n-C)

Experience(M.ove) =

= (100,200)

= (100,200)

= (160,200)

(50,200)

This would give rise to the following approximate
probabilities:

Pro&.95(Plan-A) = [0.43,0.57]

P^695(Plan-B) = [0.43,0.57]

Pr7b.95(Plan-C) = [0.74,0.85]

fr7b.95(Move) = [0.20,0.31]

Using the decision procedure described earlier, the
planner decides to decompose the Move into Plan-C and
send that to the reactive system.

But if the reactive system has its own decision making
capabilities, the planner can do better. Because the re-
active system can forecast the weather, it knows which
of Plan-A and Plan-C has a better probability of suc-
cess in any particular situation. Therefore, sending the
reactive system the command to Plan-A V Plan-B pro-
duces better results. We can capture this behavior by
introducing the notion of complex plans.

We call Plan-A, Plan-B, and Plan-C basic plans and
disjunctions of basic plans complex plans. The planner
may maintains information about all of the probabilities
to model of the abilities of the engineer.

The planner may combine probabilities. In deciding
whether to decompose playing a C scale we used the
laws of probabilities. To do so, we had to assume that
the underlying probabilities were independent. There,
such an assumption was not unreasonable, because the
planner insures that the actions will not interfere with
each other. Independence cannot be assumed in the new
scenario, however, because the planner will never exe-
cute more than one of the plans; it will always choose a
particular one and execute that one.

Another way of combining probabilities is to combine
the actual experience and calculate a confidence inter-
val for this combined experience. This way of updating
probabilities is accurate only if the reactive system exe-
cutes at random. This, however, is a bad assumption if
the planner wants to make use of the reactive system's
abilities. In particular, if the reactive system has some
decision making ability, it will not be randomly select-
ing a plan from the choices the planner sends it. If the
reactive system makes good choices, it should be better
than random selection and experience with complex plan

141

should be better than the simple combination of the ba-
sic plans. Thus the planner must collect actual statistics
for the complex plans as well as the basic ones.

Suppose we have the following experience for the com-
plex plans:

£z:per;ence(Plan-A V Plan-B) = (48, 200)

Experience(P\<m-A V Plan-C) = (182,200)

Experience(P\<m-B V Plan-C) = (52,200)

Experience(Pla,n-A V Plan-B V Plan-C))

= (50, 200)

This experience arises due to the difference between the
planner's and the engineer's knowledge. Whereas experi-
ence with the basic plans reflects the planner knowledge,
knowledge of the engineer's decision making abilities is
reflected in experience with the complex plans. Expe-
rience with the disjunction of all three of the possible
decompositions, Plan-A V Plan-B V Plan-C , might be
different from executing the action directly if the engi-
neer had means of achieving the goals of the action of
which the planner does not know. Here the engineer has
no private techniques for achieving goals, so the proba-
bilities are the same.

The engineer does poorly whenever it is given the
choice of going through CityB because its heuristic is to
choose that route whenever it can, and that route is bad.
On the other hand, it does significantly better than any
of the basic plans when given the choice of going through
CityC or taking the direct route. The improvement over
random choice comes from the engineers ability to fore-
cast the weather. When the weather is bad, it takes the
direct route with a 50% chance of success rather than a
100% change of failure.

The planner should recognize that the engineer has
special abilities and send it plans that allow it to exer-
cise these abilities. Using the decision procedure out-
lined above, this is indeed what happens. The planner's
experience gives rise the the following approximate prob-
abilities:

PnT&.ss(Plan-A V Plan-B) = [0.19,0.30]

fr~ob.95(Plan-A V Plan-C) = [0.86,0.94]

Pro6.95(Plan-B V Plan-C) = [0.20,0.32]

Pro6.95(Plan-A V Plan-B V Plan-C) = [0.20,0.31]

As can be seen, the plan Plan-B V Plan-C dominates
the probabilities of both the complex and the basic plans.
Thus, given this information, the planner decides to de-
compose the Move action, and to give the engineer the
choice between decompositions Plan-B and Plan-C.

A difficulty with this scheme for maintaining infor-
mation about the effects of its plans is the exponential
number of complex plans. This is not a problem in the
representation because there will be a small number of
the possible complex plans for which data has been col-
lected. One of the advantages of approximate probabil-
ities is the ability to represent that no information is

available. Those complex plans for which no informa-
tion is available have an approximate probability of [0,
1]. The exponential number of complex plans does pose
a problem to the planner in gathering information, how-
ever. If it spreads its trials evenly over all the possible
complex plans, it will gain expertise only slowly. If, on
the other hand, it concentrates on only a few, it risks
missing the best plan.

6 Conclusion

We present a two level architecture in which a strate-
gic planner sends commands to a reactive system. The
strategic planner chooses an appropriate level of detail
at which to communicate using statistics gathered from
the reactive system's previous performance. From this
previous performance probabilities are approximated by
calculating a confidence interval for the true probability.
This approximate probability is then used to guide the
choice of an appropriate level of detail at which to com-
municate with the reactive agent. The strategic planner
chooses a level of detail that has been most successful in
the past.

Interval valued probabilities provide a useful tool in
combining reactive execution modules with strategic
planners. In addition to the strength of belief the po-
sition of the interval gives, the width of the interval
gives valuable information about the planners knowledge
about the effects of its actions. Using this information,
the strategic planner can give guidance to the reactive
system only when it knows it has better information than
the reactive system does and allow the reactive system
leeway when it is uncertain.

The system's weakness is its reliance on the its opera-
tors and decompositions. In more realistic domains, the
planner will need to deal with preconditions and reason
about the probabilities of that are not composed of in-
dependent actions. To do this the system will need to
reason about preconditions, and the probability of these
preconditions being violated. Such reasoning is likely
to be quite complex, so search heuristics must be devel-
oped. Initial work in this area is reported in [Martin
and Allen, 1990]. Tyro, a planner that makes use of ap-
proximate probabilities and decomposition abstraction
is being developed at Rochester.

References

[Allen et ai, To appear 1990] James F. Allen, Henry A.
Kautz, Richard N. Pelavin, and Josh D. Tennenberg.
Formal Models of Reasoning About Plans. Morgan
Kaufman Publishing Co., San Mateo, CA, To appear
1990.

[Allen, 1983] James F. Allen. Maintaining knowledge
about temporal intervals. Communication of the
ACM, 26(ll):832-843, 1983.

[Bacchus, 1988] Fahiem Bacchus. Representing and Rea-
soning with Probabilistic Knowledge. PhD thesis, Uni-
versity of Alberta, Fall 1988.

142

[Brooks, 1985] Rodney A. Brooks. A robust layered con-
trol system for a mobile robot. Technical Report 864,
MIT AI-Lab, Cambridge, MA, September 1985.

[Chapman, 1987] David Chapman. Planning for con-
junctive goals. Artificial Intelligence, 32:333-377,
1987.

[Chapman, 1990] David Chapman. Vision, Instruction,
and Action. PhD thesis, MIT, Cambridge, MA, 1990.

[Dean and Boddy, 1990] Thomas Dean
and Mark Boddy. A temporal probability logic for
reasoning about actions. In Proceedings of the Sixth
Annual Conference on Uncertainty in AI, pages 49-
54, 1990.

[Fikes and Nilsson, 1971] R. E. Fikes and N. J. Nilsson.
Strips: A new approach to the application of theo-
rem proving to problem solving. Artificial Intelligence,
2:189-205, 1971.

[Firby, 1987] R. James Firby. An investigation into reac-
tive planning in complex domains. AAAI, 5:202-206,
1987.

[Georgeff and Lansky, 1987] Michael P. Georgeff and
Amy L. Lansky. Reactive reasoning and planning.
AAAI, 5:677-682, 1987.

[Hanks, 1990] Steven John Hanks. Projecting Plans for
Uncertain Worlds. PhD thesis, Yale University, New
Haven, CT, 1990.

[Kaelbling, 1988] Leslie Pack Kaelbling. Goals as paral-
lel program specifications. In AAAI, volume 1, pages
60-65, 1988.

[Kautz, 1987] Henry Kautz. A Formal Theory of Plan
Recognition. PhD thesis, University of Rochester,
Rochester, NY 14627, 1987.

[Kyburg, 1974] Henry E. Kyburg, Jr. The Logical Foun-
dations of Statistical Inference. Reidel, 1974.

[Kyburg, 1983a] Henry E. Kyburg, Jr. Epistemology and
Inference. University of Minnisota press, Minneapolis,
MN, 1983.

[Kyburg, 1983b] Henry E. Kyburg, Jr. The reference
class. Philosophy of Science, 50:374-397, 1983.

[Loui, 1987] Ronald P. Loui. Theory and Computation
of Uncertain Inference and Decision. PhD thesis, Uni-
versity of Rochester Computer Science Department,
September 1987.

[Martin and Allen, 1990] Nathaniel G. Martin and
James F. Allen. Abstraction in planning: A proba-
bilistic approach. Presented at AAAI-90 Workshop
on Automatic Generation of Approximations and Ab-
stractions, 1990.

[Neyman, I960] J. Neyman. A First Course in Probabil-
ity and Statistics. Hold, Rinehaart and Winston, New
York, 1960.

[Nilsson, 1984] Nils J. Nilsson. Shakey the robot. Tech-
nical Report 323, SRI International, 1984.

[Sacerdoti, 1975] Earl D. Sacerdoti. A structure for
plans and behavior. Technical Report 109, SRI In-
ternational, Menlo Park, California, August 1975.

[Weber, 1989] Jay C. Weber. A Formal Theory of Plan
Recognition. PhD thesis, University of Rochester,
Rochester, NY 14627, 1989.

[Wilkins, 1988] David E. Wilkins. Practical Planning.
Morgan Kaufmann Publishers, San Mateo, CA, 1988.

143

Cooperative Planning and Decentralized Negotiation in Multi-Fireboss Phoenix

Theresa Moehlman and Victor Lesser *
University of Massachusetts

Abstract

Multi-fireboss Phoenix provides a real time envi-
ronment to study cooperative planning and decen-
tralized negotiation. Spatially distributed agents
(firebosses), having only local views, negotiate
to plan a globally acceptable resource configura-
tion. Negotiation is viewed as a distributed search
through plans requiring various resource alloca-
tions, and hence, leading to different resource con-
figurations. The goal of the distributed search is
to find a resource configuration that minimizes the
total loss. To realize the negotiation, a three phase
framework has been created. We present an exam-
ple scenario and initial implementation results to
concretize the negotiation framework.

1 Introduction

In a centralized or hierarchical environment, problem solving
decisions are typically made by a single agent. However,
in truly distributed environments, the imposition of such
centralized roles seems both inefficient and unnatural. Thus,
it seems appropriate for agents to interact as peers. When
problems arise in these distributed environments that affect
more than one agent, all involved agents negotiate to reach
a mutually acceptable solution. Negotiation is decentralized
when there is no central mediator or global database and an
agent must act knowing only its local state and information
received from other agents. Our work entails studying
decentralized negotiation in multi-fireboss Phoenix.

Multi-fireboss Phoenix is an extension of the Phoenix
fire fighting system. Problem solving in this domain refers
to bringing about the actions needed to assess and contain
simulated fires (see [Cohen et ah, 1989] for a detailed account
of the environment). In Phoenix, a single centralized agent
controls problem solving whereas in multi-fireboss Phoenix,
problem solving is managed by several spatially distributed
firebosses or intelligent agents. Section 2 introduces the fire
fighting domain and discusses cooperative planning in the
multi-fireboss version.

"This work was partly supported by the Defense Advanced
Research Projects Agency (DARPA), monitored by the Office of
Naval Research undercontract N00014-89-J-1877 and by the Office
of Naval Research under a University Research Initiative grant,
number N00014-86-K-0764.

Spatially distributed agents, having only local views, need
some method of negotiation in order to plan a globally
acceptable resource distribution. Each resource distribution
has an associated cost and a globally acceptable distribution
is one that minimizes cost. Hence, the purpose of negotiation
is to construct and evaluate possible resource distributions
in search of a low cost solution. In section 3, we discuss
negotiation for resource allocation in multi-fireboss Phoenix.

Negotiation is viewed as a distributed search through pos-
sible resource configurations. The search is structured into
three phases representing three problem solving steps. The
agents need to 1) look for solutions within a given search
cost level, 2) decide if they have exhausted the likely pos-
sibilities of finding a solution in a search level, and 3) if
necessary, determine how to change the current search level
into a new, higher cost level. Section 4 outlines our approach
to negotiation. In section 5, an example scenario from the
Phoenix domain is presented. Section 6 discusses related
work on negotiation. Finally, we conclude with preliminary
implementation results and a plan of future work.

2 Cooperative Planning in Phoenix

Phoenix simulates forest fire fighting in Yellowstone National
Park. It consists of a "real world" which simulates fires
and environmental conditions, agents who control problem
solving, and resources that agents use to assess and contain
fires. The objective of problem solving in the system is to
limit the amount of land burned and to protect high priority
land from destruction. Phoenix is a real time environment
where problem solving is ongoing (new fires can occur at any
time). Hence, agents must be able to respond quickly and
adaptively to changes in the environment.

In multi-fireboss Phoenix, each agent is responsible for fires
occurring in a predefined geographical area. An agent owns a
certain number of watchtowers and bulldozers. Watchtowers
are the "eyes" of an agent; they provide information on fires
in their area of sight. Bulldozers are the primary fire fighting
resource of an agent; they contain fires by building fireline
around the perimeter of a fire. In response to a fire occurring in
the "real world", an agent receives fire assessment information
from its watchtowers, constructs a fire attack plan to contain
the fire, and sends bulldozers to build the fireline specified in
the attack plan.

Figure 1 shows an example fire attack. The watchtower
near the top of the figure has reported the fire (shown in
the center of the figure) to its agent. The dotted circular

144

region around the fire shows the attack plan constructed by
the agent; it represents the fireline that will be built around
the fire. A bulldozer, sent by the agent to implement the
attack plan, is shown building fireline. When the bulldozer
completes building the fireline, the fire will be contained
because its fuel source will be cut off. In reality, fire can jump
fireline, however, this aspect of fire growth has not yet been
incorporated into Phoenix.

Agents in multi-fireboss Phoenix must allocate bulldozers
with concern for all fires occurring in the system (i.e. they
cooperatively plan for the current fire situation). From only
local views, the agents try to assign bulldozers to fires in such
a way as to globally minimize the damage of the fires. A
fire fighting effort involves creating a schedule of bulldozer
allocations in connection with a fire attack plan. If an agent
does not have enough available bulldozers to implement the
plan, it negotiates with its neighboring agents to secure the
needed bulldozers for the attack.

Figure 2 shows a simple distributed resource allocation
problem in the fire fighting domain. To fight the new fire,
Fire-3, Agent-2 needs to secure two bulldozers immediately.
Bulldozer B-4 is available and Agent-2 assigns B-4 to the
attack on Fire-3. Agent-2 now needs to find one more
bulldozer. The fire fighting attack on Fire-1 has just begun
and Agent-2 can not release a bulldozer from that effort. If
Agent-2 had a global view, it could determine that the attack
on Fire-2 is almost complete and it could take a bulldozer
from that attack. However, there is no global view and the
agents must negotiate in order to find this solution.

The example shown is very simple and it has an obvi-
ous solution. More complex problems arise when there are
more fires to fight then bulldozers available to immediately
fight them. The agents must then create bulldozer allocation
schedules for the fire attacks. Some fires attacks may be
delayed and bulldozers can be assigned to them at a later
time. Moreover, a fire fighting attack can be divided into
stages where bulldozers may be added or removed from the
attack at various times. Suggesting and evaluating alterna-
tive bulldozer allocation schedules is the content of agent
negotiation.

3 Negotiation for Distributed Resource
Allocation

Phoenix provides a real time domain where problem solving
is ongoing. The objective of negotiation is to find a fairly
good solution relatively quickly. Even if an exhaustive search
is feasible, in a real time domain, the cost of finding an
optimal solution may outweigh the savings of an optimal
solution over a fairly good one. Furthermore, the ongoing
nature of problem solving is also a factor in our negotiation
framework. In response to changes in the current situation,
agents amend existing solutions rather than start from scratch
every time the current situation changes.

Agents are cooperative in distributed Phoenix - they work
together to fulfill the global goal of minimizing total land
loss. Hence, an agent is willing to incur more local loss than
absolutely necessary in order to minimize the total loss of the
system. Furthermore, negotiation is viewed as an incremental
process. Agents seek solutions of minimal loss first. As the
negotiation continues, the agents realize that in order to find

a solution they must incur more and more loss.

3.1 Defining the Problem

We begin our study of decentralized negotiation with a two
agent model. At any given time in the system, the two
agents are faced with a configuration of burning fires. They
must develop a resource distribution so that all fires can be
contained. A fire is classified into a priority level, ranging
from low to high, which estimates the amount of loss that the
fire could cause. When a new fire occurs, an agent computes
an initial fire projection which gives a standard base for
negotiation; it indicates the lowest priority class in which a
fire can be contained if the computed fireline segments are
built by a certain time.

Each agent maintains a list of goals where a goal corre-
sponds to a fire for which the agent is responsible. Each
fire has an associated fire fighting projection which specifies
a bulldozer allocation schedule for realizing the plan of the
attack projection. Figure 3 shows an example goal. This goal
corresponds to Fire-10, a medium priority fire, being fought
with the attack plan of Projection-15. Bulldozers Bl and B2
are currently building fireline and B2 will leave the attack
after 10 more fireline segments are built, estimated to be at
time T2. After that time, Bl will complete the attack.

In this domain, two degrees of overconstrained resource
situations are distinguished. When the agents do not have
enough bulldozers to immediately implement all fire fighting
attacks, they are said to be in an ento-overconstrained resource
situation. To resolve this situation they try to rearrange the
bulldozer allocation schedules and fire attack plans without
raising the priority level of any goal. If the agents must
raise a goal's priority in order to find a resource distribution
that qualifies as a solution, they are said to be involved in
an extro-overconstrained resource situation. In this situation,
the agents know that they must delay at least one goal in order
to find a solution.

So, what is the problem that the agents need to solve? At
any given time, each agent has developed a resource allocation
schedule for each fire occurring in its area of responsibility.
Then a new fire occurs in one agent's area and there is not
enough globally available bulldozers to immediately start
fighting that new fire. An ento-overconstrained resource
situation is recognized. The agents attempt to modify their
resource allocation schedules so that the agent responsible for
the new fire has a bulldozer allocation schedule for fighting
that fire. If the agents can not find a bulldozer allocation
that will successfully contain the new fire without raising the
priority level of a goal, they are in an extro-overconstrained
situation. The agents negotiate to determine which goals to
delay to the next priority level. They then must develop
delayed bulldozer allocation schedules for those goals.

3.2 The Elements of Negotiation

At a global level, the search space for a given situation consists
of a particular set of fires (the fire situation). As shown in
figure 4, alternative resource distributions occur under fire-
priority configurations. Fire-priority configurations assign a
priority to each fire and hence, approximate the total loss. The
agents first search alternative distributions under the priority
configuration representing the minimal loss. As negotiation
continues, the agents realize that they must incur more loss

145

Figure 1: Fire Fighting in Phoenix

to find a solution for the fire situation and thus, must search
alternatives under higher loss priority configurations.

Constraints in this domain are centered around four fac-
tors: priority, start time, bulldozer number, and bulldozer
assignment time. The agents attempt to contain fires within
the lowest priority classes possible. In order to contain a fire
within a priority class, the computed fireline segments must
be built within a certain time. The initial projection computed
on a new fire specifies the minimum number of bulldozers
needed to contain the fire if the attack starts immediately and
if the bulldozers are allocated for the complete attack time.
Thus, it provides a starting point for negotiation.

Negotiation involves relaxing constraints imposed by the
projection on the new fire and the projections in use on goals.
Agents first try to relax the constraints of start time, bulldozer
number, and bulldozer assignment time. Relaxing these
constraints provides a way to solve an ento-overconstrained
resource situation. The following operators are used to find
bulldozers for the new fire attack:

• The start time of a fire fighting attack may be delayed.
If enough resources can be brought to the fire within
a certain time, perhaps more than the initial projection
specified, the fire can be contained within its initial
priority class.

• An agent may be able to remove bulldozers on an already
started fire fighting attack and still complete the attack
specified in the projection.

• An agent may start a fire attack with less (more) bull-
dozers than the projection specified and add {release)
bulldozers at later times. If a bulldozer schedule can

be created that meets the build time constraints of the
projection, the fire can be contained in its priority class.

The agents try to find a bulldozer allocation schedule
that will successfully contain the new fire within its initial
priority class. By using the above operators, the agents
search to release bulldozers immediately, temporarily, or
in the future thereby creating possible bulldozer allocation
schedules for the new fire. If they can construct a bulldozer
allocation schedule that achieves the build time constraints
of the new fire's projection, they have solved the ento-
overconstrained resource situation. If the agents can not
create a suitable bulldozer schedule, an extro-overconstrained
resource situation is recognized. In this situation, the agents
have to agree on which goals to delay. These goals are
allowed to reach a higher priority class.

In attempting to minimize global loss, the agents try to
delay the fewest fire attacks as well as the lowest priority
goals. The current strategy for choosing goals to delay
attempts to achieve a minimal loss solution based solely on
priority class. More complex strategies can include other
factors such as bulldozer locations relative to fire locations,
different growth rates of fires (growth rates vary according to
type of terrain), and utilization of land features (for example,
a fire fighting attack may utilize a lake so that less fireline has
to be built).

Once the agents have decided which goals to delay, they
then go back into negotiation to find bulldozer allocation
schedules for the delayed goals. If the new fire is not delayed,
the agents will have found a bulldozer allocation schedule for
it when they chose the goals to delay. The search process to
find a bulldozer allocation schedule for the delayed goals may

146

AGENT-1

(Fire-3 j

AGENT-2

B-4
B-6|

B-5 Fire-1

Agents negotiate in order to find the globally obvious resource distribution:
Take a bulldozer off Fire-2 to join bulldozer B-4 on the fire attack for Fire-3.

Figure 2: Distributed Resource Allocation

GOAL-10: Fire, Priority: Fire-10, Medium
Attack-Projection: Projection-15
Fighting-Projection: Entry-1: Bulldozers: (B1,B2)

Start Time, End Time: Tl, T2
No-of-segments: 10

Entry-2: Bulldozers: (Bl)
Start Time, End Time: T2, T3
No-of-segments: 10

Figure 3: An Example Goal

147

Fire Situation: [Fire-1, Fire-2,..., Fire-n]

OR

Fire-Priority

Configuration-1

Alternative-1
Bulldozer Distribution

AND

Fire-Priority

Configuration-2

Alternative-2
Bulldozer Distribution

Fire-Priority

Configuration-q

Alternative-m
Bulldozer Distribution

Fire-1 Fire-2 Fire-n
Attack Attack Attack

The goal is to find the alternative bulldozer allocation for the fire situation that:
Qualifies as a solution and occurs under the lowest loss fire-priority configuration possible.

Figure 4: The Global Search Space

lead back into delaying more goals and hence, changing the
priority configuration again. Thus, the negotiation process is
incremental.

The methods that our agents use to construct alternative
bulldozer distributions are closely related to the negotiation
operators used by Sathi and Fox ([Sathi and Fox, 1989]).
Relaxation in our domain refers to allowing a fire to burn to
a higher priority class than the minimum possible. Recon-
figuration in our domain means reorganizing the bulldozer
teams so that bulldozers can be released from their current
assignments and hence, become available to fight a different
fire. Finally, composition is similar to assigning bulldozers to
a fire attack at different times and adjusting the fire fighting
attack to incorporate the varying bulldozer allocations.

4 Our Basic Approach

Negotiation is structured into three phases corresponding
to three main problem solving activities. The agents search
within a priority configuration to find a solution for a particular
fire using a specific base schedule (base schedules are created
from the fire projections). If the search does not lead to a
solution, the agents must decide whether to perform another
search under the priority configuration with a base schedule
that has not be previously used or to create a new priority
configuration of higher loss. Hence, the three phases of
negotiation are 1) searching to find a bulldozer allocation
schedule, 2) deciding how to proceed in the search if an
impasse was reached, and 3) creating a new search level of
higher loss.

4.1 Phase 1: Negotiation to Find Bulldozers

During phase 1 of negotiation, agents search to find a bulldozer
allocation schedule for a single fire. If that fire is a new fire,
the agent responsible for it computes an initial projection
which provides the ideal bulldozer allocation schedule: the
minimum number of bulldozers needed to start immediately

and stay for the complete attack time. Negotiation is entered
when the agent does not have enough idle bulldozers to meet
the ideal base schedule. The agent first tries to simply borrow
the needed resources by issuing an initial request.

An initial request specifies a start time, priority, and bull-
dozer number. One agent is asking another: "can you give
me n bulldozers by time t for a z priority fire?" The receiving
agent replies positive, alternative suggestion, or negative as
shown in figure 5. A positive reply indicates that a solution
has been found. An alternative suggestion means that the
agent can meet only part of the request or it can meet the
whole request if the requesting agent agrees to a condition
placed on the loan. A negative reply means that the agent did
not find a solution or suitable alternative suggestion.

An agent receiving a request tries to fulfill that request
without raising the priority of any goal. If the agent can
not meet the whole request (it does not have enough idle
bulldozers), it begins an ordered search to find an alternative
suggestion. First, the agent tries to relax the bulldozer
number (it has some idle bulldozers but not enough) or start
time (it tries to complete lower priority goals before loaning
bulldozers) specified in the request. If the agent does not
have any idle bulldozers or lower priority goals, it searches
for an alternative suggestion by restricting the bulldozer loan
time or by requiring the requesting agent to commit some of
its resources at a later time.

The requesting agent evaluates the alternative suggestion.
As shown in figure 6, a solution is achieved if the alternative
suggestion leads to a bulldozer allocation that achieves the
build time constraints of the new fire and if conditions were
specified on the loan, the requesting agent can meet those
conditions. If alternative suggestion did not lead to a solution,
the requesting agent uses the information in the alternative
and its own goal situation to construct a base schedule. If the
agent received a negative reply, it constructs a base schedule
from its own goals alone. Note that a base schedule can be

148

Agent-1: Sends Initial Request - [Time, Bulldozers Needed, Fire Priority]

I
Agent-2: Receives Request - Possible Replies

Positive
Solution Found

Alternative Suggestion
Send to Agent-1
for evaluation

Negative
Up to Agent-1 to

suggest alternative

Figure 5: The Beginnings of Negotiation

created in the later phases of negotiation and lead back into
phase 1 as shown in figure 6.

The requesting agent then evaluates the constructed sched-
ule using the current projection (either initial or delayed) on
the fire. If the schedule is not a solution, the agent tries
to determine what will make that schedule a solution. If it
can pinpoint a modification, it sends a modified request to
the other agent. If it can not find a suitable modification, it
realizes that further search on that base schedule is futile. The
negotiation continues with phase 2.

Evaluating alternatives and pinpointing problems is specific
to the domain. In the fire fighting domain, knowledge of fire
behavior enables an agent to look for specific problems with
a schedule. For instance, a fire grows exponentially in the
direction of the wind. Thus, one function checks if the fire
head is contained quickly enough. Another function checks
if the problem is that a small amount of fireline is not built
in time and computes when a bulldozer must be added to the
attack in order to make the schedule a solution.

When an agent finds a modification that will make the
base schedule a solution, it sends a modified request to
the other agent. A modified request specifies a start time,
bulldozer number, and priority as in an initial request. In
addition, a modified request can include a reservation field
and a comment field. The reservation field is employed when
the modified request uses all or part of a previously sent
alternative suggestion. The comment field allows an agent
to give the other agent information to limit its search. For
instance, if the fire head needs to be contained, the replying
agent will search for ways to loan a bulldozer immediately,
expect the return ofthat bulldozer relatively quickly, and omit
searching for ways to delay the start time.

The agent receiving a modified request checks if it needs to
reserve bulldozers or if it can decommit resources specified
in a previous alternative suggestion. It then tries to fulfill
the request as it does with an initial request though the
search space may be smaller if bulldozers are reserved and a
comment was included in the request. It then replies positive,
alternative suggestion, or negative.

Alternative suggestions and modified requests represent
a distributed search to find a solution using a particular
base schedule. Modified requests attempt to revise the base
schedule or a schedule derived from it to find a solution.
An alternative suggestion on a modified request can lead to
searching in more depth on a derived schedule or it can lead to
searching on a new derived schedule. The path taken depends
on the evaluation of the alternative and the requesting agent's

goal situation. If no solutions were found using the base
schedule, the agents enter into phase 2.

4.2 Phase 2: The Decision to Delay Goals

Deciding to delay goals implies giving up significantly more
loss than could be caused by the reconfiguration process of
phase 1. Since more loss is contrary to the global objective,
the agents first determine if there is another means to achieve a
solution under the current fire-priority configuration. Hence,
this phase decides whether to try more breadth on the search
under a priority class level or to search under a new priority
configuration.

To determine if there is a possibility of constructing a
base schedule that was not examined and is likely to lead a
solution, the agents must characterize the search in phase 1.
This process is the least understood of our framework. Two
possible characterizations, based on the constraint relaxation
of the ideal schedule, are 1) delaying the attack start time and
2) starting the attack with fewer bulldozers than required. A
check list is maintained based on these two characterizations.
The agent responsible for the fire checks off characterizations
during the search in phase 1. Based on the modifications
made to the ideal schedule and base schedules, the agent can
determine which characterizations were attempted.

If a characterization has not been checked off, the agents
search to create a base schedule using that characterization.
If delayed start time was not used, the agents search for ways
to utilize any idle resources so that more bulldozers will be
released sooner then otherwise possible. If the attack was
not started immediately, the agents search for ways to release
bulldozers immediately (possibly requiring commitments). If
they can create a new base schedule, the agents return to
phase 1.

If both characterizations have been used, the agents enter
phase 3. At this point, they have exhausted their known
possibilities of finding a solution for the particular fire given
the constraints of the fire priority configuration. Other search
characterizations can be used, however, care must be taken so
that the agents do not perform a redundant search on variants
of the same base schedule.

4.3 Phase 3: Negotiation for Delaying Goals
Phase 3 of negotiation is entered when the agents realize that
in order to find a solution to the current fire situation, more
land has to be sacrificed than the current minimal amount.
Which fires are allowed to burn to the next priority is based
on a strategy for achieving minimal loss. The current strategy

149

Agent-1: Receives Alternative

and Evaluates it
Agent-1: Receives Negative

Reply

Positive
Alternative works

Solution Found

Negative

Agent-1: Search own Goal Structure

Create Base Schedule

Evaluate Schedule
Base Schedule

Created in
Phase 2 or 3

Positive
Solution Found

Negative
Try to Pinpoint Problem

Send Modified
Request to Agent-2

Enter Phase 2
of the Negotiation

Figure 6: Search within a Priority Class Configuration

tries to raise the fewest number of fire priorities as well as
to delay the lower priority fires first. Figure 7 shows the
decision process.

Before negotiation can continue, agents must assess the
situation. First, they find goals having a lower priority than
the new fire. If the new fire is the lowest goal in the system,
it will be delayed. A new projection is performed on that fire,
letting it reach the next priority. The agent responsible for
the fire constructs an initial schedule based on first available
bulldozers and re-enters the negotiation process for a single
fire using the constructed schedule as the base schedule, the
new projection for evaluation of possible solutions, and the
first bulldozer assignment time as the attack start time.

If the lowest priority goal in the system is not the new fire,
the agents must determine if delaying that goal or any lower
priority goal will lead to a solution for the new fire. They
construct a schedule for the new fire using the bulldozers
from the lower goal to start immediately. If any single
lower priority goal will lead to solution for the new fire, it is
delayed and the solution to the new fire is implemented. A
projection is performed on the delayed fire, letting it reach
the next priority level. An initial schedule is created and the
negotiation for a delayed bulldozer schedule begins.

If no solution can be found for the new fire by delaying
a single lower priority goal, a combination of goal delays
is tried. However, there is a heavy bias toward delaying a
single fire. Unless very low priority goals can be delayed, the
new fire attack will be delayed. The bias is a way to avoid
bulldozer thrashing (having bulldozers spend most of their
time traveling to fires without accomplishing much useful
work). If delaying several lower priority goals is chosen over
delaying the new fire, it should be relatively easy to build a

delayed resource schedule for those goals.

4.4 Tying it all Together

The unifying theme of the negotiation is examining resource
configurations with continuing higher loss levels. The agents
first seek bulldozer distributions under the minimal fire-
priority configuration. If they can not find a bulldozer
distribution under that configuration which qualifies as a
solution, they must incur more loss. The agents must then
delay goals to create a new priority configuration. They search
alternative distributions under that configuration. They may
find a solution or they may have to construct a new higher
loss priority configuration.

The three phases give structure to the distributed search.
They represent three distinct problem solving activities and
they provide a way to coordinate the distributed search. Using
the negotiation framework, different heuristics may be used
to construct alternative resource configurations, characterize
the search process, and create a new search level. Thus,
the framework provides a means to study various negotiation
strategies.

5 Example Scenario

To begin the testing of our approach, initial scenarios were
created. These scenarios facilitate understanding what infor-
mation is needed to be exchanged during negotiation and how
the distributed search is conducted. Since the purpose of the
section is to illustrate the basic negotiation framework and
reasoning process, the following scenario is abstracted from
the implementation detail.

Figure 8 shows the starting situation of the scenario.
Agent-1 has two goals and no idle bulldozers. Agent-2

150

Situation Assessment: Find set of goals
that have a lower priority than the new fire.

Is lowest goal the new fire?

Delay new fire
fighting attack

Delay single
lower goal

Will delaying any single lower goal
lead to a solution for the new fire?

yes no

Find delayed combination of lower
goals that leads to a solution for new fire.

Evaluate total loss:

Delay new fire Delay several

fighting attack lower goals

Figure 7: Deciding which Fires to Delay

also has two current goals and no idle bulldozers. Agent-2
has spotted a new fire, fire-8, in its area of responsibility and
does an initial projection on it. Fire-8 is a medium priority
fire needing a minimum of 2 bulldozers to start immediately.

As shown in figure 9, Agent-2 first tries a simple loan
request since it does not have any idle bulldozers. Agent-1
also has no idle bulldozers. However, it does have a lower
goal. So, Agent-1 constructs an alternative suggestion where
it delays the bulldozer start time so it can complete its lower
goal first. It computes when it will have two bulldozers avail-
able. Agent-2 receives the alternative from Agent-1. Agent-2
evaluates the alternative and finds that it is not acceptable
given the build time constraints of fire-8's projection.

Agent-2 finds a base schedule using its own goals and
the alternative suggestion. It can release one bulldozer
in 30 minutes from fire-7 and one from fire-6 in 1 hour.
Hence, a schedule of 1 bulldozer in 30 minutes and 2 follow-
up bulldozers in 1 hour is constructed. This schedule is
characterized as delaying the attack start time. The schedule
is evaluated; it will not work. Agent-2 pinpoints the problem:
in order to contain the fire head, 2 bulldozers need to start
within 30 minutes. This modification is characterized as
starting with fewer bulldozers since a search will now be
conducted to release bulldozers as soon as possible. Agent-2
sends a modified request to Agent-1.

Agent-1 then receives the modified request asking for 1
bulldozer within 30 minutes. It searches for a way to release
a bulldozer in 30 minutes. For example, it evaluates taking
a bulldozer off fire-3 in 30 minutes and then putting B-3 on
fire-3 in 1 hour. If Agent-1 can free up a bulldozer within 30
minutes, the agents have found a solution. However, suppose
that Agent-1 can not free a bulldozer in 30 minutes. Agent-1
then sends back a negative reply to Agent-2.

Agent-2 then re-examines its own goals, searching to
release a bulldozer within 30 minutes. B6 has already been
reserved. Hence, the only goal to search is fire-6. It knows

that the earliest time a bulldozer can be released from fire-6
is 1 hour. So, Agent-2 checks if it can temporarily take
a bulldozer off fire-6, possibly requiring Agent-1 to send
a bulldozer at a later time. Agent-2 may send a modified
request to Agent-1 for a bulldozer at a later time so that
it could complete fire-6 according to its projection. If this
option is not possible or if Agent-1 can not meet a modified
request, the agents enter into phase 2 of negotiation.

In phase 2, Agent-2 looks at its characterization check list.
Both characterizations have been checked off. Phase 3 of
negotiation is entered. At this point, the agents know a fire's
priority must be raised. The agents find that fire-4 is the
lowest priority class fire in the system as shown in figure 10.
One bulldozer will be released from fire-4 and can be assigned
to fire-8. Since Agent-2 can release B6 in 30 minutes, fire-8
can be contained within a medium priority class. Thus, the
agents decide to delay fighting fire-4 because it represents the
lowest loss.

Agent-1 is responsible for fire-4 and must plan a fire attack.
Agent-1 computes a projection on fire-4, letting it reach the
next priority, medium-low. Agent-1 must get a starting point
to construct a base schedule. 1 bulldozer will be released
in 1.5 hours from fire-3. It asks Agent-2 the earliest time it
can loan a bulldozer. Agent-2 can release a bulldozer in 1
hour from fire-6. Agent-1 then computes a base schedule of
1 bulldozer in 1 hour and 1 bulldozer in 1.5 hours and enters
back into phase 1. Note that the attack start time is considered
to be 1 hour from the current time. Agent-1 evaluates the
schedule. It is not a solution and Agent-1 pinpoints the
problem: a small amount of fireline can not be built within
the time constraints. It computes 1.5 hours as the latest time
that a bulldozer must be brought to the fire. Agent-1 sends
a modified request to Agent-2 asking for 1 bulldozer within
1.5 hours. Agent-2 searches its current goals and finds it can
give back B3 in 1.5 hours. Hence, it sends a positive reply.
Figure 11 shows the final allocation schedules.

151

Agent-1: Current Goals: [Fire-3, medium, (Bl, B2) allocated for complete time]
[Fire-4, low, (B3) allocated for complete time]

Idle Bulldozers: 0

Agent-2: Current Goals: [Fire-6, medium, (B4, B5) allocated for complete time]
[Fire-7, medium-low, (B6) allocated for complete time]

Idle Bulldozers: 0
New Fire: Fire-8

Agent-2's Projection on Fire-8:
Medium priority; Requires 2 bulldozers to start immediately.

Figure 8: Starting Situation of Scenario

Agent-2: Sends Initial Request to Agent-1: (2 bulldozers, medium, now)

Agent-1: Receives Request.
No idle bulldozers but lower priority goal - determine when 2 bulldozers free:

1 bulldozer in 1 hour from fire-4; 1 bulldozer in 1.5 hours from fire-3.
REPLY: Alternative (trying to relax start time constraint):

1 bulldozer in 1 hour, follow-up bulldozer in 1.5 hours.

Agent-2: Receives Alternative Reply. (Ento-overconstrained situation exists)
Evaluates alternative schedule (1 bulldozer in 1 hour, follow-up in 1.5 hours)

Fire-8 will not be contained within medium priority.
Examines own goals: B-6 will be free in 30 minutes from Fire-7.

Can take a bulldozer off Fire-6 in 1 hour.
Best schedule using alternative suggestion:

1 bulldozer in 30 minutes and 2 follow-up bulldozers in 1 hour.
Characterize schedule as delayed start time.

Will schedule work? No - Pinpoint the Problem.
Need 2 bulldozers to start within in 30 minutes in order to contain fire head.
Characterize modification as starting with fewer bulldozers.

REPLY: Modified Request: (1 bulldozer, medium, 30 minutes hence)
Reservation: None; Comment: Trying to contain fire head.

Figure 9: Initial Negotiation of Scenario - Phase 1

Agent-2: Extro-overconstrained Resource Situation - Must delay fire:
Lowest goal: medium-low; Release one bulldozer.
Send information message: Must delay fire -

My lowest loss - medium-low priority and 1 bulldozer released.

Agent-1: Receives Message and examines its goals.
Replies: My lowest loss - low priority and 1 bulldozer released.

Agent-2: Receives Reply - Constructs schedule for Fire-8.
1 bulldozer now with follow-up in 30 minutes (from Fire-7).
Fire-8 can be contained within medium priority.
Send message to Agent-1: Delay your low goal.

Figure 10: The Decision to Delay a Fire - Phase 3

152

Fire-3: (Medium Priority) - Bl allocated for complete time;
B2 is on attack and leaves in 1.5 hours to go to Fire-4.

Fire-4: (Medium-low Priority) - B4 starts in 1 hour; B2 and B3 start in 1.5 hours.

Fire-6: (Medium Priority) - B4 is on attack and leaves in 1 hour to go to Fire-4;
B5 allocated complete time.

Fire-7: (Medium-low Priority) - B6 completes attack in 30 minutes and then goes to Fire-8.

Fire-8: (Medium Priority) - B3 is on attack and leaves in 1.5 hours to go to Fire-4;
B6 will start in 30 minutes and complete attack.

Figure 11: Conclusion of Scenario

This scenario shows how the distributed search is conducted
in a typical situation of the domain. Normally, if the first base
schedule constructed on a fire was characterized as starting
with fewer bulldozers than required, phase 2 would have led
back into negotiation with a base schedule of delayed start
time. The idle bulldozers that would have been put on the
new fire could be added to other goals to release bulldozers
on those goals sooner than would otherwise be possible.
However, when the first base schedule delayed start time, the
agents usually must enter phase 3 of the negotiation and delay
a goal. It is typically difficult to release bulldozers temporarily
from a fire fighting attack because there is an emphasis on
fighting fires with a minimal number of bulldozers.

6 Related Work
Much of the work on negotiation uses a central mediator.
For example, Sycara's work (tSycara, 1989]) on negotiation
uses a central mediator to construct compromises for agents
to evaluate. In our work, compromise construction is dis-
tributed. Sathi and Fox ([Sathi and Fox, 1989]) also found it
necessary to use mediated negotiation when there were more
than two agents. However, it can not always be assumed that
there is a central mediator or global database. There may
be too much information to gather in one place. In addition,
a central mediator creates a bottleneck and single point of
failure in the system.

Multistage negotiation is similar to our approach ([Conry
etal., 1988] and [Kuwabara and Lesser, 1989]). In multistage
negotiation there is no central mediator. Agents exchange
information to detect conflicts and overconstrained resource
situations. In multistage negotiation, agents only give a
positive or negative reply to a request whereas we allow
another agent to make an alternative suggestion. In addition,
we have a strong sense of optimization that is not present in
this approach.

7 Conclusion

The basic negotiation framework has arisen out of studies
on the fire fighting domain. The framework is suited for
real time domains where problem solving is ongoing and no
global viewpoint exists. Recently, a simplified version of the
framework has been implemented in multi-fireboss Phoenix.
We conclude with initial results and a plan of future work.

7.1 Preliminary Results

To begin testing our ideas, we have implemented a complete,
though simplified, version of the negotiation framework. In
this version, the search in phase 1 is incomplete; not all of
the operators are implemented. The implemented operators
are releasing bulldozers from attacks (i.e. shortening the
bulldozer assignment time), delaying the start time of fire
attacks, and creating bulldozer schedules with varying time
allocations. Currently, there is no search to temporarily
remove bulldozers from attacks. In addition, no conditions
are placed on bulldozer loans. In phase 3, only one fire attack
can be delayed (i.e. there is no comparison between delaying
several lower goals over the new fire attack).

Phoenix simulates "real" time. Fires of medium-low to
medium-high priority take about a day to fight. Furthermore,
the negotiation during an overconstrained resource situation
takes anywhere from 15 minutes to two hours depending on
the level of activity in the system. Communication in the
system is similar to sending telegrams rather than making
telephone calls. Hence, there is a time lag between sending
and receiving a message.

The following examples show the negotiation dialogue
between the two agents, disfireboss-1 and disfireboss-2.
Disfireboss-1 owns bulldozer-1, bulldozer-2, and bulldozer-3.
Disfireboss-2 owns bulldozer-4, bulldozer-5, and bulldozer-6.
Each agent owns 2 watchtowers. When an agent specifies
that a new fire has been spotted, one of its watchtowers
has sent assessment information to the agent about that fire.
In the traces, schedules are lists of elements of the form
(bulldozer number, start time, end time). Evaluation of a
schedule compares the amount of fireline that will be built by
the schedule to the needed amount of fireline specified in the
fire's projection.

The first trace is an example of negotiation when a solution
is reached in the first phase. Figure 12 shows the initial activity
of the example. Disfireboss-1 spots a medium priority fire,
actual-fire. 17 and assigns 2 of its bulldozers, bulldozer-3 and
bulldozer-1, to the attack. Disfireboss-2 spots a medium-
low fire, actual-fire. 16, and allocates bulldozer-5 to fight it.
Disfireboss-2 then spots another fire, actual-fire. 18. This
fire is of medium priority with bulldozer-4 and bulldozer-6
allocated to fight it. Hence, Disfireboss-1 has 1 idle bulldozer
(bulldozer-2) and Disfireboss-2 has no idle bulldozers.

Figure 13 shows the continuation of the example.

153

TIME
13:04

13:06

13:08

13:09

13:11

16:40

16:44

16:46

DISFIREBOSS-1
New fire - actual-fire. 17 spotted
Priority: medium

Computing Projection for actual-fire. 17
End time: 8/2 14:06 (93982)
Needed Bulldozers: 2
Can fight actual-fire. 17 with my resources

Adding agent-goal.13 for actual-fire.17
Bulldozers (bulldozer-3 bulldozer-1)
Start time 4257; end-time 93982

DISFTREBOSS-2

New fire - actual-fire. 16 spotted
Priority: medium-low

Computing Projection for actual-fire. 16
End time: 8/2 14:07 (94045)
Needed Bulldozers: 1
Can fight actual-fire.16 with my resources
Adding agent-goal. 12 for actual-fire.16
Bulldozers (bulldozer-5)
Start time 4257; end-time 94045
New fire - actual-fire. 18 spotted
Priority: medium
Computing Projection for actual-fire. 18
End time: 8/2 17:41 (106913)
Needed Bulldozers: 2
Can fight actual-fire. 18 with my resources
Adding agent-goal. 14 for actual-fire. 18
Bulldozers (bulldozer-4 bulldozer-6)
Start time 17175; end-time 106913

Disfireboss-1: Current Goals:
[Actual-fire.17, medium, (Bulldozer-3, Bulldozer-1) allocated for complete time]
Idle Bulldozers: 1

Disfireboss-2: Current Goals:
[Actual-fire.16, medium-low, (Bulldozer-5) allocated for complete time]
[Actual-fire. 18, medium, (Bulldozer-4, Bulldozer-6) allocated for complete time]
Idle Bulldozers: 0

Figure 12: Example Trace - Solution in Phase I - Starting Situation

154

TIME
22:16

22:22

22:23

22:29

22:30

22:31
22:31
22:31

DISFTREBOSS-1
New fire - actual-fire. 19 spotted
Priority: medium-high
Computing Projection for actual-fire. 19
End time: 8/3 7:38(157121)
Needed Bulldozers: 2
Not enough resources for actual-fire. 19
Trying resource loan

Received Alternative from disfireboss-2
Schedule will not work
Getting earliest time bulldozers released
Bulldozers (bulldozer-1 bulldozer-3)
Time available 93982
Evaluating Schedule
((1 37343 124645) (1 94045 124645)
(2 93982 157121))
Schedule works - SOLUTION
Using the following of my resources ...
bulldozer-1: start 93982; end 157121
bulldozer-3: start 93982; end 157121
bulldozer-2 allocated for complete time

DISFIREBOSS-2

Received Request for
1 bulldozers; medium-high priority
Alternative - lower priority goal
Delay Start time to 94045

Received Alternative Accepted Message
The loan...
bulldozer-5: start 94045; end 124645

Figure 13: Example Trace - Solution in Phase I - continued

Disfireboss-1 spots a medium-high priority fire, actual-fire.19.
This fire needs 2 bulldozers to start immediately. However,
Disfireboss-1 has only 1 idle bulldozer. So, it sends an initial
request to Disfireboss-2 for 1 bulldozer. Disfireboss-2 does
not have any idle bulldozers, however, it has a lower priority
goal. So, it tries to delay the start time of the bulldozer
loan. Disfireboss-1 receives the alternative and creates a
schedule of one bulldozer (the idle one) allocated for the
completed time and another bulldozer starting at time 94045.
The schedule is evaluated and found to be inadequate. So,
Disfireboss-1 searches its own goals to find when it will have
bulldozers available. Its only goal, agent-goal.13 for actual-
fire.17, is searched. The two bulldozers from agent-goal.13
will complete the fire attack on actual-fire.17 at time 93982.
The current schedule for the new fire is amended to include
the allocation of the two bulldozers from agent-goal.13 at
time 93982. This new schedule is found to be acceptable and
hence, a solution for the new fire attack has been found.

The example shows a typical scenario when a solution is
found in phase 1. 4 out of 6 bulldozers are allocated at
some time to the new fire, actual-fire.19. Usually when a
solution is found in phase 1, several extra bulldozers need to
be allocated to the attack in order to make up for delaying the
attack start time or starting the attack with fewer bulldozers.
In trying to minimize loss, the evaluation only takes into
account whether the needed fireline will be built. However, a
more sophisticated evaluation would include a risk factor for
the future. This type of evaluation may find that having so
many bulldozers in one area is too risky and thus, may find

the solution of the example too costly to implement.

The second trace shows the negotiation when the agents
must delay a fire to find a solution. Figure 14 shows the
starting situation. Disfireboss-1 spots a medium priority fire,
actual-fire.5 and allocates 2 of its bulldozers (bulldozer-2 and
bulldozer-1) to the fire attack. Disfireboss-2 spots a medium
priority fire, actual-fire.6 and allocates 2 of its bulldozers
(bulldozer-5 and bulldozer-4) to the attack. Then Disfireboss-
1 spots another fire. This fire, actual-fire.7, is of medium-low
priority and needs 2 bulldozers for the attack plan. Since
Disfireboss-1 has only 1 idle bulldozer (bulldozer-3), it sends
a request for 1 bulldozer to Disfireboss-2. Disfireboss-2
can honor the request since it has 1 idle bulldozer. Hence,
bulldozer-3 and bulldozer-6 are allocated to actual-fire.7. At
this point, all bulldozers in the system are being utilized.

The example continues when Disfireboss-2 spots a
medium-high priority fire, actual-fire.8. Figure 15 shows
the search of phase 1. Disfireboss-2 sends a request of 2
bulldozers to Disfireboss-1. Disfireboss-1 has no idle bull-
dozers but it does have a lower priority goal (actual-ftre.7).
So, it tries to delay the start time of the bulldozer loan.
However, Disfireboss-2 finds the alternative to be inadequate.
Disfireboss-2 then finds that it can release the bulldozers from
actual-fire.8 at time 95775. But the amended schedule is not
a solution. So, Disfireboss-2 sends a modified request, trying
to make the current schedule a solution by adding a bulldozer
to the attack at time 77807. However, Disfireboss-1 can not
honor the request since a bulldozer can not be released in time
from actual-fire.5 and the bulldozers assigned to actual-fire.7

155

TIME
13:04

13:10

13:13

13:35

13:38

13:39
13:40

13:41
14:35

14:39
14:40

15:27

15:29
15:34
15:35

DISFTREBOSS-1
New fire - actual-fire.5 spotted
Priority: medium
Computing Projection for actual-fire.5
End time: 8/2 14:07 (94072)
Needed Bulldozers: 2
Can fight actual-fire.5 with my resources
Adding agent-goal.5 for actual-fire.5
Bulldozers (bulldozer-2 bulldozer-1)
Start time 4404; end-time 94072

New fire - actual-fire.7 spotted
Priority: medium-low
Computing Projection for actual-fire.7
End time: 8/2 15:37(99438)
Needed Bulldozers: 2
Not enough resources for actual-fire.7
Trying resource loan

Received POSITIVE from disfireboss-2

Now in charge of bulldozer-6
Adding agent-goal.7 for actual-fire.7
Bulldozers (bulldozer-6 bulldozer-3)
Start time 12915; end-time 99438

DISFIREBOSS-2

New fire - actual-fire.6 spotted
Priority: medium
Computing Projection for actual-fire.6
End time: 8/2 14:36 (95775)
Needed Bulldozers: 2
Can fight actual-fire.6 with my resources
Adding agent-goal.6 for actual-fire.6
Bulldozers (bulldozer-5 bulldozer-4)
Start time 6044; end-time 95775

Received Request for
1 bulldozers; medium-low priority
Can honor request

Loaning bulldozer bulldozer-6

DisfireboSS-1: Current Goals:
[Actual-fire.5, medium, (Bulldozer-2, Bulldozer-1) allocated for complete time]
[Actual-fire.7, medium-low, (Bulldozer-6 [on loan], Bulldozer-3) allocated for complete time]
Idle Bulldozers: 0

Disfireboss-2: Current Goals:
[Actual-fire.6, medium, (Bulldozer-5, Bulldozer-4) allocated for complete time]
Idle Bulldozers: 0

Figure 14: Example Trace - Delaying a Fire - Starting Situation

156

TIME DISFIREBOSS-1 DISFIREBOSS-2
17:40 New fire - actual-fire.8 spotted

Priority: medium-high
17:44 Computing Projection for actual-fire.8

End time: 8/3 3:01 (140493)
Needed Bulldozers: 2

17:45 Not enough resources for actual-fire.8
Trying resource loan

17:48 Received Request for
2 bulldozers; medium-high priority
Alternative - lower priority goal
Delay Start time to 94072

17:49 Received Alternative from disfireboss-1
Schedule will not work

17:50 Getting earliest time bulldozers released
Bulldozers (bulldozer-4 bulldozer-5)
Time available 95775
Evaluating Schedule
((2 94072 97240) (2 95775 140493))
Schedule inadequate - Planning modified request

17:51 Needed build time 23740.602 to make schedule a solution
Modified Request: 1 bulldozers; start-time 77807
Characterized as Delaying the start time

17:55 Received Modified Request
17:56 Sending reply of negative
17:57 Received NEGATIVE on modified request
17:58 ENTERING Phase II
17:59 Phase 2

Trying to create base schedule
starting with fewer bulldozers
Can release 0 bulldozers now

18:01 Received Enter Phase n message -
fewer characterization

18:02 Can release 0 bulldozers now
18:03 Entering Phase III

Figure 15: Example Trace - Delaying a Fire - Phase 1 and 2

157

TIME DISFIREBOSS-1 DISFIREBOSS-2
18:05 Received Enter Phase III message
18:09 Neighbor lowest priority: medium-low;

Bulldozers freed: 2
My lowest priority: medium;
Bulldozers freed: 2
Bulldozers I have available 0
Delay neighbor lower goal

18:18 Loaning bulldozer bulldozer-3 Back in charge of bulldozer-6
Returning bulldozer bulldozer-6 Now in charge of bulldozer-3

18:19 Deleting goal agent-goal.7 Adding agent-goal.8 for actual-fire.8
Updated goal list: (agent-goal.5) Bulldozers (bulldozer-3 bulldozer-6)

Start time 22736; end-time 140493
18:26 Computing Projection for actual-ftre.7

End time: 8/3 21:31 (207112)
Needed Bulldozers: 1

18:27 Not enough resources for actual-fire.7
Trying resource loan

18:48 Received Request for
1 bulldozers; medium priority
Negative reply to request

19:09 Received DENIAL from disfireboss-2
19:10 Getting earliest time bulldozers released
19:11 Bulldozers (bulldozer-1 bulldozer-2)

Time available 94072
Evaluating Schedule
((2 94072 207112))
Schedule works - SOLUTION
Using the following of my resources ...
bulldozer-1: start 94072; end 207112
bulldozer-2: start 94072; end 207112

Figure 16: Example Trace - Delaying a Fire - conclusion

158

are already reserved for the new fire attack.
Disfireboss-2 receives the negative reply from Disfireboss-

1. Since the bulldozers from its only goal have already been
reserved, the agents enter into phase 2. The characterization
of starting with fewer bulldozers has not been checked off.
Hence, the agents search for a way to release bulldozers
immediately. However, neither agent can release a bulldozer,
so, phase 3 is entered.

Figure 16 shows the conclusion of the example. The
agents have entered phase 3. They find that delaying the
lowest goal in the system, agent-goal.7 (actual-fire.7), will
enable Disfireboss-2 to contain the new fire, actual-fire.8,
within a medium-high priority class. The bulldozers assigned
to acutal-fire.7 are re-allocated to the new fire. Disfireboss-
1 must then find a schedule for the delayed fire attack on
actual-fire.7.

Disfireboss-1 computes a delayed projection on actual-
fire.7, allowing it to reach medium priority. Disfireboss-1
finds a solution to the delayed fire attack within its own goals.
By using 2 bulldozers instead of 1, the attack start time can
be delayed long enough so that bulldozer-1 and bulldozer-2
can finish the fire attack on actual-fire.7.

Note that the first example takes only a quarter of an
hour while the second example takes two hours. The time
difference relates to the length of negotiation as well as
current activity in the system. Clearly, the second example
involves much more negotiation than the first example. In the
first trace, most of the computations for the fire attacks have
been performed before the negotiation starts. In the second
example, the computations for the attacks are being performed
concurrently with the negotiation. The current projections
take into account the negotiation time by assuming a worst
case scenario. A more intelligent agent would be aware of
the time factors and adjust the projections accordingly.

In the second example, a solution was found after only one
fire attack was delayed. The number of iterations through
the framework loop is dependent upon the degree to which
the situation is overconstrained. In other words, the farther
into the future bulldozers are assigned, the more fire attacks
that will have to be delayed. The second example has a low
degree of overconstrainment; initially, bulldozers have only
been assigned to one fire attack.

Before we can start evaluating and comparing negotiation
strategies, a more complete search of phase 1 needs to be im-
plemented. It is likely that lower cost solutions will be found
once conditional loans have been included. Though the initial
version is simplified, it has shown that the framework gives
struture to the search process, coordinates communication,
and provides a means to study decentralized negotiation.

7.2 Future Work

After we implement a more complete version of the frame-
work, there our several directions are research can take. We
can expand the basic framework. For instance, we can include
an explicit model of time. Because Phoenix is a real time
domain, the agents need to limit the amount of time spent
negotiating and understand how the time limitations restrict
the search process. In addition, the current characterization
of the search process is a simple model. We feel that the
characterization process is an important aspect of distributed
search and a more complex model should be built.

Alternatively, we could expand the two-agent model into
a multi-agent model. The actual negotiation becomes quite
complex and agents would, by necessity, have to be more
sophisticated. For example, if an agent commits resources to
one agent, it must not commit those same resources to another
agent. Furthermore, finding alternatives that minimize the
global loss may not be quite as clear as in the two agent
model.

In addition, the environment can be made more complex
and thus, problem solving would be more difficult. For
instance, bulldozers can be made to use fuel. Hence, agents
would have to include time for bulldozers to get fuel in
the allocation schedules. We can also add uncertainty into
the environment. For example, watchtowers may not have
perfect vision. Finally, environmental conditions can be made
more realistic including such things as rain, wind shifts and
soon.

Multi-fireboss Phoenix is a rich domain for the study
of cooperative planning. Our basic framework allows us
to explore different negotiation strategies and evaluation
functions. We can work in incrementally more difficult
environments and configurations as we learn more about
cooperative planning and decentralized negotiation. Thus,
Phoenix provides an environment for the long term study of
real-time distributed problem solving.

References
[Cohen et ah, 1989] Paul R. Cohen, Michael L. Greenberg,

David M. Hart, and Adele E. Howe. Trial by fire: Understanding
the design requirements for agents in complex environments. AI
Magazine, 10(3):34-^8, 1989.

[Conryetah, 1988] Susan E.Conry, Robert A. Meyer, and Victor R.
Lesser. Multistage negotiation in distributed planning. In Alan H.
Bond and Les Gasser, editors, Readings in Distributed Artificial
Intelligence, pages 367—384. Morgan Kaufman, 1988.

[Durfee et ah, 1989] Edmund H. Durfee, Victor R. Lesser, and
Daniel D. Corkill. Cooperative distributed problem solving. In
Avron B. Barr, Paul R. Cohen, and Edward A. Feigenbaum,
editors, The Handbook of Artificial Intelligence, volume 4, chap-
ter 17, pages 83-147. Addison-Wesley, 1989.

[Kuwabara and Lesser, 1989] Kazuhiro Kuwabara and Victor R.
Lesser. Extended protocol for multistage negotiation. In Ninth
Workshop on Distributed Artificial Intelligence, pages 129-161,
Rosario Resort, Eastsound, Washington, September 1989.

[Sathi and Fox, 1989] Arvind Sathi and Mark S. Fox. Constraint-
directed negotiation of resource «allocations. In Les Gasser and
Michael N. Huhns, editors, Distributed Artificial Intelligence,
volume 2, chapter 8, pages 163-193. Pitman Publishers and
Morgan Kaufmann Publishers, 1989.

[Sycara, 1989] Katia Sycara. Multiagent compromise via negotia-
tion. In Les Gasser and michael N. Huhns, editors, Distributed
Artificial Intelligence, volume 2, chapter 6. pages 119-137.
Pitman Publishers and Morgan Kaufmann Publishers, 1989.

159

Optimization of Multiple-Goal Plans with Limited Interaction*

Dana S. Nau
University of Maryland*

Qiang Yang
University of Waterloo*

James Hendler
University of Maryland^

Abstract

Past planning systems have generally focused
on control structures capable of working in all
domains (domain-independent planning) or on
specific heuristics for a particular applied do-
main (domain-dependent planning). An alter-
nate approach is to abstract the kinds of goal
and subgoal interactions that occur in some
set of related problem domains, and develop
planning techniques capable of performing rel-
atively efficiently in all domains in which no
other kinds of interactions occur. In this paper
we will demonstrate this approach on a particu-
lar formulation of multiple-goal planning prob-
lems.

In particular, we demonstrate that for cases
where multiple-goal planning can be performed
by generating individual separate plans for each
goal independently and then optimizing the
conjunction, we can define a set of limitations
on the allowable interactions between goals
that allow efficient planning to occur where
the restrictions hold. We further argue that
these restrictions are satisfied across a signif-
icant class of planning domains. We present
algorithms which are efficient for special cases
of multiple-goal planning, propose a heuristic

'This work was supported in part by an NSF Presidential
Young Investigator award for Dr. Nau with matching funds
from Texas Instruments and General Motors Research Lab-
oratories, NSF Equipment grant CDA-8811952 for Dr. Nau,
NSF Grant NSFD CDR-88003012 to the University of Mary-
land Systems Research Center, NSF grant IRI-8907890 for
Dr. Nau and Dr. Hendler, ONR grant N00014-88-K-0560 for
Dr. Hendler, and NSERC operating grant OGP0089686 for
Dr. Yang.

'Computer Science Department, Systems Research Cen-
ter, and Institute for Advanced Computer Studies, Univer-
sity of Maryland, College Park, MD 20742, USA. Email:
nau@cs.umd.edu.

JComputer Science Department, University of Water-
loo, Waterloo, Ontario N2L 3G1, Canada. Email:
qyang@watdragon.waterloo.edu.

^Computer Science Department, Systems Research Cen-
ter, and Institute for Advanced Computer Studies, Univer-
sity of Maryland, College Park, MD 20742, USA. Email:
hendler@cs.umd.edu.

search algorithm that performs well in a more
general case, and describe a statistical study
that demonstrates the efficiency of this search
algorithm.

1 Introduction

One of the most widely used strategies in problem-
solving is to decompose a complex problem into sev-
eral simpler parts. This is particularly true in plan-
ning, where a complicated goal is usually decomposed
into two or more subgoals to solve. The reason for this
is that decomposition tends to divide the exponent of
an exponential problem, thus drastically reducing the
total problem-solving effort. Korf [7], for example, has
demonstrated that if the subgoals are independent, then
solving each one in turn will divide both the base and
the exponent of the complexity function by the number
of subgoals.

The major limitation of the above approach is that
although it treats the goals as independent, this condi-
tion does not really hold for most planning problems.
Instead, the goals or subgoals may interact or conflict
with each other.1 Unfortunately, it appears impossi-
ble to achieve both efficiency and generality in handling
goal/subgoal interactions. Domain-independent plan-
ners ([12, 14, 9, 16, 2, 18]) attempt to handle inter-
actions which can occur in many possible forms, and
thus they sacrifice the gains in efficiency which might
possibly be achieved if some of these forms were dis-
allowed. Domain-dependent planners ([l, 6, 8, 4, 5,
10]) can often do better at dealing with goal/subgoal
interactions by imposing domain-dependent restrictions
on the kinds of interactions that are allowed—but the re-
strictions they use are often too restrictive for the plan-
ners to be applicable to other domains.

In this paper, we propose an approach which falls
in between domain-dependent and domain-independent
planning: to abstract the kinds of goal and subgoal in-
teractions that occur in some set of related problem do-
mains, and develop planning techniques capable of per-
forming relatively efficiently in all domains in which no

The most famous example of this is the "Sussman
anomaly," in which solving one goal undoes the indepen-
dently derived solution to the other.

160

other kinds of interactions occur. We will refer to this
approach as limited-interaction planning.

The restrictions which we impose on the goal interac-
tions allow us:to develop relatively efficient techniques
for solving multiple-goal planning problems by develop-
ing separate plans for the individual goals, combining
these plans to produce a naive plan for the conjoined
goal, and performing optimizations to perform to yield
a better combined plan. For example, consider the fol-
lowing situation (based on [17]):

John lives one mile from a bakery and one mile
from a dairy. The two stores are 1.5 miles
apart. John has two goals: to buy bread and
to buy milk.

The approach usually taken is to conjoin this into the
single goal

(GOAL JOHN
(AND (HAVE BREAD) (HAVE MILK)))

Suppose that we have developed separate plans for the
two individual goals (drive to the dairy, buy milk, and
come home; and drive to the bakery, buy bread, and
come home). Taken together, these two plans will solve
the conjoined goal; and the next step is to recognize that
the "come home" step of the first plan can be merged
with the "get there" step of the second, to produce a
better plan.

The restrictions required for our approach to be ap-
plicable are limiting, but not as severely limiting as the
domain-dependent heuristics used by many application-
specific planners. Our goal has been to develop clear
and precise restrictions which delineate a class of plan-
ning problems broad enough to be useful and interesting,
but "well-behaved" enough that planning may be done
with a reasonable degree of efficiency.

This paper presents one set of restrictions satisfying
the above criteria, and argues that these restrictions
are satisfied across a significant class of planning do-
mains. It also discusses the complexity of the resul-
tant planning problems, and demonstrates that limited-
interaction multiple-goal planning can be performed ef-
ficiently under these restrictions.

2 Problem Statement ,
One example of this limited-interaction approach can be
found in multiple goal planning problems. We consider
a goal to be a collection of predicates describing some
desired state of the world. A plan for that goal is a set
of actions, together with a partial ordering on the order
in which the actions must be performed,2 such that if the
actions are performed in any order consistent with the
ordering constraints, the goal will be achieved. Actions
can have costs, and the cost of a plan is the sum of the
costs of the actions. We assume that the plans for the
individual goals have already been found, and we look
at how to combine them into a "global plan".

2In addition to the usual kind of partial ordering con-
straint having the form "action a must be done before action
fc," we also allow constraints specifying that two actions must,
be performed at the same time.

Depending on what kinds of interactions occur among
the actions in the plans, it might or might not be possible
for the plans to be combined. In this paper, we consider
only the following kinds of interactions.

1. Let A be a set of actions {ai,a.2, ■. -,an}. Then
there may be a merged action m(A) capable of ac-
complishing the effects of all actions in A, such that
cost(m(yl)) < J2a€A c°st(a)- In ^is case we saY
that an action-merging interaction occurs, and that
the actions in A are mergeable.
One way in which an action-merging interaction can
occur is if the actions in A contain various sub-
actions which cancel each other out, in which case
the action m{A) would correspond to the set of ac-
tions in A with these sub-actions removed. If the
cost of each action is the sum of the costs of its sub-
actions, then the cost of m(A) is clearly less than
the sum of the costs of the actions in A.
Note that even though a set of actions may be
mergeable, it may not always be possible to merge
that set of actions in a given plan. For example,
suppose a and a' are mergeable, but in the plan P,
a must precede b and b must precede a'. Then a
and a' cannot be merged in P, because this would
require 6 to precede itself.

2. An action-precedence- interaction is an interaction
which requires that an action a in some plan Pi
must occur before an action b in some other plan
Pj. This can occur, for example, if b removes one
of the preconditions necessary for a, and there is no
other action which can be inserted after b to restore
this precondition.
Much previous work in planning has dealt with
deleted-condition interactions, which are not pre-
cisely the same as actino-precedence interactions.
However, there is a significant class of problems
where action-precedence interactions are the only
form of deleted-condition interactions. This class in-
cludes certain kinds of scheduling, database query-
optimization, and automated manufacturing prob-
lems. Examples appear later in this section.

3. Plans for different goals may sometimes contain
some of the same actions. The identical-action in-
teraction occurs when an action.in one plan must
be identical to an action in one of the other plans.

4. Sometimes, two different actions must occur at
the same time. We call such an interaction a
simultaneous-action interaction. This is different
from the identical-action interaction, because these
simultaneous actions are not identical. An exam-
ple would be two robotic hands working together in
order to pick up an object.

The only kinds of interactions which might make
it impossible to combine a set of plans into a global
plan are the action-precedence, identical-action, and
simultaneous-action interactions. The problem of find-
ing out whether or not a set of plans can be combined
into a global plan we call the multiple-goal plan existence
problem.

161

As an added complication, each goal Gi may have sev-
eral alternate plans capable of achieving it, and thus
there may be several different possible identities for the
global plan for G. The least costly plan for d is not
necessarily part of the least costly global plan, because
some more costly plan for Gi may be mergeable in a bet-
ter way with the plans for the other goals. We define the
multiple-goal plan optimization problem to be the prob-
lem of choosing which plan to use for each goal, and
which actions to merge in these plans, so as to produce
the least costly global plan for G.

Problems involving optimizing multiple-goal plans oc-
cur in a number of problem domains, such as automated
manufacturing factory scheduling, and database query
optimization. In these domains, multiple goals must be
achieved within the context of a set of constraints (dead-
lines, machining requirements, etc.) The general class
of all such problems clearly will not fit within the con-
fines of the restrictions specified in this paper (for exam-
ple, we have not yet extended our approach to deal with
scheduling deadlines), but significant and useful classes
of problems can be found which satisfy these restrictions.
Several examples are given below.

Example 1. Consider again the shopping example
given in Section 1, in which John has two goals:
(HAVE BREAD) and (HAVE MILK). To achieve the
(HAVE BREAD) goal, a plan could be:

(GO HOME BAKERY),
(BUY BREAD),
(GO BAKERY HOME)

To achieve the (HAVE MILK) goal, a plan could be:

(GO HOME DAIRY),
(BUY MILK),
(GO DAIRY HOME).

Suppose it takes less time to go between the bakery
and the dairy than it does to go home from the
bakery and then go from home to the dairy. Then
the action (GO BAKERY HOME) in the first plan can
be merged with the action (GO HOME DAIRY) in the
second plan, resulting in a cheaper overall plan:

(GO HOME BAKERY),
(BUY BREAD),
(GO BAKERY DAIRY),
(BUY MILK),
(GO DAIRY HOME).

Example 2. Consider the automated manufacturing
problem of drilling holes in a metal block. Sev-
eral different kinds of hole-creation operations are
available (twist-drilling, spade-drilling, gun-drilling,
etc.), as well as several different kinds of hole-
improvement operations (reaming, boring, grinding,
etc.). Each time one switches to a different kind of
operation or to a hole of a different diameter, one
must put a different cutting tool into the drill. Sup-
pose it is possible to order the operations so that
one can work on holes of the same diameter at the
same time using the same operation. Then these
operations can be merged by omitting the task of
changing the cutting tool. This and several other

similar manufacturing problems are of practical sig-
nificance (see [3, 5]) and, in fact, much of the work in
this paper derives from our ongoing work in develop-
ing a computer system for solving such problems [10,
111
Suppose hole h\ can be made by the plan

Pi: spade-drill h\, then bore h\\

and hole \i2 can be made by either of the plans

TV twist-drill /i2, then bore hi\
P'2: spade-drill /*2, then bore /12;

with cost(P2) < cos^Pj). If ^1 and /»2 have differ-
ent diameters, then the least costly global plan will
be to combine P\ and P2. However, if they have
the same diameter, then a less costly global plan
can be found by combining Pi and P'2, merging the
two spade-drilling operations, and merging the two
boring operations.

Other examples include the problem of finding a
minimum-time schedule for satisfying some set of or-
ders for products to be produced in a job shop, and
the problem of multiple-query optimization in database
systems([l3]). These examples are discussed in more de-
tail in [19].

3 Solving the Problem

3.1 One Plan for Each Goal

Many planning systems stop once they have found a sin-
gle plan for each goal, without trying to find other plans
as well. When there is only one plan for each goal, the
multiple-goal plan existence problem is easy to solve. Let
S be a set of plans containing one plan for each goal.
Unless the interactions prevent the plans in S from be-
ing merged into a global plan, one global plan is just
the set of individual plans in S, with additional ordering
constraints imposed upon the actions in these plans in
order to handle the interactions. This combined plan is
called combine(5), and we have developed an algorithm
to produce it in time 0(n3), where n is the total number
of actions in the plans (see [19]).

The plan combine(S') is not necessarily optimal—and
even when there is only one plan available for each goal,
the multiple-goal plan optimization problem is NP-hard
(see [19]). But to make the problem easier to solve, we
can impose restrictions on how the goals can interact
with each other.

Restriction 1. If S is a set of plans, then the set of
all actions in S may be partitioned into equivalence
classes of actions E\, E?, ■ ■ ■, Ep, such that for ev-
ery set of actions A, the actions in A are merge-
able if and only if they are in the same equivalence
class. We call these equivalence classes mergeabilily
classes.

Restriction 2. If combine(5) exists, then it defines a
partial order over the mergeability classes defined
in Restriction 1; i.e., if P,- and Ej are two distinct
mergeability classes and if combine(5) requires that
some action in P,- occur before some action in Ej,
then combine(5) cannot require that some action in

162

Ej occur before some action in E{. (This does not
rule out the possibility of an action in Ei occurring
immediately before another action in Ei\ in such a
case, the two actions can be merged.)

Restriction 1 is reasonable for a number of problems
(for example, it is already satisfied in the Examples 1
and 2). Restriction 2 is more limiting in general, but
it still allows a number of important problems to be in-
cluded. For instance, Restriction 2 is trivially satisfied
in Example 1 since there is only one possible merge. In
Example 2 it is satisfied in a more interesting way, since
there exists a common sense ordering of the machining
operations.

We have designed an algorithm for finding a least
costly plan, with a worst case time complexity of 0(n3)
(see [19]), where n is the total number of actions in the
plans.

3.2 More than One Plan for Each Goal

For some multi-goal planning problems, it is reasonable
to expect that more than one plan may be found for each
goal. (For example, this is done by the SIPS planning
system for the manufacturing problem discussed in Ex-
ample 2 [lO]). Finding more than one plan for each goal
is more complex computationally than finding just one
plan for each goal, but it is useful because it can lead to
better global plans.

3.2.1 A Heuristic Algorithm with Multiple
Plans per Goal

If more than one plan is available for each G;, then
there may be several different possible identities for the
set of plans S = {P\,Pi, ■ ■ ■, Pg}, and it may be neces-
sary to try several different possibilities for S in order
to find one for which combine(S) exists. This means
that for this problem, the multiple-goal plan existence
and optimization problems are both NP-hard3. Here we
present a heuristic approach for solving these problems,
which uses a best-first branch and bound algorithm to
search through the space of all possibilities for S. The
details of this algorithm are described in [19].

Suppose that we are given the following: (1) for each
goal d, a set of plans T; containing one or more plans for
d, and (2) a list of the interactions among the actions
in all of the plans. In the search, the state space is a
tree. Each state is a set of plans; it contains one plan
for each of the first i goals for some i. The initial state
is the empty set (i.e., 7 = 0). If S is a state containing
plans for the goals Gi, G2,..., Gi, then an immediate
successor of 5 is any set S U {P} such that P is a plan
for Gi+i. A goal state is any state in which plans have
been chosen for all of the goals G\, G2, ■ ■ ■, Gg. The cost
of a state 5 is the cost of the plan obtained by applying
to S the merging algorithm for one plan per goal; i.e.,

cost (5") = cost(merge(combine(5'))).

The search algorithm is a best-first branch-and-bound
search using a lower bound function L to order the mem-
bers of the list of alternatives being considered. If L(S) is

a lower bound on the costs of all successors of S that are
goal states, then the algorithm is guaranteed to return
the optimal solution. We now discuss various possible
functions to use for L. To do this, we temporarily as-
sume the following property: that merging plans for two
different goals always results in a plan at least as expen-
sive as either of the two original plans. In other words,
if P and Q are plans for two distinct goals, then

cost(merge(combine(P, Q)))
> max(cost(merge(P)), cost(merge(Q))). (1)

In [19], we discuss what happens when this property is
not satisfied.

If Eq. (1) is satisfied, then clearly L0(S) = cost(S) is
a lower bound on the cost of any successor of S (this
would correspond to using h = 0 in the A* search al-
gorithm). However, a better lower bound can be found
as follows. We associate with each state S some sets
Hi(S),H2(S),.. .,Hg(S), which are computed as fol-
lows. For the initial state (5 = 0), for j = 1,2,..., g,

Hj(S) = {all actions in P\P is a plan for Gj}. (2)

Let S be any state at level i — 1, and let S' be the state
formed from S by including a plan Pi for the goal G,\
Then, for j = i + 1,..., g,

Hj(S') = {Q'\QeHj(S)}, (3)

3However, polynomial-time solutions do exist for several
special cases [19].

where Q' is Q minus each action that falls into the same
mergeability class as some action in P;. Thus each mem-
ber of Hj(S') is the set of all actions a in some plan for
Gj such that a cannot be merged with any action in S'.

If Hi(S) and Hj(S) are as defined in Eqs. (2) and
(3), then we define them to be strongly connected if for
some s € Hi(S) and q 6 Hj(S), s and q contain some
actions that are mergeable. H{(S) and Hj(S) are con-
nected if they are strongly connected, or if there is a
set Hk(S) such that P;(S) is connected to Hk(S) and
Hk(S) is strongly connected to Hj(S). Connectedness is
an equivalence relation, so let Ci(S), C^S),..., be the
equivalence classes it induces over the set {Hj(S')\j =
i + 1,.. . ,<?}• We refer to these equivalence classes as
connectedness classes.

Suppose S" is an intermediate state during the search,
at level i of the search tree. For each connectedness class
Ci(S'), let

Lsi(S')
= max{min{cost(Q) | Q e Hj(S')} | Hj(S') G G:(5')},

(4)
where the min of an empty set is taken to be 0. The new
lower-bound function is defined to be

r

L3(S') = cost(merge(combine(S"))) + J2 Lzi(S')- (5)
i = l

It can easily be shown that L3 is admissible.
Now we consider the computational complexity for

evaluating L3. Suppose that state 5" was formed
by adding some plan Pi to S. The sets Hj{S') can
be obtained according to Eq. (3). Since Hi(S') and
Hj(S') are subsets of Hi(S) and Hj(S), respectively,

163

Hi(S') and Hj(S') cannot be connected unless H{(S)
and Hj(S) are connected. Thus the connectedness
classes Ci(S'),C2(S'),..., can be computed by start-
ing splitting Ci(S),C?(S),..., into subclasses. Let h =
ma,x(\Hj\), v = max(\V\), and u = max(|C,-|), where
V € Hj, Hj G d, i = 1,..., r, . Then computing L3 for
state S' takes time 0(r(u3(hv)2 + A|P,-|)), where Pi is
the plan newly included into 5'.

3.2.2 Experimental Results with Multiple
Plans per Goal

In the worst case, the search algorithm takes expo-
nential time. Since the multiple-goal plan optimization
problem is NP-hard, this is not surprising. What would
be more interesting is how well the search algorithm does
on the average. Since it is hard to characterize what the
"average case" is, we restricted ourselves to doing empir-
ical performance evaluation on a class of problems that
seemed to us to be "reasonable."

We conducted experiments with the algorithm for
planning in the automated manufacturing domain. The
problem to be solved was to find a least-cost plan for
making several holes in a piece of metal stock, as de-
scribed in Example 2. For this experiment, we ran-
domly generated specifications for 100 machined holes,
randomly varying various hole characteristics such as
depth, diameter, surface finish, locational tolerance, etc.
We used these holes as input to our EFHA process plan-
ning system [15], telling it to produce at most 3 plans for
each hole. EFHA found plans for 81 of the holes (for the
other 19 the machining requirements were so stringent
that EFHA could not produce any plans for them). The
distributions of the hole characteristics were chosen to
give a wide selection of plans, not very many "obviously
best" plans, lots of opportunities exist to merge actions
in different plans, and the necessity of making tradeoffs
in choosing which plans to merge.

The results of the experiments are shown in Table 1.
Each entry in the table represents an average result over
450 trials. Each trial was generated by randomly choos-
ing n of the 81 holes (duplicate choices were allowed), in-
voking the search algorithm on the plans for these holes
using the lower bounding function L3, and recording how
many nodes it expanded in the search space. The total
cost of each plan was taken to be the sum of the costs
of the machining operations in the plan and the costs
for changing tools. The average number of nodes in the
search space (column 2 of the table), the average num-
ber of nodes expanded by the algorithm (column 3 of
the table), and the average fraction of the search space
expanded by the algorithm (the quotient of columns
2 and 3) closely match the functions y = 1.26(2.89"),
y = 1.24(1.35"), and y = 1.03(0.469"), respectively.

We regard the performance of the algorithm as quite
good—especially since the test problem was chosen to
be significantly more difficult than the kind of prob-
lem that would arise in real-world process planning. In
real designs, designers would normally specify holes in a
much more regular manner than our random choice of
holes, making the merging task much easier. For exam-
ple, when merging real-world process plans, we doubt

Table 1: Experimental results for the search algorithm
using L3, on the process plans for some randomly chosen
holes.

Number Nodes in the Nodes expanded
of holes n search space

1 2 1
2 10 2
3 34 3
4 98 4
5 284 6
6 852 9
7 2372 12
8 6620 16
9 19480 22

10 54679 28
11 153467 38
12 437460 51
13 1268443 61
14 3555297 86
15 9655279 110
16 29600354 170
17 80748443 223
18 250592571 250

that there would be many of the mergeability tradeoffs
mentioned earlier; and without such tradeoffs, the com-
plexity of the algorithm is polynomial rather than expo-
nential.

4 Conclusion

In this paper, we have proposed an approach which falls
in between domain-dependent and domain-independent
planning: to abstract the kinds of goal and subgoal in-
teractions that occur in some set of related problem do-
mains, and develop planning techniques capable of per-
forming relatively efficiently in all domains in which no
other kinds of interactions occur. This paper has con-
centrated on a particular example of limited-interaction
planning: how to do plan optimization in the presence
of a particular set of limitations on goal/subgoal inter-
actions. The results are summarized below.

The multiple-goal plan optimization problem is NP-
hard. However, by imposing some restrictions that are
reasonable for some problem domains, the problem can
be made computationally easy when there is only one
plan available for each goal. If each goal has multiple
alternate plans, the problem is still NP-hard even with
the restrictions, but in this case there is a good heuristic
approach for solving the problem.

We regard this work as a first step, which demon-
strates the potential improvements to planning that can
be found by exploiting restrictions on allowable inter-
actions. In our future work, we would like to explore
natural extensions of our approach for creating plans
rather than just optimizing existing plans. In addition, it
may be possible to develop similar techniques for use in
planning or plan optimization, in cases where the inter-
actions sastisfy restrictions other than the specific ones

164

described in this paper. As we continue our research
into more general forms of limited-interaction planning,
we are convinced that this approach has potential for
significantly improving the performance of planning sys-
tems across a number of additional domains.

References

[1] T.C. Baker, J.R. Greenwood "Star: an environ-
ment for development and execution of knowledge-
based planning applications" Proceedings DARPA
Knowledge-based Planning Workshop, Dec. 1987.

[2] D. Chapman, "Planning for Conjunctive Goals,"
Artificial Intelligence (32), 1987, 333-377.

[3] T. C. Chang and R. A. Wysk, An Introduction
to Automated Process Planning Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1985.

[4] M. R. Cutkoski and J. M. Tenenbaum, "CAD/CAM
Integration Through Concurrent Process and Prod-
uct Design," Proc. Symposium on Integrated and
Intelligent Manufacturing at ASME Winter Annual
Meeting, 1987, pp. 1-10.

[5] C. Hayes, "Using Goal Interactions to Guide Plan-
ning," Proc. AAAI-87, 1987, 224-228.

[6] Garvey, T. and Wesley, L. "Knowledge-based
Helicopter Route Planning" Proceedings DARPA
Knowledge-based Planning Workshop, Dec. 1987.

[7] Korf, R.E., "Planning as Search: A Quantitative
Approach," Artificial Intelligence (33), 1987, 65-88.

[8] Linden, T., and Owre, S. "Transformational Syn-
thesis Applied to ALV Mission Planning" Proceed-
ings DARPA Knowledge-based Planning Workshop,
Dec. 1987.

[9] D. McDermott Flexibility and Efficiency in a Com-
puter Program for Designing Circuits, AI Labora-
tory, Massachusetts Institute of Technology, Tech-
nical Report AI-TR-402, 1977.

[10] D. S. Nau, "Automated Process Planning Using
Hierarchical Abstraction," Award winner, Texas
Instruments 1987 Call for Papers on Industrial
Automation, Texas Instruments Technical Journal,
Winter 1987, 39-46.

[11] D. S. Nau, R. Karinthi, G. Vanecek, and Q. Yang,
"Integrating AI and Solid Modeling for Design
and Process Planning," Proc. Second IFIP Work-
ing Group 5.2 Workshop on Intelligent CAD, Cam-
bridge, England, Sept. 1988.

[12] E. D. Sacerdoti, "A Structure of Plans and Behav-
ior," American Elsevier, New York, 1977.

[13] T. Sellis, "Multiple-Query Optimization," ACM
Transactions on Database Systems (13:1), March
1988, 23-52.

[14] A. Täte, "Generating Project Networks," Proc. IJ-
CAI, 1977, 888-893.

[15] S. Thompson, "Environment for Hierarchical Ab-
straction: A User Guide," Tech. Report, Computer
Science Department, University of Maryland, Col-
lege Park, 1989.

[16] S. A. Vere, "Planning in Time: Windows and Du-
rations for Activities and Goals," IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
(PAMI-5:3), 1983, 246-247.

[17] R. Wilensky, Planning and Understanding,
Addison-Wesley: Reading, Massachusetts, 1983.

[18] D. Wilkins, "Domain-independent Planning: Rep-
resentation and Plan Generation," Artificial Intel-
ligence (22), 1984.

[19] Q. Yang, D. S. Nau, and J. Hendler, "Exploiting
Limited Interactions in Plan Optimization," sub-
mitted for publication, 1990. Available as Tech. Re-
port CS-TR-2411, Computer Science Department,
University of Maryland, College Park, 1990.

165

Deferred Planning and Sensor Use*

Duane Olawsky and Maria Gini
Computer Science Dept., University of Minnesota

4-192 EE/CSci Building
200 Union Street SE

Minneapolis, MN 55455
olawsky@umn-cs.cs.umn.edu

gini@umn-cs.cs.umn.edu

Abstract
Traditional approaches to task planning assume
the planner has access to all of the world in-
formation needed to develop a complete, cor-
rect plan—a plan which can then be executed
in its entirety by a robot. We consider prob-
lems where some crucial information is miss-
ing at plan time but can be obtained from sen-
sors during execution. We discuss the solution
of these problems through deferred planning
(i.e., by deferring specific planning steps un-
til more complete information is available and
then restarting the planner). We also present
early results of a comparative study of strate-
gies for deciding which plan steps to defer.

1 Introduction
Traditional approaches to task planning assume that the
planner has access to all of the world information needed
to develop a complete, correct plan—a plan which can
then be executed in its entirety by a robot. Unfortu-
nately, this information about the world may not always
be available at plan time. This is particularly true when
we consider autonomous robots that must operate under
general goals over extended periods in unpredicatable,
and changing environments. When crucial information
is missing at plan time, it may be impossible to find
a complete plan without obtaining additional informa-
tion. Fortunately, this information is often available at
execution time through the use of sensors. The problem,
then, is how to integrate execution time sensory data into
the planning process which, in traditional approaches, is
completed before execution begins.

The ability to integrate sensory data into the plan-
ning process is important. First, it provides greater ro-
bustness for autonomous robots. With this capability a
robot could complete novel variations of tasks by real-
izing what information it knows and what it must find
out through sensor use. It could then obtain the nec-
essary information and perform the task. In this way

the robot could work around its incomplete knowledge,
filling in the gaps, to solve what would otherwise be an
unsolvable problem. Second, this integration is helpful
in robot recovery from execution errors and unexpected
events. In these cases, it is likely that significant world
information is missing (or at least in doubt). A robot
controller could use this ability to collect the required
information and then finish its task.

There are two reasons why it is difficult to integrate
sensory data into the planning process. The first has
already been mentioned—the planning process is tradi-
tionally completed before execution (and therefore sen-
sor use) begins. The second difficulty is that the infor-
mation obtained from sensors can have a dramatic ef-
fect on the shape of the plan. To make our discussion
more concrete we will use the following tool box domain
throughout this paper.

The robot is in a room with n tool boxes <i,<2i ■■ -tn,
each containing wrenches and bolts of various sizes.
The robot knows the initial locations of the wrenches
and bolts. Bolts are identified by a unique name, and
wrenches are identified by size (assume one wrench per
size). The robot has been instructed to close and bolt
one or more tool boxes with particular bolts. To perform
each bolting operation, the robot must use a wrench of
a size that matches the bolt. A sensor is available that
can classify bolts by the size (e.g., a number from 1 to
10). For simplicity, the bolts sizes are indicated along
the same scale as the wrench sizes. We also assume the
robot has a tool belt into which it can put an unlimited
number of bolts and wrenches.1

Figure 1 describes a sample problem instance. There
are two tool boxes, s and t. Box t is to be bolted with
bolt bt. Initially, the robot is at box t. There are two
wrenches available, one of size 4 and another of size 5.
The correct action sequence will vary depending upon
which tool box contains the needed wrench, and this in
turn depends on the size of bt. The plan when the wrench
is in s will differ from the plan when the wrench is in t.

'This work has been funded by the NSF under grants
NSF/DMC-8518735 and NSF/CCR-8715220.

1We are not concerned here with the arm-empty condi-
tions used to define the blocks world. Our main goal in defin-
ing this domain is to study how sensor use can be interleaved
with planning.

166

Initial State:
((at t)(bolt-not-inserted s)(bolt-not-inserted t)
(open a) (closed t)
(wrench-in-tbox 4 £)(wrench-in-tbox 5 a)
(bolt-in-tbox bt t))

Goal State:
((bolted t bt))

Figure 1: Sample Problem.

(Open-Tbox t)
(Get-Bolt bt)
(Get-Wrench 4)
(Close-Tbox t)
(Insert-Bolt bt t)
(Bolt t bt)

Figure 2: Sample plan when bt has size 4.

Sample action sequences are shown in Figures 2 and 3.
If the planner knows the size of bt, it can find a com-

plete plan before execution begins. Otherwise, the robot
must use its sensors during execution to obtain the bolt
size, and this information then determines the further
actions that are necessary to achieve the end goals.

2 Why Use Conventional Planning

Planning is desirable in robotics because it attempts to
map out future activities of the robot so that the robot
avoids undesirable situations during plan execution. Al-
though planning systems are known to suffer from com-
putational complexity, with well crafted heuristics they
have proven to be useful even for complex tasks [Wilkins,
1989].

A well recognized problem with planning is the inabil-
ity of most planners to deal with the inexactness and
noise of the real world. Several solutions have been pro-
posed including the following:

• eliminating planning altogether in favor of reactive
planning [Brooks, 1986] or situated systems [Agre
and Chapman, 1987, Kaelbling, 1988],

(Open-Tbox t)
(Get-Bolt bt)
(Close-Tbox t)
(Insert-Bolt bt t)
(Goto a)
(Get-Wrench 5)
(Goto t)
(Bolt t bt)

Figure 3: Sample plan when bt has size 5.

• combining reactivity and planning [Georgeff and
Lansky, 1987, Drummond, 1989, Hayes-Roth, 1987,
Nilsson, 1989],

• preplanning for every contingency [Schoppers,
1987],

• verifying the executability of plans and adding sens-
ing whenever needed to reduce the uncertainty
[Brooks, 1982, Doyle, Atkinson and Doshi, 1986],

• interleaving planning with execution [Durfee and
Lesser, 1989, Turney and Segre, 1989, Dean and
Boddy, 1988, Hsu, 1990, McDermott, 1978].

Reactive systems, which are often proposed as a solution
to the problems with conventional planning, suffer from
being myopic. They tend to react to local changes, and
have a short-term view of the problem they are trying
to solve.

We are interested in exploring how to use conventional
planning in domains in which the plan-time information
is incomplete. This includes exploring strategies to max-
imize the chances of producing a plan that, despite in-
complete knowledge, avoids premature actions.

3 Adapting Conventional Planning
Techniques

The next question is how best to use conventional plan-
ning techniques to solve the problems we are considering.
Is it necessary to extend these techniques in some way,
or can we just define new operators at the correct level
of abstraction that will allow a conventional planner to
handle these problems? We contend that extensions are
necessary. To demonstrate this, we attempt to define
the required operators and point out the difficulties we
encounter.

We must define the operators so that the planner need
not be explicitly aware of the fact that sensors are be-
ing used. Thus, no sensor processes will be available to
the planner. Assume that the size of some bolt B is un-
known. We begin by collapsing two separate subgoals
of the BOLT process with the properties (Boltsize B ?z)
and (Have-Wrench ?z), into a single goal with property
(Have-Wrench-for-Bolt B). In this way we hide the size
of the bolt and the identity of the matching wrench. Let
this new goal be achieved by the process (Get-Wrench-
For-Bolt B). It is this process upon which we must focus.
What effect does this process have on the world state.
At the very least, after executing this process, the robot
will have a wrench that it did not have before, and that
wrench will no longer be in any tool box. (It is also likely
that the robot will be in a different location.) The cru-
cial observation is that the planner cannot know which
wrench has been removed from a tool box. The iden-
tity of that wrench is determined entirely by execution-
time sensory data that is not available to the planner.
Thus, from the planner's perspective, (Get-Wrench-For-
Bolt B) has nondeterministic effects, and this is problem-
atic in conventional planners. If we allow such nondeter-
ministic effects, the planner will have difficulty solving
other goals that require obtaining a wrench since it no
longer knows the location of all of the wrenches.

167

It thus appears necessary to extend conventional plan-
ning techniques to deal with the class of problems we are
considering. There are three basic ways to do this:

1. Find a complete plan (or set of plans) that will work
for all possible values of the relevant sensor reading.
That is, plan for all contingencies (This is similar to
universal planning [Schoppers, 1987] and to "tree
plans" [Nilsson, 1989]).

2. Find a single complete plan based on an assumed
value of the sensor reading. This plan will work
(without modification) only if the assumption is cor-
rect.

3. Defer planning decisions that depend on sensor
readings until those readings are available, then con-
tinue planning with the new information.

Which of these strategies is appropriate depends on ex-
ternal considerations such as the criticality of mistakes
(i.e., Are they reversible? Is reversal costly?), the com-
plexity of the domain, and the acceptability of suspend-
ing execution to do more planning.

3.1 The Three Approaches Compared
Planning all paths is often expensive and difficult and
should be avoided if possible. If there are 20 different
sizes of bolt, the planner might need to find a slightly
different plan for each of the 20 possible sensor values.
Matters are even worse in the likely event that more than
one sensor reading is required. If the size of two different
bolts must be determined by sensor readings from 20
possible values, there would be 400 combinations, each of
which might correspond to a slightly different plan. The
amount of planning grows exponentially in the number of
readings that are needed. Although it might be possible
to represent these 400 possible plans efficiently through
the use of disjunctive nodes in the plan network, this
does not really solve the problem. To do complete pre-
planning, the planner must still analyze the potential
interactions (e.g., conflicts) that arise when any of the
400 possible combinations occurs. Despite the expense
of this approach, there are still cases where it might be
appropriate if it is computationally feasible:

• The same plan will be used many times with poten-
tially different sensor values in each execution. Note
that the same initial state must be satisfied in each
use of the plan. In this case the cost of the plan is
justified by its long-term usefulness.

• Time constraints during execution make it undesir-
able or impossible to do any execution-time plan-
ning (either deferred planning or replanning).

• The criticality of errors in the plan is so high that
the cost of extra planning is outweighed by the cost
of a mistake.

Unfortunately, even with all the planning effort asso-
ciated with this approach, most execution-time errors
and unexpected events are not anticipated. Unless these
problems can be anticipated and handled in the plan,
replanning may still be necessary. Due to the size and
complexity of a plan in this approach, replanning to cor-
rect these problems could be difficult and costly.

Although approach (2) is less expensive, there is al-
ways a possibility that the assumptions made were in-
correct, and the plan is therefore invalid. When this
happens, replanning is necessary. Parts of the original
plan will likely be discarded, and as a result, some plan-
ning effort is wasted. It is also possible that, due to the
assumptions, some action is taken prematurely and must
later be undone. If the premature action is irreversible, it
might be impossible to solve the problem. Approach (2)
is most appropriate when the following are all true:

• It is acceptable to have the robot stop during exe-
cution while replanning occurs.

• The criticality of plan errors is low. That is, actions
are reversible, or the cost of failure is small (e.g.,
the robot can throw away an inexpensive part and
start over with a new one).

• Some particular value for a sensor reading is more
likely than any of the other possible values. In this
case the planner has something upon which to base
its guess. The odds are more in its favor.

One advantage of this approach over the deferred plan-
ning approach discussed below is that, when the planner
guesses correctly, no execution-time planning is needed.
However, if the planner guesses incorrectly, the time
needed for replanning will probably be longer than the
time needed to continue planning in a deferred planner
since the replanner usually must remove parts of the orig-
inal plan.

In the same vein, probabilistic reasoning has been
proposed to reduce the complexity of planning. For
instance, when expectations are available concerning
how long propositions are likely to persist, probabilistic
predictions can be made [Dean and Kanazawa, 1988].
Drummond [Drummond and Bresina, 1990] proposes an
algorithm that maximizes the probability of satisfying
a goal. The algorithm achieves a balance, in terms of
robustness, between triangle tables [Fikes and Nilsson,
1971] and universal plans [Schoppers, 1987].

With the deferred planning approach, the planner
avoids doing a lot of work that will later be discarded.
Instead, it completes only those portions of the plan for
which it has enough information at plan-time. Since the
planner, in its initial phase, does not find a complete
plan, there is the possibility that important dependen-
cies and constraints in the plan will be missed. In this
case some action might be taken prematurely which must
later be undone. As with the replanning approach, if the
premature action is irreversible, it might be impossible
to solve the problem. Thus, care must be taken to detect
these dependencies and constraints as early as possible
before the robot has taken too many actions. Deferred
planning is appropriate when the following are true:

• It is acceptable to have the robot stop during exe-
cution while planning continues.

• The criticality of plan errors is low. That is, actions
are reversible, or the cost of failure is small.

It is the deferred planning approach that we are study-
ing. The central problem for this approach is how to
avoid premature actions that must be reversed (or even

168

worse, that cannot be reversed). In Section 3.2 we will
describe how we have implemented this approach, and
integrated it with an execution simulator. In Section 3.3
we will give an example of how this system works. Sec-
tion 4 outlines a number of strategies for deciding which
plan goals to defer.

3.2 A Deferring Planner

The basis of our system is an agenda-controlled plan-
ner called BUMP (Basic University of Minnesota Plan-
ner). BUMP uses STRIPS-style operators [Fikes and
Nilsson, 1971] to build a plan network consisting of goal
nodes and process nodes. At present, BUMP is very
basic in that it does not do hierarchical planning [Sac-
erdoti, 1974], nor does it use special methods to reason
about resources [Wilkins, 1988]. It does maintain links
from process nodes to goal nodes that record the pur-
poses of each process node in the plan. The other major
component is the EXECUTION CONTROLLER (EC). This
controller is at the top-level in our system. It invokes
BUMP to get solutions (plans) for particular problems,
and it then controls the execution (in simulation) of the
steps within those plans. It can also invoke the planner
on a partially specified plan, asking BUMP to finish it.
A system diagram is shown in Figure 4.

To solve the problems with which we are dealing, the
BUMP plan must contain requests for sensor readings
that obtain the information that the planner is miss-
ing. This is accomplished by adding a new type of pro-
cess node to the planning system. A SENSOR PROCESS

NODE constitutes an instruction to the execution con-
troller (and hence the robot) to take a particular sensor
reading at a particular point in the execution. We as-
sume that the results of a sensor process can, at the plan-
ner's level of abstraction, be described by one or more
logical predications.2 This allows us to represent sensor
processes in much the same way as non-sensor processes.
That is, they are described by three lists of predications:

Add List — A list of predications describing the prop-
erties asserted as a result of the process. At least
one of these will be the new information obtained
by the sensor. This list can also specify side effects
of the sensor process.

Delete List — A list of predications for properties de-
nied as a result of the process. (This would likely
include things that are changed in the world as side
effects of sensing.)

Precondition List — Properties that must be true in
order to use the sensor. This list will be used to
generate the set-up actions for the sensor.

Since sensor processes are explicitly represented in the
plan in much the same way as all other processes, their

How sensor data is converted into such predications is a
nontrivial problem that is beyond the scope of this paper. We
do however assume that the conversion would be based upon
some hierarchical representation of sensor data which allows
that data to be represented at multiple levels of abstraction
[Henderson and Shilcrat, 1944]. The planner would work at
one of the highest levels.

side effects as well as their set-up actions can be dealt
with by BUMP.

A sensor process is used (like any other process node
in a BUMP plan) to achieve one or more of the proper-
ties on its Add List. For example, to solve a goal node G
for property (Boltsize B ?z), BUMP can insert a sensor
process node (SENSE-BOLTSIZE B) into the plan. This
sensor process node, when executed, will assert that the
bolt B has some particular size as determined by the
relevant sensor or sensors. The node could for example
assert the property (Boltsize B #4). If some property
matching (Boltsize B ?z) is already asserted, either in
the initial state or by some process node that can occur
before G, then the planner can solve G by performing
the appropriate linking operation. No additional sensor
process node is needed. Thus, the planner can easily
recognize what information it already has available and
what information must be obtained from sensors. Fur-
thermore, it performs this reasoning through the same
mechanisms that determine whether to use a helpful in-
teraction or an operator to solve a goal. While plan-
ning, BUMP uses special dummy constants in place of
the values that will come from sensor readings. Dur-
ing the initial planning phase, the plan variable ?z from
(Boltsize B ?z) will be bound to one of these constants.
Any subsequently attempted plan goals that refer to one
of these constants will be deferred until the executor has
obtained the reading.

When all goals in the plan network have been either
solved or deferred, BUMP returns the plan at its cur-
rent state of completion. The execution controller then
begins executing the partial plan, preferring sensor pro-
cesses over other parallel processes since the former in-
crease the robot's information about the world. This
preference also extends to the set-up actions of sensor
processes and to any other process nodes that are con-
strained to occur before a sensor process. This strategy
is intended to obtain the sensory data at the earliest pos-
sible point in execution in order to avoid the problems
caused by premature actions. Once a plan-requested sen-
sor reading is obtained, BUMP is immediately restarted
with the new information which it can use to make addi-
tional plan decisions. BUMP returns a new (perhaps still
partial) plan to the executor. This cycle continues until
all the necessary sensing has been done and BUMP has
found a complete plan. The execution controller then
executes the remainder of that plan.

3.3 An Example

To clarify this process we present an example. Con-
sider the problem shown in Figure 1. A sample trace
for this problem is shown in Figure 5. After an initial
planning phase, BUMP halts with one Sense-Boltsize
process in the plan and with the corresponding Have-
Wrench goal deferred. EC begins the execution of the
partial plan. The first two operations are required as
preparatory steps for the third operation (Sense-Boltsize
B). Since this solution is done in simulation, EC asks
the user for a sensor reading. In this case, 4 is entered.
BUMP is now restarted with this new information and
this time produces a complete plan. The remainder of

169

Problem Description

Plan
Execution
Controller

Commands

Sensor
Robot

Readings

"Start"
Sensor Readings

BUMP -H Sensor Constants

Figure 4: System Architecture.

<Initial Planning...>

Executing #<PR0CESS19> (Open-Tbox T)
Executing #<PR0CESS15> (Get-Bolt Bt)
Executing #<SENS0R-PR0CESS11> (Sense-Boltsize Bt)
Enter the size of bolt Bt: 4

<More Planning...>

Executing #<PR0CESS33> (Get-Wrench 4)
Executing #<PR0CESS28> (Close-Tbox T)
Executing #<PR0CESS23> (Insert-Bolt Bt T)
Executing #<PR0CESS5> (Bolt T Bt)

Figure 5: Sample run for boltsize = 4.

170

the operations are now executed and the task completed.

4 Deferral Strategies

The primary question in deferred planning is deciding
what goals to defer. At the very least we want to defer
the goals that are defined in terms of a sensor reading
since we do not know the complete goal statement until
the reading has been obtained. For example, we cannot
formulate a plan or solve the goal (Have-Wrench ?s) un-
til we know the value of ?s, the size of the wrench we
must retrieve. We may not know this until we have used
sensors to determine the size of some bolt.

Is it advantageous to defer additional goals? That is,
should we do as much preplanning as possible, or should
we be more conservative? To study this question, we
have defined two distinct deferral strategies:

Continue Elsewhere - In this strategy we defer only
those goals that are denned in terms of data that
must be obtained through a sensor reading. This
strategy preplans as much as possible.

Stop and Execute - As soon as BUMP reaches a goal
defined in terms of a sensor reading, it stops, de-
ferring all remaining goals until the sensor reading
has been obtained. This approach is "maximally
conservative".

The Stop and Execute strategy does less preplanning
than the Continue Elsewhere strategy. This has the dis-
advantage that crucial plan dependencies can be missed,
and as a result, actions can be taken prematurely. On
the other hand the planner will do significantly less plan-
ning with incomplete information. This tends to de-
crease the number of premature actions. Furthermore,
Stop and Execute respects the order in which the planner
wants to attack goals (which is, of course, independent of
the order in which they are achieved during execution),
but Continue Elsewhere does not. This is important for
BUMP since it orders goals heuristically, and it is likely
to be important for other planners as well.

We are currently conducting a study on the perfor-
mance of these two strategies. We have conducted actual
system tests for a set of 32 problems defined for a 2-box
version of the tool box world. In this version there are
two boxes s and t, and they are to be bolted shut with
bolts 64 and bt, respectively. Initially, the robot is at tool
box s. Without loss of generality, we assume 6, has size
4 and bt has size 5 (we can rename sizes to make this
true), but the planner does not know this and must add
sensor processes to the plan. The problem space is de-
fined as in Figure 6. Note that since there are two boxes
that must be closed, the planner must be careful not to
bolt a box containing a wrench that will be needed later.

sIt should be noted that goals such as (Boltsize B ?s) are
not treated in this way. When this goal is first encountered
BUMP does not immediately know that a sensor reading is
needed. Recall that when the bolt size is already known, a
sensor process is not added to the plan. If the bolt size is
unknown, a sensor process is added, ?s is bound to a sensor
constant, and any further references to ?s will be recognized
as a reference to a sensor reading.

Initial State: (Bolt-in-tbox bx x)
A -1 (Bolt-in-tbox by x)
A (Wrench-in-tbox 4 x)
A (Wrench-in-tbox 5 x)
A (At s)

Goal State: (Bolted x 6I)(Bolted y by)

Figure 7: 2-Box Study "Stop and Execute" Failure
Cases.

Initial State: (Bolt-in-tbox 6, s)
A -1 (Bolt-in-tbox bt s)
A (Wrench-in-tbox 5 s)
A (At 5)

Goal State: (Bolted x 6s)(Bolted y by)

Figure 8: 2-Box Study "Continue Elsewhere" Failure
Cases.

We consider such a case to be a failure since significant
actions are taken prematurely.4

As a control we tested BUMP with complete infor-
mation on the 32 problems. It produced a correct plan
with no failures for every problem. The Stop and Exe-
cute strategy fails on two of the 32 cases, and Continue
Elsewhere fails on four of them. The failure cases are
described in Figures 7 and 8. The variables x and
y range over the set {s, i}. The Continue Elsewhere
failures occur because BUMP follows the rather natural
heuristic of doing everything it can at its initial location
before going somewhere else. In cases where bt is not in
s, the initial plan will instruct the robot to bolt s before
sensing bt. When the size of bt is finally determined, its
wrench may have already been bolted inside s. BUMP
has ordered these actions prematurely and incorrectly
since insufficient information was available at the time.

We have also experimented with a modified Continue
Elsewhere strategy called Sense Before Closing. In this
strategy, the planner attempts to order all sensor pro-
cesses before all Close-Tbox processes. (This ordering is
not always possible because of other ordering constraints
that may already be in the plan.) This strategy per-
formed as well as Stop and Execute (see Figure 9 for the
failure cases), however, it is not as general-purpose as
the first two strategies. It is applicable only in domains
where we want all sensor operations to precede all box
closings. This would not be the case if the robot were
requested to bolt a box, move to another room, and then
do more sensing there.

*In this case the mistake is easily reversed. If the robot
were welding the boxes shut, the recovery would be more
difficult.

171

goal-ordering e {[(bolted s 6,)(bolted t bt)], [(bolted t 6t)(bolted s b,)]}
6, location £ {«.*}
bt location £ {»,*}

wrench 4 location e {s,t}
wrench 5 location e {s,t}

Figure 6: 2-Box Study Problem Space.

Initial State: (Bolt-in-tbox b, s)
A -i (Bolt-in-tbox bt s)
A (Wrench-in-tbox 5 s)
A (At s)

Goal State: (Bolted t 6t)(Bolted s bt)

Figure 9: 2-Box Study "Sense Before Closing" Failure
Cases.

5 Discussion

Interleaving of planning and execution has been used
extensively. For instance, in the work of [Durfee and
Lesser, 1989] the planner uses a blackboard based prob-
lem solver to abstract sensory data. This enables the
planner to approximate the cost of developing potential
partial solutions to achieve long-term goals. Detailed
plans are created only for the immediate future using
the sketch of the entire plan. By keeping the long-term
goals the planner bases its short-term details on a long-
term view.

Dean and Boddy [1988] propose a class of algorithms
that they call "anytime" algorithms. These algorithms
can be interrupted at any point, returning a partial plan.
The quality of this plan depends upon the time used to
compute it.

We have decided to investigate a more limited class of
problems. We are interested in proposing and evaluating
strategies to be used when some information is missing
at planning time and needs to be obtained with sensors.
In our approach planner decisions that depend on sen-
sory information are deferred. As soon as sensory data
become available the planning activity is resumed.

Doyle [Doyle, Atkinson and Doshi, 1986] uses sensors
to verify the execution of a plan. The sensor requests are
generated after the plan has been produced by examin-
ing the preconditions and postconditions of each action
in the plan. Domain dependent verification operators
map assertions to perception requests and expectations.
Since perception requests are actions that could have
preconditions, the planner is used to modify the original
plan to guarantee that the preconditions are established.
If the expectations are not satisfied by the perception the
plan is repaired using predefined fixes. The entire pro-
cess is done before executing the plan.

Our work has been inspired, in part, by the recent
work of [Turney and Segre, 1989]. The system they
present, SEPIA, alternates between improvising and

planning. It addresses sensing errors, control errors, and
modeling errors. Their example is a traveling salesper-
son problem with time constraints at every place to be
visited. The set of rules suitable for firing contains rule
instances whose preconditions and constraints have been
met, but whose sensor requests have yet to be evaluated.
Since sensing is assumed to be expensive, the system fires
the rule instance with the fewest sensor requests first.
The cost of a rule is proportional to the number of sen-
sor requests it contains. The planner is interrupted when
the cumulative cost exceeds its budget. The quality of
the heuristic improvisation strategy has the most signif-
icant effect on the quality of the solution (both with the
simple improvisation strategy and with SEPIA). This
seems to suggest that it is more important to develop
good heuristics than to develop a highly sophisticated
planner.

Dean [1987] recognized the complexity of solving re-
alistic planning problems and suggested heuristic ap-
proaches to decompose a task into independent subtasks
that are easier to solve. He suggested using a library of
strategies applicable to a set of tasks instead of a library
of plans.

The need to plan with incomplete information raises
interesting theoretical issues in finding an appropriate
balance between the time spent to plan and the time
spent to get additional information. Hsu [1990] proposes
a method for planning with incomplete information. She
shows that if the information available to the planner is
not sufficient to produce a plan, then no amount of plan-
ning will help find the optimal solution. The idea is to
generate a "most general partial plan" without commit-
ting to any choice of actions not logically imposed by
the information available at that point. An anytime al-
gorithm is then used to chose the appropriate action on
the current partial plan when the system has to act. She
defines a PERCEPT to be a (possibly partial) description
of the world. Percepts are saved to form HISTORIES. A
history prescribes or prohibits some actions, allowing the
refinement of a partial plan. Finally, a plan is a map-
ping from histories to actions. Instead of using the most
general partial plan she introduces the notion of effec-
tive partial plan. Conceptually an effective partial plan
is a huge table where each entry contains a perceptual
history and a set of actions. This resembles universal
plans and is probably impractical unless powerful do-
main heuristics can be used to prune the search space.

172

6 Further Work and Conclusions

We are currently extending our strategy study to a 3-box
world where the robot must bolt three boxes with three
different bolts using three different wrenches.5 Prelimi-
nary results suggest that as the problem becomes more
complicated, Continue Elsewhere will begin to outper-
form Stop and Execute. This is due to the fact that
BUMP with the Stop and Execute strategy is unable
to plan more than one sensor operation ahead. This
is too shortsighted for complex problems. More inter-
estingly, preliminary results also suggest that neither of
the general-purpose strategies are very good at avoiding
failures, and that more specialized, domain-dependent
strategies such as Sense Before Closing may be neces-
sary.

To conclude, we have adapted a conventional plan-
ner to do deferred planning. This planner can then be
used for problems where there is insufficient informa-
tion at planning time to develop a complete plan. We
have developed several strategies for deciding which plan
goals to defer, and we are studying the performance of
these strategies. In the 2-box study, the Stop and Exe-
cute strategy seems to perform (slightly) better than the
other two strategies. The 3-box study is still in progress.

References

[Agre and Chapman, 1987] Philip E. Agre and David
Chapman. Pengi: an implementation of a theory of
activity. In Proceedings of the Sixth National Confer-
ence on Artificial Intelligence, pages 268-272, Seattle,
Washington, July 1987. American Association for Ar-
tificial Intelligence.

[Brooks, 1982] Rodney A. Brooks. Symbolic error anal-
ysis and robot planning. International Journal of
Robotics Research, l(4):29-68, 1982.

[Brooks, 1986] Rodney A. Brooks. A robust layered
control system for a mobile robot. IEEE Journal
of Robotics and Automation, RA-2(l):14-23, March
1986.

[Dean, 1987] Thomas Dean. Intractability and time-
dependent planning. In Reasoning about Actions and
Plans: Proceedings of the 1986 Workshop, eds. M.
Georgeff and A. Lansky. Morgan Kaufmann, San Ma-
teo, California, 1987.

[Dean and Boddy, 1988] Thomas Dean and Mark Bod-
dy. An analysis of time-dependent planning. In Pro-
ceedings of the Seventh National Conference on Ar-
tificial Intelligence, pages 49-54, Minneapolis, Min-
nesota, August 1988. American Association for Arti-
ficial Intelligence.

[Dean and Kanazawa, 1988] Thomas Dean and Keiji
Kanazawa. Probabilistic temporal reasoning. In Pro-
ceedings of the Seventh National Conference on Arti-
ficial Intelligence, pages 524-528, Minneapolis, Min-

BThere are, of course, problem instances where two or
more bolts have the same size, but these are easier for the
planner and therefore less interesting.

nesota, August 1988. American Association for Arti-
ficial Intelligence.

[Doyle, Atkinson and Doshi, 1986] R. J. Doyle, D. J.
Atkinson, and R. S. Doshi. Generating perception
requests and expectations to verify the execution of
plans. In Proceedings of the Fifth National Conference
on Artificial Intelligence, pages 81-87, Philadelphia,
Pennsylvania, August 1986. American Association for
Artificial Intelligence.

[Drummond, 1989] Mark Drummond. Situated control
rules. Proceedings of the First International Confer-
ence on Principles of Knowledge Representation and
Reasoning, Toronto, May 1989. Morgan Kaufmann.

[Drummond and Bresina, 1990] Mark Drummond and
John Bresina. Anytime synthetic projection: maxi-
mizing the probability of goal satisfaction. In Pro-
ceedings of the Eighth National Conference on Artifi-
cial Intelligence, Boston, Massachusetts, August 1990.
American Association for Artificial Intelligence.

[Durfee and Lesser, 1989] Edmund H. Durfee and Vic-
tor R. Lesser. Incremental planning to control a
blackboard-based problem solver. In Proceedings of
the Fifth National Conference on Artificial Intelli-
gence, pages 58-64, Philadelphia, Pennsylvania, Au-
gust 1986. American Association for Artificial Intelli-
gence.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J.
Nilsson. STRIPS: a new approach to the application
of theorem proving to problem solving. Artificial In-
telligence, 2:189-208, 1971.

[Georgeff and Lansky, 1987] Michael P. Georgeff and
Amy L. Lansky. Reactive reasoning and planning.
In Proceedings of the Sixth National Conference on
Artificial Intelligence, pages 677-682, Seattle, Wash-
ington, July 1987. American Association for Artificial
Intelligence.

[Hayes-Roth, 1987] Barbara Hayes-Roth. Dynamic con-
trol planning in adaptive intelligent systems. In Pro-
ceedings of the DARPA Knowledge-Based Planning
Workshop, pages 4-1-4-7, Arlington, Virginia, 1987.

[Henderson and Shilcrat, 1944] Tom Henderson and Es-
ther Shilcrat. Logical sensor systems. Journal of
Robotics, 1(2): 169-193, 1984.

[Hsu, 1990] Jane Yung-jen Hsu. Partial planning with
incomplete information. AAAI Spring Symposium on
Planning in Uncertain, Unpredictable, or Changing
Environments, March 1990.

[Kaelbling, 1988] Leslie P. Kaelbling. Goals as parallel
program specifications. In Proceedings of the Seventh
National Conference on Artificial Intelligence, pages
60-65, Minneapolis, Minnesota, August 1988. Ameri-
can Association for Artificial Intelligence.

[McDermott, 1978] Drew V. McDermott. Planning and
acting. Cognitive Science, 2:71-109, 1978.

[Nilsson, 1989] Nils Nilsson. Action networks. In Pro-
ceedings of the Rochester Planning Workshop, pages
21-52, Rochester, New York, October 1988. Univer-
sity of Rochester.

173

[Nilsson, 1989] Nils J. Nilsson. Teleo-reactive agents.
Draft Paper, Stanford Computer Science Department,
September 1989.

[Sacerdoti, 1974] Earl D. Sacerdoti. Planning in a hi-
erarchy of abstraction spaces. Artificial Intelligence,
5:115-135, 1974.

[Schoppers, 1987] Marcel J. Schoppers. Universal plans
for reactive robots in unpredictable environments. In
Proceedings of the Tenth International Joint Confer-
ence on Artificial Intelligence, pages 1039-1046, Mi-
lano, Italy, August 1987. International Joint Commit-
tee on Artificial Intelligence.

[Turney and Segre, 1989] Jennifer Turney and Alberto
Segre. A framework for learning in planning domains
with uncertainty. Technical Report TR 89-1009, Cor-
nell University, May 1989.

[Wilkins, 1989] David E. Wilkins. Can AI planners solve
practical problems? Technical Note 468, SRI Interna-
tional, Menlo Park, July 1989.

[Wilkins, 1988] David E. Wilkins. Practical Planning -
Extending the Classical AI Planning Paradigm. Mor-
gan Kaufmann, San Mateo, California, 1988.

174

EXPLOITING PLANS AS RESOURCES FOR ACTION

David Payton

Artificial Intelligence Center
Hughes Research Laboratories

3011 Malibu Canyon Road
Malibu, CA 90265

Abstract
When plans are used as programs for controlling the
action of autonomous robots, their abstract
representation can easily obscure a great deal of the
critical knowledge that originally led to the planned
course of action. In this paper, we highlight an
autonomous vehicle experiment which illustrates how
the information barriers created by abstraction can
result in undesirable action. We then show how the
same task can be performed correctly using plans as a
resource for action. As a result of this simple change in
outlook, we become able to solve problems requiring
opportunistic reaction to unexpected changes in the
environment.

1 Introduction

In the endeavor to develop intelligent autonomous robotic
agents capable of interacting with a dynamic environment,
there has been a growing awareness that traditional planning
methods may not be compatible with the demands for real-
time performance. Recent efforts to re-evaluate the
relationship between plans and action have led to alternative
viewpoints in which plans are not primarily responsible for
controlling a robot's behavior. Work by Brooks, for
example, is aimed at avoiding the use of plans altogether
[Br]. In this approach, intelligent action is a manifestation
of many simple processes operating concurrently and
coordinated through the context of a complex environment.
While there is no tangible representation for plans in such a
system, plans are implicitly designed into the system
through the pre-established interactions between behaviors.
Similarly, Agre and Chapman have shown how a system
that determines its actions through the constant evaluation of
its current situation can perform complex tasks that might
otherwise have been thought to require planning [AC1].
Despite their emphasis on the theme that action is obtained
by always knowing what to do at any instant, Brooks, Agre,
and Chapman do not discard the notion that look-ahead and
anticipation of future events are desirable activities. While
these activities are normally associated with planning, there
is a difference in how the resultant "plans" are represented
and used in their systems.

Agre and Chapman, for example, draw a sharp
distinction between the concept of plans as communication
and the more traditional views of plans as programs [AC2].

The key difference lies in the idea that plans must be
constructed as a resource to the autonomous agent, not as an
explicit set of instructions to be followed [Su]. As a
resource, plans must serve as sources of information and
advice to agents that are already fairly competent at dealing
with the immediate concerns of their environment. In this
sense, plans are used optionally, and serve only to enhance
system performance. This is a significant departure from
the conventional view of plans which puts them in the role
of specifying a distinct course of action to systems which
are often incapable of doing anything without them.

The differences between these two perspectives on
planning are clearly evidenced when information from a
map must be used to help guide an autonomous vehicle that
must also make extensive use of sensors for detailed
maneuvering and obstacle avoidance. In a plan-driven
system, map-based plans are typically constructed to
describe the optimal path that must be followed in order to
arrive at a specified goal location. However, since the
vehicle will invariably stray from the ideal path as it avoids
sensed obstacles, the plan must be expressed in an abstract
form that allows for error. In contrast, when map-based
plans are represented for use as resources for action, this
abstraction is not necessary. Instead, it is possible to make
direct use of all information within the state-space of the
map. As a result, information of all possible alternatives
may be retained, allowing for flexible opportunistic
behavior.

Our own experience with the DARPA Autonomous
Land Vehicle (ALV) has led to some valuable insights into
some of these issues. In a series of experiments performed
by members of the Hughes Artificial Intelligence Center in
August and December of 1987, a number of successful tests
of autonomous cross-county navigation were performed
using a system with integrated map and sensor-based control
[Da] [KPR]. Some of the difficulties encountered in these
experiments have pointed out certain consequences of the
inappropriate use of abstraction that can occur in plan-
driven systems. In this paper, we highlight one of these
experiments to illustrate how the information barriers
created by abstraction can lead to undesirable action. We
then show how the same task can be accomplished without
abstraction using plans as a resource for action, and we
discuss how this approach may be extended for more
complex problems.

175

2 The Misuse of Abstraction

In one of the cross-country experiments performed with
the ALV we witnessed a surprising example of how easily
plans can be misinterpreted in a plan-driven system. In this
experiment, a very simple abstraction of a map-based plan
was used to provide guidance to sensor-based obstacle
avoidance behaviors. As shown in Figure 1, the basic
mission objective was for the vehicle to get from one
location to another while maintaining radio contact at all
times. The map-based planner generated an appropriate
route plan and abstracted a sequence of intermediate sub-
goals to represent the critical points along this path. A
portion of this sequence is illustrated in Figure 1 as Goals 1,
2, and 3. Note that the route had to veer specifically around
one side of a rock outcrop in order to avoid loss of radio
contact. To accomplish the mission, the sensor-based
behaviors had primary control of the vehicle so that all
obstacles could properly be avoided. The behavior
decisions, however, were always biased in favor of selecting
a direction toward the current map sub-goal whenever
possible. As soon as the vehicle got within a specified
radius of its current sub-goal, that goal would be discarded
and the next sub-goal would be selected. On paper and in
simulation, it seemed that this approach would be effective.

GOAL 2

GULLY

GOAL 2

(X)« L^Z]
GOAL1

Figure 1. An ALV route plan expressed as a sequence of
intermediate goal points.

When we attempted to perform this mission with the
ALV, the deficiencies of our method became strikingly
clear. During the execution of this route, the vehicle
achieved Goal 1 but then, because of local obstacles, was
unable to turn appropriately to reach Goal 2. Figure 2
depicts the difference between the desired and actual routes.
While this error is clearly apparent from the map data, the
sensor-based behaviors had only the abstract route
description as their guide, and this gave no indication that
there was any problem with their action. Fortunately,
contrary to our expectations, radio contact was not lost
behind the obstacle. The mission could still be completed
successfully if the vehicle were to move onward to Goal 3.
Despite this new opportunity, however, the vehicle
continued to persist toward Goal 2 because the abstract
route description failed to give any indication that the
original goal sequence was no longer suitable.

ROCK OUTCROP GULLY

GOAL 3

[ALT]

Figure 2. Errant vehicle action while executing its route
plan.

This example highlights the system's inability to take
opportunistic advantage of unexpected situations when such
situations are not properly accounted for in the abstract plan.
We know from our understanding of the mission constraints
that Goal 2 was merely an intermediate waypoint intended
to keep the vehicle away from the rf shadow. Looking at
the abstract plan in isolation, however, there is no way of
knowing why a particular sub-goal has been established.
The Goal 2 location could just as easily have been a critical
choke point along the only path to Goal 3. It is only through
our understanding of the underlying mission constraints that
we can both identify the vehicle's failure to turn right and
see the opportunity that arose as a result.

The deficiencies of the abstract route plan may at first
appear to be due solely to the simplicity of the
representation. Certainly a more sophisticated approach
could be employed in which further path constraints are
added to help prevent the vehicle from straying from the
desired route. Should any significant deviation from the
plan be detected, the route might then be re-evaluated. This
strategy, however, focuses on preventing the violation of
constraints which may in fact have very little bearing on the
successful completion of overall mission objectives.
Consider, for example, a case in which the vehicle can get
near Goal 2, but cannot get close enough to satisfy the
criterion of the abstract plan. The system may expend a
great deal of time and energy attempting to reach this
arbitrary sub-goal when it might otherwise have no
difficulty proceeding onward. The problem stems from the
fact that the sequence of subgoals is both an
overspecification and an underspecification of mission
objectives. If the true constraints on vehicle motion relative
to a given mission are properly represented, then subgoal
locations become immaterial. Therefore, the real deficiency
of the abstract route plan lies in the fact that in specifying a
pre-determined course of action, it fails to supply the
information needed for intelligent decision-making.

3 Avoiding Unnecessary Abstraction

In order to minimize the amount of information lost in
forming a plan for action, it is best if all relevant knowledge
is organized with respect to a given problem and then,

176

without any further abstraction, provided in full for use in
real-time decision-making. In order for this to be possible,
the plan must no longer be viewed as a program for action,
but rather, as a resource to help guide the decision-making
process. When this viewpoint is adopted, there is no longer
a need to translate plans into awkward representations for
action. Instead, the original state-space in which the plan is
formulated can be retained, enabling the plan to provide
advice to sensor-based behaviors whenever the current state
of the system can be identified within that state-space. We
refer to plans formulated and used in this manner as
internalized plans, since they embody the complete search
and look-ahead performed in planning, without providing an
abstracted account of an explicit course of action [Pa].

The difference between the use of internalized plans
and conventional abstracted plans is best illustrated in the
context of the previous example. In contrast to the abstract
route plan, consider a gradient description of a plan to
achieve the same objectives. As illustrated in Figure 3,
there is no explicit plan shown, yet one can always find the
best way to reach the goal simply by following the arrows.
Such a representation would not ordinarily be thought to be
a plan because it provides no specific course of action. As a
resource for guiding action, however, the gradient field
representation is extremely useful. No matter where the
vehicle is located, and no matter how it strays from what
might have been the ideal path, turn decisions can always be
biased in favor of following the arrows.

Upon closer examination of Figure 3, we can see not
only how the mistake of entering the rf shadow could be
avoided, but we see also how the system could be
opportunistic should the vehicle happen to enter the shadow
and be able to continue onward. First, when the vehicle had
to make a choice between going left or right near the bottom
of the rock outcrop, the gradient field would strongly bias its
decision in favor of going right. If the vehicle got too close
to the shadow on the left, the gradient field would actually

be telling it to turn around. Further, should the vehicle
happen to be forced to go below the rock outcrop and enter
the rf shadow, then it would continue to be directed toward
the final goal despite the radical deviation from its expected
path. This type of behavior is opportunistic in that the
vehicle is not constrained to reach any arbitrary pre-
established sub-goals, and therefore all action can be
directed exclusively toward achieving the mission
objectives.

A more dramatic illustration of the difference between a
conventional route plan and an internalized plan can be seen
in problems requiring the attainment of any of several
possible goals. This type of problem is often referred to as
the "Post Office Problem" [Ed] because it can be likened to
the task of finding the shortest route to the nearest of several
post offices in a neighborhood. In the example shown in
Figure 4, the mission requires that the vehicle reach either of
two distinct goal locations. The resultant gradient field is
computed by propagating a search wavefront simultaneously
from each of the two goals. As the wavefronts meet at a
Voronoi edge, a ridge is created in the gradient field which
will cause the vehicle to be guided toward one goal or the
other depending on which side of the ridge it happens to be
located.

Clearly, it would be difficult for an abstract route plan
to capture the essence of choice contained in the gradient
field representation. If we were to produce a route plan, we
would invariably have to select a route to the closest goal, as
shown in Figure 4. Once such a choice is made, however,
we have discarded all that is known about the alternate goal
even though that goal was nearly as close as the one
selected. In contrast, by using the gradient field directly, the
choice of goals may be made during the execution of the
mission. Without having made an a priori selection of
goals, the best choice may be made at every instant in time,
regardless of how the vehicle might stray while avoiding
obstacles.

SEARCH HORIZON

"t

\\

1 f V / / R0CK

, I W jf j OUTCROP

FINAL fO' '*""
GOAL ,O

*- nn *-M RF
" V/W "-X ü SHADOW

<*}*< x

GULLY

~t*t *
ALV

-/

Figure 3. A gradient field representation provides one form of internalized plan.

177

SEARCH HORIZON

'^

\r,J<^/' START i RÄuTt7^
PLAN

wuuuwuOBK^U

GOAL 2/ _.

-MX

VORONOI
EDGE

Figure 4. The gradient field provides a useful internalized
plan for reachingeither of two goals.

The gradient field is an ideal example of an internalized
plan because the map-grid state-space in which the original
problem is formulated is the same state-space in which the
plan is represented. The gradient field, in fact, is a natural
by-product of existing route planning algorithms [MPK].
These algorithms begin by assigning a cost to each grid cell
of a digital terrain map. By associating high costs with
locations that are undesirable according to mission criteria, a
combination of mission constraints can be represented.
Whether an A* [Ni], or Dijkstra [Di] search algorithm is
employed in the cost grid, the net result of the search is a
score for each grid cell, indicating the minimum cost
remaining to get from that cell to the goal. From any given
grid cell, the best incremental step to get to the goal is the
neighboring grid cell which has the lowest score.
Ordinarily, when we use these scores to compute a standard
route plan, we simply begin at the starting point and locally
choose the lowest-score adjacent cell until we finally reach
the goal. The record of our steps along the way gives us the
minimum cost path to the goal. If we look at these scores in
a slightly different way, we see that the best path to the goal
from any grid cell may be determined by selecting the
direction of the lowest-score adjacent cell. Thus, without
any further abstraction, search in the map-grid can provide a
useful resource for action.

4 Using Plans as Resources

The method of use of a gradient field is an important
factor in establishing it as an internalized plan
representation. Since a digital terrain map generally cannot
provide adequate resolution to support detailed maneuvering
around small obstacles, there is inevitably a need to
incorporate the advice provided by the gradient field into
real-time decision-making processes which are attending to
immediate sensory data. While, ordinarily, a single abstract
route plan is generated, some approaches have taken
advantage of a gradient field in order to quickly generate

new route plans should the constraints of an initial plan be
violated [LMD] [CF]. Problems with establishing and
monitoring these constraints, however, are still unavoidable.
In contrast, use of the gradient field as an internalized plan
requires that the real-time decision-making processes
continuously attempt to locate the system within the state-
space of the plan and bias each decision in favor of the
recommended course of action. The absence of an explicit
course of action means that no arbitrary plan constraints
need be established or monitored. The plan is a resource,
providing suggestions for preferred action but never actually
controlling the system. If, for any reason, no suggestion is
available from the plan, the real-time decision-making
processes must proceed in a reasonable manner on their own
accord.

Another vector field type of representation, the artificial
potential field, appears superficially very similar to the
gradient field and it also is used for robot navigation and
obstacle avoidance [Kr][Kh][Ar]. The basic differences,
though, between how these two types of representations are
constructed and used sheds further light on what it means
for a plan to serve as a resource for action. The computation
of potential fields is generally based on a superposition
model in which charges are distributed such that repulsive
forces are generated near obstacles and attractive forces are
generated near goals. Superposition allows the potential
field vector at any point to be computed quickly by adding
up the contributions from each charge. The resultant field,
however, does not represent an optimal path, and may easily
contain local minima and traps. In contrast, the gradient
field is computed from a more time consuming graph search
process. As a result of this search, the gradient field has no
local minima and will always yield the set of all optimal
paths to the goal.

A more significant distinction between gradient fields
and potential fields, however, is in how they are used.
Often, when potential field methods are employed for
navigation, the potential field is used for direct control of
action. All sensory information is compiled into a single
representation which is suitable for modeling an appropriate
distribution of charges. The local potential field forces are
then continuously computed at the location of the vehicle,
and these forces are used directly to compute the desired
motion. On the other hand, as internalized plans, gradient
fields are never used to provide direct control of the vehicle.
Instead, they are merely an additional source of information
provided to a set of real-time decision-making processes.
Since these processes can make use of many disjointed
representations of the world in order to control the vehicle,
there is never a need for all features of the environment to
be abstracted into a single representational framework.

It is helpful to view internalized plans as though they
were sources of supplementary sensory input data. From
this perspective, it is clear that action is not controlled by
plans any more than it is by sensory input. Instead, the
system must be viewed as an entity which interacts with its
environment, responding to both internal and external
information sources. The gradient field plan, for example,
can be thought of as a phantom compass that always gives a
general idea of the right way to go. Just like other sensors,
data from this internal sensor influences action but is never

178

used to the exclusion of other sensory data. At any given
time, however, a single information source can have
significant influence over system behavior if need be. Just
as an external sensor can be used to ensure that the vehicle
never runs into obstacles, an internalized plan can be used to
ensure that mission constraints are not violated. Thus,
despite the fact that there is no top-down control, the system
can adhere to high level mission requirements.

5 Multiple Internalized Plans

A significant advantage of using internalized plans as
resources for action is that it is possible to use multiple
internalized plans simultaneously. Each plan can contribute
an additional piece of advice which can enhance the overall
performance of the system. In this way, different plans may
be formulated in incompatible state-spaces without the need
to merge these state-spaces through abstraction.

We can consider as an example, the combined use of
map-based plans with plans based on symbolic mission
constraint data. In the case of the rf shadow problem, a
constraint to maintain radio contact may be derived from
mission knowledge. If this knowledge is used in
conjunction with a signal strength sensor, then whenever the
vehicle enters an rf shadow, it can immediately back up in
order to regain contact. In the absence of such problems, the
gradient field produced from map data can constantly
provide advice on which way to go. An unexpected loss of
radio contact would then be treated much like an encounter
with an obstacle. The vehicle would have to make special
maneuvers in order to regain contact and ensure that the
same mistake would not be repeated. After this, the map-
based plan would regain primary influence.

There are also many cases in which it might be
desirable to use multiple internalized plans formulated
within the same state-space. For example, a gradient field
plan could be augmented with information about the amount
of fuel and time required to get from each grid-square to the
goal. While this information could not directly indicate a
course of action, it might allow available fuel and time
resources to be monitored constantly and compared with
expected needs. If there were barely enough fuel to succeed
but plenty of time available, the vehicle might be able to
switch to a simple fuel conserving strategy such as reducing
its speed. If time and fuel were both in short supply, the
gradient field might need to be re-computed, placing more
emphasis on conserving fuel and time resources and
possibly less emphasis on other factors such as vehicle
safety.

Another form of internalized plan exploits the map as a
resource for action by probing it directly during execution.
As the vehicle is traveling, the portion of the map
corresponding to the area just in front of the vehicle is
examined to determine what types of features should be
detected. This understanding of the local environment can
have a direct bearing on how sensor data is interpreted for
action. Remember, for example, the problem illustrated
earlier in Figure 2. Here, one of the main reasons the
vehicle failed to avoid the rf shadow was that its sensors
indicated a clear path in this area. This error could be
overcome by differentiating between obstacles that are

observable and those that are not, and then appropriately
discounting sensor readings that are known to be
inapplicable. Thus, by treating the map as if it were a
sensor, the value of real sensor data can be greatly
enhanced.

A great diversity of behavior may also be gained by
dynamically combining information from multiple gradient
fields. Consider, for example, two independent gradient
fields, one which can guide a vehicle along a safe, well
hidden route, and another which can lead the vehicle to
nearby observation points. We can imagine that the vehicle
is guided by the safe gradient field until the time comes for
it to make an observation. Then, the gradient field for
getting to observation points would become the primary
guiding factor. Such a gradient field, formed similar to the
field in Figure 4, would lead the vehicle to the nearest of
several possible observation points. Once an observation
point had been reached and observation data collected, the
safe gradient field would again be used for guidance. Using
such a combination of internalized plans allows the
performance of tasks that would be difficult to accomplish
with a symbolic plan. Without an explicit plan for action, it
is the interplay between the vehicle and its environment that
determines how the mission will ultimately be carried out.

6 Conclusion

Although abstraction is necessary if we are to provide
organization and structure to the vast amounts of
information available to an intelligent agent, we have seen
examples in which the abstraction of plans can obscure their
true intent and result in serious failures. In light of these
issues we must ask whether forming the abstraction was
really necessary or whether it was merely an artifact of an
approach in which plans are regarded as programs rather
than as resources for action. Using internalized plans, we
have shown that with no abstraction of the map-based plan,
we can obtain an ideal resource for action.

Just as the grid of a digital terrain map is an
abstraction of the Earth's surface, abstraction may be used
to create other state-spaces which are suitable to use for
planning. In many cases, however, it may be best not to
attempt the fusion of information from different sources if
an excessive degree of abstraction is required to do so.
Instead, state-spaces should be formed to suit the type of
information available, and once planning is performed in
these state-spaces, no further abstraction of the results
should be performed. The unabstracted product of planning
search provides a measure of desirability for transitions
from one state to the next, and this measure may be used
directly as a resource for action.

Although the discussion in this paper has focused
primarily on internalized plans based on map data, it is also
possible to consider internalized plans based on symbolic
data such as found in more general problem-solving
domains. There are some significant differences, however,
between symbolic data and maps. In maps, state can be
defined by position and orientation, and proximity between
states is easily estimated by a Euclidian metric. In more
complex domains, state may be difficult to define and even
more difficult to sense. Proximity of states may be

179

determined only through knowledge of what state transitions
are achieved by various operations. However, when a
domain can be divided into a set of recognizable states, and
these states can be linked according to their accessibility to
one-another, then internalized plans can be produced. Just
as with map data, search through an abstract state space can
indicate the progression of states required to reach a desired
goal. If this knowledge can be used as advice within a
system that can move between states on its own accord, then
we can generate an internalized plan.

Acknowledgments

Many of the concepts presented in this paper were
fostered through frequent discussions with David M.
Keirsey, J. Kenneth Rosenblatt, and Charles Dolan. I am
extremely grateful for their contributions and insights. The
advice of Joseph Mitchell and Rodney Brooks was also very
helpful in bringing to light many important areas of related
work. Many thanks also to my wife Karen and Jimmy
Krozel for their editing assistance.

References

[ACl] Agre, P., and D Chapman, "Pengi: An implemen-
tation of a Theory of Activity","/Voc. of the Sixth Na-
tional Conf. on Artificial Intelligence, Seattle, Washing-
ton, July, 1987, pp. 268-272.

[AC2] Agre,. P., and D. Chapman, "What are plans
for?"AI Memo 1050, MIT Artificial Intelligence
Laboratory, 1987.

[Ar] Arkin, R., "Motor Schema Based Navigation for a
Mobile Robot: An Approach to Programming by Be-
havior," IEEE Conf. on Robotics and Automation,
March 1987, pp. 264-271.

[Br] Brooks, R. A., "Intelligence Without Representa-
tion," Preprints of the Workshop in Foundations of Arti-
ficial Intelligence, Endicott House, Dedham, MA, June,
1987.

[CF] Chan, Y.K., and M. Foddy, "Real Time Optimal
Flight Path Generation by Storage of Massive Data
Bases," IEEE National Aerospace and Electronics Conf.
(NAECON), Dayton OH, May 1985.

Pa] Daily, M., J. Harris, D. Keirsey, K. Olin, D.
Payton, K.Reiser, J. Rosenblatt, D. Tseng, and V.
Wong, "Autonomous Cross-Country Navigation with
the ALV," Proceedings of DARPA Knowledge-Based
Planning Workshop, Austin, Texas, December 1987,
(also appearing in Proceedings of IEEE Conference on
Robotics and Automation, Philadelphia, PA., April,
1988.)

[Di] Dijkstra, E.W., "A Note on Two Problems in Con-
nection with Graph Theory," Numerische Mathematik,
Voll, 1959, pp. 269-271.

[Ed] Edelsbrunner, H., Algorithms in Combinatorial
Geometry. Springer-Verlag, Berlin, 1987, pp 298-299.

[KPR] Keirsey, D.M., D.W. Payton, and J.K. Rosenblatt,
"Autonomous Navigation in Cross Country Terrain,"
Proceedings Image Understanding Workshop, Boston,
MA, April, 1988.

[Kh] Khatib, O. "Real Time Obstacle Avoidance for
Manipulators and Mobile Robots," IEEE Conf. on
Robotics and Automation, March 1985, pp. 500-505.

[Kr] Krogh, B.H., "A Generalized Potential Field Ap-
proach to Obstacle Avoidance Control," Robotics Inter-
national Robotics Research Conference, Bethlehem,
PA, August 1984.

[LMD] Linden, T.A., J.P. Marsh, and D.L. Dove,
"Architecture and Early Experience with Planning for
the ALV," IEEE International Conf. on Robotics and
Automation, April, 1986, pp. 2035-2042.

[MPK] Mitchell, J.S.B., D.W. Payton, and D.M. Keirsey,
"Planning and Reasoning for Autonomous Vehicle
Control," International Journal for Intelligent Systems,
Vol. 2,1987.
[Ni] Nilsson, NJ., Problem Solving Methods in
Artificial Intelligence, McGraw-Hill, 1971.

[Pa] Payton, D.W., "Internalized Plans: a representation
for action resources," Workshop on Representation and
Learning in an Autonomous Agent, Lagos, Portugal,
Nov. 1988.

[Su] Suchman, L., "Plans and Situated Actions: the
problem of human machine communication," Cam-
bridge University Press, 1987.

180

Responding to Impasses in Memory-Driven Behavior:
A Framework for Planning

Paul S. Rosenbloom &, Soowon Lee
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292

Amy Unruh
Knowledge Systems Laboratory
Computer Science Department

Stanford University
701 Welch Rd. (Bldg. C)

Stanford, CA 94305

Abstract
One approach to bringing coherence to the area
of planning is to develop a framework that
covers the set of requisite planning behaviors,
enables comparisons among them by
decomposing the behaviors into common
primitives, and forms the basis for an integrated
planning system. In this article we report on an
on-going effort to build such a framework from
the combination of a basic memory-driven agent,
behavioral impasses, and generic responses to
these impasses. This framework is loosely based
on the planning strategy embodied within the
Soar architecture, and is illustrated with
examples from Soar. Though the framework's
current level of development still falls far short
of an integration of all of planning, progress has
been made.

1. Introduction1

What is the range of planning behaviors necessary
in an intelligent agent, and how do (or should) they
arise during performance? Though this is a key
question in the design and construction of intelligent
agents, we — the AI community — are still rather far
from answering it. What we have are partial answers
to both parts of this question. For the first part, we
have identified a grab bag of planning methods and
behaviors — such as linear planning, nonlinear
planning, opportunistic planning, wait-and-see
planning, hierarchical planning, abstraction planning,
goal decomposition, least-commitment planning,
constraint posting, case-based reasoning, tweaking,
schema-based planning, skeletal planning, reaction
planning, reactive planning, backward chaining,
operator subgoaling, means-ends planning,

This research was sponsored jointly by the Defense Advanced
Research Projects Agency (DOD) and the Office of Naval Research
under contract number N00014-89-K-0155.

simulation, envisionment, projection, lookahead
search, state-space search, and temporal planning —
and have a few attempts to build planners capable of
multiple behaviors, such as NOAH [Sacerdoti, 1977],
MOLGEN [Stefik, 1981a; Stefik, 1981b],
SIPE [Wilkins, 1984], and TWEAK [Chapman,
1987]). For the second part, we have proposed three
general classes of answers, (l) The traditional answer
is that these behaviors are preprogrammed into a
general planning method that is run prior to
performing each task and (possibly) when the
application of the plan to the task goes awry. (2)
The reactive answer is that the agent is already
structured in such a way as to obviate the need for
planning at run time, so no planning behaviors occur
either just prior to, or during task performance. (3)
The hybrid answer is to avoid the initial planning
phase by utilizing the agent's existing structure, but
to fall back on more general planning methods when
this structure proves to be inadequate (and possibly
to acquire more structure as a result).

The purpose of this article is to report on an on-
going effort at taking a next step towards answering
the above question. The approach underlying this
effort is to construct, and implement, a generic
framework for planning by combining a particular
instantiation of the hybrid approach — a recursive
memory-driven agent roughly based on the approach
to planning embodied in the Soar system [Laird,
Newell, & Rosenbloom, 1987; Laird & Rosenbloom,
1990] — with a set of generic responses to behavioral
impasses. What this yields is a space of planning
behaviors that overlaps with the set of behaviors
listed above. The intent in so doing is to provide an
organization over this space of behaviors, characterize
when the individual behaviors can arise, provide a
decomposition of the behaviors that allows
comparisons in terms of common primitives, and to
provide the foundation for the construction of a
powerful and flexible planner. Though this still
leaves several important things partially or

181

completely undone — the framework does not include
all known planning behaviors, nor does it characterize
which behaviors are necessary in an intelligent agent
or precisely when the individual behaviors are
desirable — the hope is that this is a step in a useful
direction.

Section 2 describes the hybrid approach, with
short digressions to ground the abstract
characterization in Soar. Section 3 catalogues the
behavioral impasses and a set of generic responses to
them. This does not yet provide a complete set of
response types, but is a start towards such a set. A
sampling of the planning behaviors resulting from
these impasses and responses are also provided from
research on this framework in Soar. Section 4 relates
this overall approach to other work in the field.
Section 5 concludes and discusses future directions.

2. A Hybrid Planning Framework
Start with an agent capable of performing

operations to achieve some end, where "operation" is
used in a generic sense, referring to any specification
of something to be accomplished. The operation can
be external (a motor act) or internal (in a simulated
world, for example), and either primitive (closing a
gripper) or high-level (picking up a block). The
specification can be procedural (directly executable)
or declarative (interpretable), and specified in terms
of what is to be accomplished (a goal) or how it is to
be accomplished (an operator). The agent proceeds
by cycling through four steps:

1. Generation: Generate a set of candidate
operations.

2. Selection: Select an operation from the set
of candidates.

3. Applicability: Determine if the selected
operation is applicable in the current
situation (or make it applicable).

4. Execution: Execute the selected operation.

In Soar, this corresponds to the process of selecting
and applying operators in problem spaces.

So far, this describes a generic, serial, agent —
though one with a particularly local drive, as it is
always attempting to take the next step towards
some end. What is missing, and what distinguishes
the various planning behaviors, is how the four steps
come to be performed. In our hybrid agent,
precedence is given to a context-dependent,
memory-driven performance strategy. In a memory-
driven strategy, the information required for the
performance of each step is directly accessed from the
agent's memory — no involved chains of reasoning

For simplicity we will stick to serial agents in this article.
However, it should be possible to extend the framework to agents
capable of performing operations in parallel.

are involved. In a context-dependent, memory-driven
strategy, the current context — provided by
perception, goals, etc. — determines what is accessed.
For example, in a robot manipulation domain, the
problem leads to accessing the available manipulation
operations (for example, pickup, putdown,
translate, open, and close). Based on the goal
and situation, memory is then accessed about which
operation to select (close, for example). Memory is
then accessed about whether the preconditions of
close are met in this type of situation. If the
preconditions are met, then the final memory access
either determines how the situation is changed by the
operation (if this is an internal, or simulated,
operation), or which motor actions are to be
performed (if this is an external operation).

The exact form of the memory is not critical for
this behavior — it could be declarative or procedural;
contain information that is generalized (plans) or
instantiated (cases); and be structured as boolean
circuits, rules, or frames. However, what does matter
is that access to the memory be computationally
limited. Without this restriction, arbitrary amounts
and kinds of processing — such as full first-order
theorem proving — can be surreptitiously imported
under the heading of "memory access". The
resulting agent — the basic agent — is a generic,
computationally-bounded, memory-driven agent.
While this is a fairly simple sort of agent, it forms
the core out of which more complex planning
behaviors can emerge. It also serves as a useful
abstraction over a set of common agent types —
depending on the exact details of the memory, the
basic agent can be a reactive agent (if the memory is
sufficiently limited computationally), a rule-based
agent (if the memory contains computationally-
limited rules about step performance), a tweak-free
case-based agent (if the memory contains previous
problem instances), or a non-hierarchical
schema-based agent (if the memory contains
generalized plans).

In Soar, the memory is structured as a parallel
production system. Knowledge about step
peformance is stored predominantly in procedural
form, as productions that generate preferences about
changes to working memory; however, it can also be
stored in more episodic or declarative
forms [Rosenbloom, Newell, & Laird, 1990].
Likewise, what predominantly corresponds to a plan
is a set of preference-generating productions that
jointly determine the agent's behavior, rather than
more declarative specifications that yield behavior
through interpretation. The latter is possible — see
[Reich, 1988], for example — but is not the

predominant approach.
More complex — planning — behaviors arise when

the basic agent hits impasses. Impasses occur
whenever the memory is inadequate for the

182

performance of one of the four basic steps — for
example, when the memory proves insufficient for
generating a set of candidate operations. When such
an impasse occurs, the agent is applied recursively to
the problem of resolving the impasse. The hybrid
agent consists of the basic agent — a generic,
computationally-limited, memory-driven agent — plus
this ability to recur on impasses. In its most flexible
form, this recursion allows full meta-level — or,
equivalently, reflective — processing. In Soar, this
recursion occurs via the automatic generation of
subgoals within which flexible meta-level processing is
possible via the selection and use of further problem
spaces [Laird, 1983; Rosenbloom, Laird, & Newell,
1988].

The range of responses available during the
recursive processing determines the range of planning
behaviors exhibited by the hybrid agent. Consider
two illustrative examples. In the first example, the
agent is performing operations in the external world
— it is in "execution mode" — and an impasse occurs
because of an inability to select the next operation
from the set of candidates. This drops the agent into
"planning mode" where it can, for example, perform
a lookahead search; that is, execute the candidates in
a simulated world to determine which ones are likely
to achieve its end. The resulting behavior
corresponds to a classical case of execution
monitoring — detecting that the agent has reached a
situation for which it does not have a preprogrammed
response — and dynamic replanning. In the second
example, the agent reaches an impasse because the
selected operation is not applicable to the current
situation. If it responds to this impasse by selecting a
second operation in the recursive space that can
modify the situation so that the first operation is
applicable, the resulting behavior is appropriately
characterized as backward chaining or operator
subgoaling.

Because impasses are tackled via a recursive
process, further impasses can occur within this
processing, leading to yet further levels of recursion.
One implication of this recursion is that many of the
same phenomena will occur for both execution and
planning — both involve applying sequences of
operations, and both can run into impasses on the
same performance steps. This uniformity not only
simplifies the structure of the planner — for example,
making particularly simple the transfer of
information from planning to execution — it also
simplifies the subsequent analyses of planning
behaviors. A second implication of this recursion is
that many planning behaviors may arise from a
cascade of impasses and responses, rather than from
just single ones. Consider the first illustrative
example above, which is described in a simple two-
level fashion. This example actually occurs in Soar
over three levels of behavior (two levels of impasses).

As above, the first level consists of task execution.
However, at the second level the operations are ones
that evaluate the first-level candidates. If an impasse
occurs during execution of one of these second-level
operations — because of a lack of memory structures
about the value of the first-level operation — a
lookahead search is performed, beginning with the
simulated execution of the first-level candidate.

One important consequence of this overall hybrid
framework is that planning occurs on an as-needed
basis. Performance is predominantly memory-driven,
but when memory is insufficient, planning is possible.
Such a strategy can be quite effective in many
situations, as it avoids expensive deliberation until it
is needed, and can potentially be improved by simple
learning strategies. However, in hazardous and/or
time-limited domains it can get into trouble if the
memory contains incorrect information, or if the
memory turns out to be incomplete when attempting
to perform a time-critical step (for which there is
insufficient time to perform on-the-fly planning).
Under such circumstances a prudent agent would be
sensitive to its context, and deliberately do
contingency planning prior to performing in the real
domain. The results of this contingency planning
could be used to alter the agent's memory structures
so that when the real problems are faced, issues of
incorrectness and incompleteness do not arise. If
these memory alterations are persistent, this amounts
to a form of learning. If the architecture is
sufficiently uniform, the same approach can also be
used to learn new memory structures from all
planning episodes — whether it be deliberate
contingency planning or as-needed planning (or
replanning). If enough learning occurs in a domain,
it may be possible to eliminate all impasses, and thus
all planning, converting the agent into a completely
memory-driven agent (for that domain). In Soar, this
form of learning occurs via a chunking process that
adds new productions to memory from the results of
subgoal-based processing.

3. Generic Responses to Impasses
The hybrid framework presented in Section 2

implicitly defines four distinct impasse types, one for
each type of step:

1. Generation: Failure to generate a set of
candidate operations.

2. Selection: Failure to select an operation
from the set of candidates.

3. Applicability: Failure to determine if the
selected operation is applicable (or to
make it applicable).

4. Execution: Failure to execute the selected
operation.

The principal thesis underlying this article is that if

183

these impasse types are crossed with a set of generic
response types, then a framework is generated which
covers a significant fraction of the important
planning behaviors. A complete rendering of such a
framework is currently beyond our means. However,
what has been accomplished so far is the isolation of
four generic response types, an understanding of some
of the planning behaviors that fall within their scope,
and implementations of some of these behaviors
within Soar.

In the remainder of this section we characterize
these four generic response types:

1. Pursuit: Pursue resolution of the impasse.
2. Termination: Terminate the line of

development.
3. Suspension: Suspend the line of

development.

4. Obviation: Alter context to make impasse
irrelevant.

A sampling of the planning behaviors generated in
the context of Soar will be presented as illustrations.

3.1. Pursuit
Pursuit is the classical response to an impasse. It

covers strategies that manipulate either the agent's
knowledge, or the world itself, to resolve the impasse.
For example, simulated lookahead is a typical pursuit
strategy for selection impasses — it is a potentially
unbounded method for squeezing out more
information from what the agent already knows.
Pursuit methods are widespread in planning. They
include linear and nonlinear planning, the simulation
methods (simulation, envisionment, projection,
lookahead search, state-space search, operator
subgoaling, and backward chaining), the
decomposition methods (AND hierarchies, skeletal
planning, schema-based planning, macro expansion),
the deductive methods (theorem proving) , the
inductive methods (case tweaking, analogical
transfer), the attentional methods (shift of attention,
extended memory search), the experimentation
methods, and the advice-taking methods. Such a
large and diverse list reveals that pursuit is rather a
large grab bag itself, and implies that further levels
of structure will eventually be needed in a complete
framework. However, part of this diversity is only
apparent, as it arises from the use of different terms
for essentially the same behavior — such as
simulation, projection, envisionment, lookahead
search, and state-space search — while part of the
remaining diversity arises from the development of
different classes of responses for different impasse

Many of the other methods are also technically deductive, but
it seems useful to separate them out from the pure theorem
proving methods.

types: the just-mentioned simulation behaviors for
selection impasses; the backward chaining (operator
subgoaling) method for applicability impasses; the
decomposition methods for execution impasses; and
the attentional methods for generation impasses. So
the picture isn't quite as bleak as it might at first
appear.

Previous articles on Soar have already detailed the
implementation of a number of these behaviors.
Decomposition occurs when a problem space
containing more primitive operators is used in
response to an impasse. Examples of decomposition
for both selection impasses — where the selection
problem space is used to decompose the problem into
one of computing evaluations for each of the
candidate operations — and execution impasses —
where high-level operations, such as configuring a
computer backplane, are decomposed into a
conjunction of more primitive operations, such as
configuring a module into a slot of the backplane —
can be found in [Laird, Newell, & Rosenbloom, 1987].
The use of simulation for execution impasses — for
the operations in the selection problem space — can
also be found in [Laird, Newell, & Rosenbloom, 1987].
The use of advice taking for selection is described in
[Golding, Rosenbloom, & Laird, 1987], and for more

general impasses, in [Laird et al, 1990].
Rather than reprise this existing material in any

detail, we will make do with a brief return to the
issue of lookahead search — which nicely illustrates
how planning behaviors can arise out of combinations
of impasses and responses — and then look at recent
implementations of linear and nonlinear planning.
When lookahead was first introduced in Section 2, it
was described as a response to a selection impasse.
Later, this was refined to two levels of impasses: a
selection impasse and an execution impasse. Now it
can be further refined to a decomposition response to
a selection impasse, plus a simulation response to an
execution impasse. In fact, under many
circumstances, this pair of impasses only yields one
step of lookahead — once the simulated candidate has
been executed, a new selection impasse may occur
because of a lack of memory about what operation to
select next. Thus, each such additional level of
lookahead can correspond to two new levels of
impasses.

Both linear and nonlinear planning are quite
familiar to the community by now. What makes
them interesting here is not their novelty, but that
they both turn out to be complex combinations of
multiple impasses with varying pursuit responses.
They thus turn out to be good examples for
illustrating the framework. In addition, by
decomposing each method into a set of impasses and
responses, the framework makes explicit their
normally implicit, fine-grained structure, and reveals
their similarities and differences.

184

Both linear and nonlinear planning start with an
operation that represents a conjunctive goal, and
reach an execution impasse on this operation. They
both then pursue this impasse, but in different
fashions. In linear planning — as shown for the
blocks world in Figure 1 — the agent responds to this
execution impasse by decomposing the original
operation into a set of operations, one for each
conjunct. A selection impasse then occurs, unless
there is memory about how to pick among them, or
there is only one conjunct (in which case the
decomposition also need not occur). In this selection
impasse, a simulation begins by selecting one of the
candidates. Execution of the operation then consists
of achieving the corresponding conjunct. If the
conjunct is not already met, it cannot be achieved by
simple memory access, so an execution impasse occurs
("goals" as operations have the property that they
are always applicable, so no applicability impasse will
occur). This execution impasse is responded to by a
simulation in which means-ends analysis is used to
generate a set of candidate operations from the
operators in the domain. If there are multiple
candidates, another selection impasse occurs.
However, in this example there is only one candidate,
so it is just selected. Its applicability is then tested,
and if it is known to be applicable it is executed;
otherwise, as is the case here, an applicability impasse
occurs. The whole process then recurs, with the
achievement of the operation's preconditions as the
new goal, which in this case is non-conjunctive.

In nonlinear planning — Figure 2 — the original
operation is not decomposed. The agent instead
responds immediately with a simulation in which the
candidate operations are generated via means-ends
analysis from the entire set of conjuncts. An
operation is then selected, and if it is applicable, it is
executed. If an applicability impasse occurs, the
whole process then recurs, with a set of goal
conjuncts corresponding to the original set, except
that the conjunct responsible for generating the
selected operation is replaced by the operation's
preconditions.

From these descriptions it can be determined that
the key differences between these methods are: (1) at

^<x

For simplicity of presentation, and since we have already gone
over the structure of lookahead, this and later figures show
simulation directly arising from a selection impasse.

5 There is some confusion in the use of the term "nonlinear
planning" in the field. Here we take it to mean the construction of
plans whose ordering of operations does not respect subgoal
boundaries. In other words, operations for different goals can be
interleaved. Least commitment is one technique for generating
nonlinear plans, but it is not what is meant by "nonlinear
planning". Likewise, nonlinear plans can be built from partially
ordered plans, but they need not be (see [Veloso, 1989], for
example).

• • •

Figure 1:
blocks world.

Trace of linear planning in the

any point in time, linear planning generates a
candidate set of operations by looking at only one
goal conjunct — the current one — while nonlinear
planning looks at all active goal conjuncts
(irrespective of their level of generation); (2) linear
planning must achieve a goal conjunct before moving
on to a sibling (or higher level) conjunct, while
nonlinear planning can intermingle operations
generated from any of the active conjuncts; and (3)
when linear planning finishes with a goal conjunct, it
proceeds to one of the conjunct's siblings, while
nonlinear planning has no locus of control (all active
conjuncts are considered at all times). The bottom
line is that linear planning obeys a strict depth-first
progression. It looks at only one goal conjunct at a
time, continues looking at that conjunct until it is
resolved, and moves on to one of the conjunct's
siblings when it is resolved. Nonlinear planning, on
the other hand, is free to move around at will.

Given this breakdown of the differences between
the two methods, it can be used to generate methods
intermediate between the two extremes. One such
intermediate method is like linear planning, except
that no decomposition occurs before operation

185

^o^ Close-Door
(5/6)

► • • •

Figure 2:
blocks world.

Trace of nonlinear planning in the

generation; or equivalently, it is like nonlinear
planning, except that the conjunctive goal in the
recursive step consists of only the selected operation's
preconditions. Figure 3 shows a trace of such a
method in a simple robot domain. This trace also
contains two simplifications with respect to the traces
we have seen so far. The first simplification is that
the original conjunctive goal is not represented as an
operation. Instead it is represented directly as the
(only) end the agent is to achieve. The second
simplification is that when an applicability impasse
occurs, it is pursued directly by a simulation using
operations generated via means-ends analysis from
the impassed operation's preconditions. This
contrasts with the more involved approach used in
the previous traces, where there is an intermediate
step of creating a new operation for the new
conjunctive goal, and simulation isn't used until an
execution impasse occurs on this new operation.
Other such simplifications — eliminations of impasse
levels — are also possible under the appropriate
circumstances.

The trace begins with the pursuit of the
conjunctive goal via a simulation. When
applicability impasses occur during the simulation,
further simulation is performed to pursue them. This
method can violate the strict depth-first progression

Figure 3: Trace of intermediate planning in
the robot domain, starting from the pursuit of
the conjunctive goal. The task is to find the
shortest path for achieving the problem in
Figure 4, so evaluations correspond to minimal
path lengths.

3 .—fcl D c

B

< 1
1 1

'"H
t

Figure 4: Initial state and goal for the
robot-domain problem. The goal conjuncts are
dashed (move block C into room 7 and close the
door between rooms 5 and 6.)

used by linear planning, but only during operation
selection for sibling conjuncts.

In addition to using simplifications such as those
in this last trace, another way to eliminate impasse
levels, and thus to simplify performance, is to
augment the agent's memory so that the impasses
don't occur. This can occur by deliberate
prestructuring of the agent's memory, or it can

186

happen dynamically via learning. As an example,
Figure 5 shows a control production learned for the
initial selection impasse in the intermediate trace
from Figure 3. This production, in conjunction with
others that are also learned, forms a control plan that
allows selection to proceed for this task in a totally
memory-driven fashion. Learned productions can
also potentially transfer to other situations, thus
allowing other selections to be performed in a
memory-driven fashion.

In the robot problem space,
want door <dl> closed

and box In room <r2>,

the robot is In room <rl>,
door <dl> Is to room <rl>,
door <d2> Is to rooms <r2> and <r3>,
door <d3> Is to rooms <rl> and <r2>,
door <d4> is to rooms <rl> and <r3>,
door <d5> Is to rooms <r3> and <r4>,
doors <dl> through <d5> are open,
box Is In room <r4>,
box is next to door <d5>,
box Is pushable,

operators and <o2> are candidates,
operator is Close-Door(<dl>),
operator <o2> is

Push-Through-Door(, <r3>, <r2>)

—>

prefer to <o2>.

Figure 5: Control production learned for the
initial selection impasse in the intermediate
robot trace of Figure 3. Angle brackets denote
variables, and different variables bind to different
objects.

3.2. Termination
Termination covers strategies that abort lines of

development (that is, sequences of operation
executions) that result in impasses. It leads to a class
of what can be called completeness methods, because
they assume that memory can be complete enough for
successful step performance. In applicability
completeness, lines of development are terminated if
they lead to applicability impasses. When this
response is used for execution-time applicability
impasses, it aborts any problem in which a selected
operation is not applicable. When this response is
used during planning-time applicability impasses, it
focuses effort on lines containing operations known to
be applicable. As an example, consider the blocks-
world problem presented in the previous subsection.
If this is initially pursued as with linear planning, but

applicability impasses are responded to with
termination, the behavior shown in Figure 6 arises.
This behavior can be described as a search through
the permutations of (subsets of) the operations
generated for the original goal conjuncts. The
planning methods described in the previous section
also searched through sets of permutations, but they
were different sets. Those methods had the
additional ability to introduce new goal conjuncts —
from the preconditions of selected operations — and
thus to introduce new permutations based on the
operations generated from these conjuncts. To
counterbalance this increased flexibility, the linear
and intermediate methods then use goal boundaries
to restrict the set of permutations that are
considered.

^X

• •

Fail

Figure 6: Trace of
completeness in the blocks world.

applicability

Other (not yet implemented) completeness methods
yield variations on this behavior. For example, with
selection completeness, lines of development that
yield selection impasses are terminated; essentially
giving up whenever an ambiguous choice is reached.
If termination is used for all impasses, pure memory-
driven behavior — reactive behavior(?) — is forced.

3.3. Suspension
Suspension covers strategies that delay the

development of lines that lead to impasses. An
example is execution suspension, where lines that lead
to operations with nonobvious execution methods are
delayed. It is like termination, except that it is

187

possible to return to the aborted lines at a later
point. It also corresponds to a form of least-
commitment behavior, in which there is a preference
to investigate "understood" lines first. No
suspension methods have been implemented so far in
Soar, and it is still to be determined whether Soar
provides the primitive functionality to implement
such responses in a straightforward fashion.

3.4. Obviation
Obviation consists of changing the performance

context so that the impasse no longer matters. It
covers strategies that reformulate either the ends (the
goal to be achieved) or the means (the operations) in
such a way that the impasse becomes irrelevant. The
difference between this and pursuit is that, in pursuit
the impasse is resolved, while in obviation changes
are made so that the impasse can be avoided without
being resolved. One classical example of an obviation
strategy is precondition abstraction, where
applicability impasses are obviated by deleting those
operation preconditions that lead to the impasses.
When this is done during planning, it can yield an
abstract plan which may be refined later. When this
is done during execution, it corresponds to an
attempt to bull through the constraints imposed by
the world.

Figure 7 shows what happens when obviation
(precondition abstraction) is used in response to the
applicability impasses that occur during planning for
the robot-domain problem of Figure 4. As before,
the original conjunctive goal is responded to via
pursuit (simulation), but now applicability impasses
are glossed over by assuming that unmet
preconditions are actually met — this is a local way
of deleting a precondition, without its affecting other
uses of the same operation — and the operation is
executed to the extent possible. Because the
abstraction of a precondition can lead to partial
execution of the corresponding operation, and thus to
the generation of an abstract state, the abstraction
propagates dynamically through the simulation (not
shown).

When the abstract simulations have successfully
completed, they yield an abstract plan that
determines what operations to perform during
execution. Figure 8 shows a control production
learned for the initial selection impasse in this trace.
This production is quite similar to the one learned in
the corresponding non-abstract trace (Figure 5),
except that many of the situational conditions are
missing. This occurs because successful completion of
the abstract simulation depends on fewer aspects of

Close-Door
(5/6)

See [Unruh, Rosenbloom, & Laird, 1987; Unruh & Rosenbloom,
1989; Unruh & Rosenbloom, 1990] for more details about, and
results from, impasse-driven abstraction in Soar; including the
presentation of more sophisticated methods, such as iterative
abstraction [Unruh & Rosenbloom, 1990].

Figure 7: Trace of precondition abstraction
in the robot domain, starting from the pursuit of
the conjunctive goal. The task is to find the
shortest path for achieving the problem in
Figure 4. A lexicographic evaluation function is
used whose first component is the number of
preconditions that have been deleted, and whose
second component is the minimal path length.

the situation. The result is a more general
production, which can be used in more situations,
though not necessarily always correctly.

In the robot problem space,
want door <dl> closed

and box in room <r2>,

the robot is in room <rl>,
door <dl> is to room <rl>,
door <d2> is to rooms <r2> and <r3>,
doors <dl> and <d2> are open,
box is pushable,

operators and <o2> are candidates,
operator is Close-Door(<dl>),
operator <o2> is

Push-Through-Door(, <r3>, <r2>)

prefer to <o2>.

Figure 8: Control production learned for the
initial selection impasse in the abstract robot
trace of Figure 7. Angle brackets denote
variables, and different variables bind to different
objects.

Refinement of the abstract plan occurs when the
operations that were abstracted during simulation are
reselected during execution. When applicability
impasses occur during execution, they are not
obviated, since this is quite difficult in the real world;
instead, they are responded to via pursuit methods.
If further applicability impasses occur during the
planning of this pursuit, then further abstraction

occurs (and so on). Figure 9 shows a fragment of the
refinement process for the trace in Figure 7. This
processing is just a continuation of the earlier trace
from the point where Close-Door (5/6) is selected
for execution. Once this is done, the operation is
executed without further impasses (the robot is
already in the room containing the door to be closed).
A random selection is then made between the other
two options, because their abstract evaluations are
equal, and an applicability impasse occurs. This
impasse is obviated, and processing continues. The
resulting behavior corresponds to multi-level
refinement, where the original plan is as abstract as
possible, and each level of refinement adds one more
level of detail. It arises here not because of the
deliberate construction of a multi-level agent, but
because: (1) obviation is used for applicability
impasses that occur during simulation, while pursuit
is used for applicability impasses that occur during
execution; and (2) the same processes occur during
planning and replanning.

Push-Through-Door
(C.4.7L

• • •

Figure 9: Refinement of the abstract plan in
the robot domain.

As with as-needed planning in general, impasse-
driven abstraction engages in some trade-offs with
respect to the more traditional, preprocessing
approaches to abstraction, such as
ABSTRIPS [Sacerdoti, 1974] and ALPINE [Knoblock,
1990]. The principal advantage is that the
determination of what to abstract when can be driven
by the dynamic needs of the agent in the context of
the problem to be solved. The principal disadvantage
is that, because abstraction is focused on obviating
the local impasse, rather than on optimizing global
performance, potentially powerful abstractions may

be missed.
In addition to obviating (abstracting) applicability

impasses, research in Soar on obviating (abstracting)
execution impasses in a computer-configuration
domain is reported in [Unruh, Rosenbloom, & Laird,
1987; Unruh & Rosenbloom, 1989]. This leads to
successive-refinement behavior for the execution of
operations. More general impasse-driven goal and/or
problem space reformulations are also conceivable,
but have not yet been investigated in any great
depth.

4. Relationship to Other Work
This work does not stand alone. Because the

flexibility of the framework comes from reflective
processing in response to impasses, there is a close
relationship to other work on meta-level architectures
and reflection [Maes & Nardi, 1988]. In focusing on a
set of standardized responses to behavioral impasses,
this work is very much in the spirit of repair
theory [Brown & VanLehn, 1980]. Veloso has
developed a nonlinear planner for the PRODIGY
architecture [Veloso, 1989], has proposed to use a
memory-driven (case-based) strategy to drive the
planning, and has identified a set of three general
responses to be made when a justification from a case
fails to apply [Veloso & Carbonell, 1990]. The
BUILD system employed the notion of "gripes" and
of "gripe handlers" that had flexible meta-level
access to the situation [Fahlman, 1974]. In TWEAK,
Chapman developed an integrative framework for
partial-order planning [Chapman, 1987].

5. Conclusions
Planning is an important, but still rather

disorganized, subdomain of artificial intelligence.
One route towards ameliorating this is to develop a
framework for planning behaviors. Not only might it
help bring organization to the field, but it might also
provide the basis for constructing flexible and
powerful planning agents.

In this article, we have described one on-going
research effort aimed at doing just this. The
framework is based on the combination of a basic
memory-driven agent, behavioral impasses, and
generic responses to these impasses. Learning is also
discussed as a way to compile impasse responses into
bounded memory structures, thus allowing future
behavior to be more memory-driven. Though the
framework is still quite a ways from completion,
several methods have already been covered, and
decomposed into combinations of more primitive
elements.

A number of things remain to be done. First, the
existing framework needs to be refined, especially in
areas like pursuit, where it casts too coarse a net.
Second, the scope of the framework must be
expanded to cover a wider range of planning

This assumption is relaxed in the iterative abstraction method.

189

behaviors, such as temporal planning. Covering these
may only require extending our understanding of the
existing framework, but it is likely that actual
extensions of the framework will also be required.
Third, a more systematic investigation is required in
which all of the generic responses are crossed with all
of the impasse types. This should reveal how
additional known planning methods are covered, and,
more importantly, may yield new interesting
methods. Fourth, investigations are needed into how
to intelligently mix the generic responses across
different types of impasses, and across different
impasses of the same type. We have already seen
some of this sort of mixing — of different forms of
pursuit, of pursuit with termination, and of pursuit
with obviation — but much more is possible. This
has the potential to generate both novel methods, and
more sophisticated versions of existing methods. For
example, more sophisticated abstraction methods
could be enabled by making decisions on an impasse-
by-impasse basis about whether to obviate or pursue
applicability impasses. This fits well within the
framework, but it is not yet clear what knowledge is
needed to make such decisions in an intelligent
fashion. Fifth, and finally, this framework needs to
be tied in with work on weak problem solving
methods and on skill acquisition. On the former, the
weak problem solving methods — such as depth-first
search and hill climbing — cover a large segment of
the generic pursuit methods, so efforts at developing
integrative frameworks for the weak methods [Laird
& Newell, 1983; Bennett & Dietterich, 1986; Nau,
Kumar and Kanal, 1982] are particularly relevant.
On the latter, augmenting memory with new plan
information is a form of skill acquisition, so work on
such topics as control-rule and macro-operator
acquisition [Fikes, Hart, & Nilsson, 1972; Korf, 1985;
Laird, Rosenbloom, & Newell, 1986; Langley, 1985;
Mitchell, Utgoff, & Banerji, 1983] is particularly
relevant.

Acknowledgements
We would like to thank John Laird and Bill

Swartout for helpful discussions on this topic.

References

Bennett, J. S., & Dietterich, T. G. (1986). The test
incorporation hypothesis and the weak
methods (Tech. Rep. 86-30-4). Department of
Computer Science, Oregon State University.

Brown, J. S. & VanLehn, K. (1980). Repair theory:
A generative theory of bugs in procedural skills.
Cognitive Science, 4, 379-426.

Chapman, D. (1987). Planning for conjunctive
goals. Artificial Intelligence, 82, 333-377.

Fahlman, S. (1974). A planning system for robot
construction tasks. Artificial Intelligence, 5,
1-49.

Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1972).
Learning and executing generalized robot plans.
Artificial Intelligence, 8, 251-288.

Golding, A. R., Rosenbloom, P. S., & Laird, J. E.
(1987). Learning general search control from
outside guidance. Proceedings of the Tenth
International Joint Conference on Artificial
Intelligence. Milan: IJCAII.

Knoblock, C. A. (1990). Learning abstraction
hierarchies for problem solving. Proceedings of
the Eighth National Conference on Artificial
Intelligence. Boston: AAAI, In press.

Korf, R. E. (1985). Macro-operators: A weak
method for learning. Artificial Intelligence, 26,
35-77.

Laird, J. E. (1983). Universal Subgoaling. Doctoral
dissertation, Carnegie-Mellon University,
(Available in Laird, J. E., Rosenbloom, P. S., &
Newell, A. Universal Subgoaling and
Chunking: The Automatic Generation and
Learning of Goal Hierarchies, Hingham, MA:
Kluwer, 1986).

Laird, J. E. & Newell, A. (1983). A universal weak
method: Summary of results. Proceedings of
the Eighth International Joint Conference on
Artificial Intelligence. Karlsruhe: IJCAII.

Laird, J. E., & Rosenbloom, P. S. (1990). Integrating
execution, planning, and learning in Soar for
external environments. Proceedings of the
Eighth National Conference on Artificial
Intelligence. Boston: AAAI, In press.

Laird, J.E., Hucka, M., Yager, E.S., and Tuck, CM.
(1990). Correcting and extending domain
knowledge using outside guidance. Proceedings
of the Seventh International Conference on
Machine Learning. Austin.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
Soar: An architecture for general intelligence.
Artificial Intelligence, 88, 1-64.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986).
Chunking in Soar: The anatomy of a general
learning mechanism. Machine Learning, 1,
11-46.

Langley, P. (1985). Learning to Search: From weak

190

methods to domain-specific heuristics. Cognitive
Science, 9, 217-260.

Maes, P., & Nardi, D. (Eds.). (1988). Meta-Level
Architectures and Reflection. Amsterdam:
North Holland.

Mitchell, T. ML, Utgoff, P. E., & Banerji, R. (1983).
Learning by experimentation: Acquiring and
refining problem-solving heuristics. In
R. S. Michalski, J. G. Carbonell, T. M. Mitchell
(Eds.), Machine Learning: An Artificial
Intelligence Approach. Palo Alto, CA: Tioga
Publishing Co.

Nau, D. S., Kumar, V. and Kanal, L. (1982). A
general paradigm for A.I. search procedures.
Proceedings of the National Conference on
Artificial Intelligence. Pittsburgh: AAAI.

Reich, Y. (1988). Learning Plans as a Weak Method
for Design. Department of Civil Engineering,
Carnegie Mellon University, March, 1988,
Unpublished.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1988).
Meta-levels in Soar. In P. Maes & D. Nardi
(Eds.), Meta-Level Architectures and
Reflection. Amsterdam: North Holland.

Rosenbloom, P. S., Newell, A., & Laird, J. E. (1990).
Towards the knowledge level in Soar: The role
of the architecture in the use of knowledge. In
K. VanLehn (Ed.), Architectures for
Intelligence. Hillsdale, NJ: Erlbaum. In press.

Sacerdoti, E. D. (1974). Planning in a hierarchy of
abstraction spaces. Artificial Intelligence, 5,
115-135.

Sacerdoti, E. D. (1977). A Structure for Plans and
Behavior. New York: Elsevier.

Stefik, M.J. (1981). Planning with constraints
(MOLGEN: Part 1). Artificial Intelligence, 16,
111-139.

Stefik, M.J. (1981). Planning and meta-planning
(MOLGEN: Part 2). Artificial Intelligence, 16,
141-169.

Unruh, A. & Rosenbloom, P. S. (1989). Abstraction
in Problem Solving and Learning. Proceedings
of the Eleventh International Joint
Conference on Artificial Intelligence. Detroit:
IJCAII.

Unruh, A., & Rosenbloom, P. S. (1990). Two new
weak method increments for abstraction. T.

Ellman (Ed.), Working Notes of the AAAI-90
Workshop on Automatic Generation of
Approximations and Abstractions. Boston:
AAAI, In press.

Unruh, A., Rosenbloom, P. S., & Laird, J. E. (1987).
Dynamic abstraction problem solving in Soar.
Proceedings of the Third Annual Aerospace
Applications of Artificial Intelligence
Conference. Dayton, OH.

Veloso, M. M. (December 1989). Nonlinear problem
solving using intelligent casual-committment
(Tech. Rep. 89-210). School of Computer
Science, Carnegie Mellon University.

Veloso, M. M. & Carbonell, J. G. (1990). Integrating
analogy into a general problem-solving
architecture. M. Zemankova and Z. Ras (Eds.),
Intelligent Systems. .

Wilkins, D.E. (1984). Domain-independent planning:
representation and plan generation. Artificial
Intelligence, 22, 269-301.

191

0-Plan2: Choice Ordering Mechanisms in
an AI Planning Architecture *

Austin Täte
Artificial Intelligence Applications Institute

University of Edinburgh
80 South Bridge

Edinburgh EH1 IHN
United Kingdom

Abstract

0-Plan2 is an AI planning architecture which
supports research into a number of aspects of
planning, scheduling and control. It is based
on earlier work on the O-Plan System which
was directed towards plan generation. The pa-
per explores the different types of choice or-
dering decisions which need to be made in an
architecture for command and control. The
mechanisms for choice ordering and selection
in the original O-Plan system were found to
be too general for efficient use for all purposes.
The paper describes a number of choice order-
ing mechanisms provided in the 0-Plan2 Archi-
tecture which provide specialised mechanisms
more suited to the range of different ordering
problems that arise in planning, scheduling and
control applications.

1 Introduction

O-Plan is a continuation of earlier work on Nonlin [Täte,
1977] and was influenced by a number of other systems
developed in the late '70s and early '80s. In particular
it inherits features from:

• NOAH: [Sacerdoti, 1977] by using a least commit-
ment search strategy based on a hierarchical repre-
sentation of plans in which actions may be partially
ordered.

• Nonlin: which introduced the notion of goal struc-
ture as a means of recording the rationale behind
actions in the plan, and also the use of typed precon-
ditions as an aid to search space control. A declar-
ative Task Formalism (TF) was also used to provide
a description of applications to the planner.

• Deviser: [Vere, 1981] itself derived from Nonlin but
was extended to handle time and events.

'This work is supported by the US Air Force/European
Office of Aerospace Research and Development by grant num-
ber EOARD/88-0044 monitored by Dr Nort Fowler at the
Rome Air Development Center. The views expressed are
those of the author only.

• Molgen: [Stefik, 1981] notable for its ability to per-
form object selection using least commitment prin-
ciples. This is supported by constraint formulation
and propagation techniques.

• McDermott: [McDermott, 1978] provided the no-
tion of defining a plan to encompass the decisions on
plan structure already taken and outstanding prob-
lems still to be handled by the planner.

• OPM: [Hayes-Roth k Hayes Roth, 1979] provided
an opportunistic planning framework in a blackboard
architecture. It introduced the concept of cognitive
specialists which can make certain kinds of decisions
to alter the plan as it is being built and showed how
measures of the worth of invoking these specialists
could be utilised.

O-Plan borrows from these systems, but importantly
it presents a framework, or architecture, which enables
these techniques to be incorporated into a single system
in a uniform way. The system is fully described in [Currie
k Täte, 1989].

0-Plan2 is a more portable redesign and reimplemen-
tation of the O-Plan architecture in a Common Lisp, X-
Windows and Unix environment. It improves on O-Plan
in a number of ways. This paper will give an overview
of the 0-Plan2 architecture and describe the different
mechanisms provided within the architecture to enable
the planning and control system builder to select suitable
implementation methods for describing choices, posting
constraints which will restrict choice, postponing choice
making decisions until the most opportune time to make
them, and triggering choices that are ready to be acted
upon.

2 0-Plan2 Architecture

0-Plan2 is a domain independent architecture to sup-
port the construction of planning, scheduling and control
systems. By providing suitable versions of the Domain
Description, Plan State, Knowledge Sources and Sup-
port Tools, the architecture can be tailored and made
more efficient for specialised use. Three different sys-
tems are currently being explored using the same basic
architecture.

• An activity based task planner: O-Plan is being re-
tained as the name for the activity based task plan-

192

ning application of the architecture.

• A scheduler: TOSCA is a variant of the system spe-
cialised to manufacturing scheduling applications.
Here the plan state includes information on the
work capacity of the machines available and re-
source based representations of the schedules being
constructed. Knowledge sources are specialised to
resource analysis and resource based planning.

• A planner with a logical temporal representation: a
project is underway to employ a temporal logic used
for temporal data bases as the basis for the plan
state. Specialised Domain Description, Knowledge
Sources and Support Tools will allow the planner to
generate plans in this representation.

The basic 0-Plan2 architecture with definitions of its
parts suited to activity based task planning is shown in
Figure 1.

The Task Formalism or TF domain description is com-
piled into static data structures, to be used during the
plan generation process - in particular, activities are rep-
resented as schemas. The left hand side of Figure 1
denotes the plan state, which comprises the emerging
plan (based on the partial order of activities), the list of
plan flaws, and internal detail such as the Goal Struc-
ture [Täte, 1977], the effects of activities (as in NOAH'S

Table of Multiple Effects or TOME [Sacerdoti, 1977]) and
plan variables. The flaws are posted onto agenda lists,
which are simply lists of outstanding tasks to be per-
formed during the planning process, and are picked off
by an overall controller to be processed by the knowl-
edge sources in the middle of the diagram. The knowl-
edge sources provided represent the planning knowledge
of the system and are referred to as plan modification
operators. Knowledge sources run on one or more knowl-
edge source platforms which are able to run some or all
of the available knowledge sources. Knowledge sources
in turn may add detail to the plan state, for example by
expanding actions to greater levels of detail, establish-
ing how conditions are satisfied, adding ordering links
or choosing bindings for plan variables. The knowledge
sources may also post new flaws as a result of discover-
ing constraint violations, detecting goal interactions and
other problems. The knowledge sources also provide the
means whereby a user can assist the planner.

There are a range of flaw types and each is matched
with an appropriate knowledge source which can pro-
cess the particular flaw. Recognised flaw types in
the activity based task planner include expand an
action, satisfy a condition, add a link, bind a
plan variable and even call the user. This ap-
proach allows for the extension of the capabilities of the
system. O-Plan knowledge sources relate to plan gener-
ation only. The early versions of 0-Plan2 will replicate
the plan generation features of O-Plan. However, new
flaw types and knowledge sources will be provided in O-
Plan2 to provide an experimental platform for planning
and control in a simplified distributed environment com-
prising a ground based planner and a space-borne exe-
cution agent. The 0-Plan2 architecture will support the
reasoning of both agents and the extraction and patch-

ing in of plans fragments between the on-going control
environments of both agents [Täte, 1989].

0-Plan2 is built up in a succession of layers of func-
tionality in order to support the control requirements in
a concise manner. At the lowest level is a simple fact
storage and retrieval database. This is used to provide
support for effect and condition maintenance in a context
layered fashion. In turn the effect and condition manager
maintains "clouds" of (aggregated) effects and holding
periods (ranges) for effects contributing to the satisfac-
tion of necessary conditions in the plan state being de-
veloped [Täte, 1986]. Moving up the layers, this is turn
provides support for QA (Question Answering) which is
the basic reasoning component within the system. QA re-
sults drive plan state alterations made by the planner's
knowledge sources which in turn are maintained by the
net management and time point network manager mod-
ule. To facilitate re-use of support tools across a range
of different specialisations of the 0-Plan2 architecture,
there is a clear distinction between the plan state specific
description (called by us the associated data structure)
and the underlying management of time points and tem-
poral relationships.

0-Plan2 is given tasks by adding entries to its plan
state flaw list (agendas). 0-Plan2 maintains a partial
plan at all stages, and makes alterations to the partial
plan and the flaw list as it proceeds. The partial plan
represents a complete description of a set of possible
plans which are only partially specified. The controller is
responsible for selecting an outstanding flaw to process
whenever a knowledge source can be activated on a wait-
ing knowledge source platform. The domain information
is consulted by knowledge sources as they run. This lets
knowledge sources access task descriptions, definitions
of resources and other domain constraints. The domain
information also gives access to the operator schemas
which define higher level activities in terms of more de-
tailed activities. There will often be more than one plan
modification possible; that is, there will often be a choice
of how to remove a flaw. These choices lead to search.
Normally, the consequences of a decision are maintained
by the support tools and information about the selec-
tion made is stored as dependency information within
the plan state. However, there are occasions on which
alternative plan states may need to be generated to ex-
plore the options. O-Plan and 0-Plan2 allow for such
alternative based explorations.

O-Plan searches through a space of partial plans, mod-
ifying one plan to obtain another. It seeks a complete
plan that is free of flaws - though this may not be achiev-
able in continuous command and control applications.
The plans produced by the activity based task planner
variant of 0-Plan2 are described in networks. The nodes
in the network denote actions, and the arcs signify an or-
dering on action execution. Each node has information
associated with it which describes the action's conditions
and effects. Time and resource information can also be
associated with each action in a plan network node.

193

CONTROLLER

PLAN STATE

Q^
]

• 1

• (

I
•

• \

= LAN NETWOB

COME

30ST

IESOURCE
USAGE

TIME
WINDOWS

K

1
|

AGENDAS (Fl 1W:)

INPUT
EVENTS

BIND A VARIABLE

ADD A LINK

SATISFY A CONDITION

EXPAND AN ACTIVITY

KNOWLEDGE
SOURCES

SUPPORT TOOLS

• CONSTRAINT SATISFACTION

• TOME/GOST MANAGER

• TIME POINT NETWORK MANAGER

• QUESTION ANSWERING

• DEPENDENCY RECORDING

• EVENT MANAGER

• GRAPH DRAWER

DOMAIN
INFORMATION

OPERATOR
• SCHEMAS

PROCESS
• SCHEMAS

RESOURCE
• DEFINITION

TASK
• DEFINITION

• CONSTRAINTS

(STATIC)

OUTPUT
EVENTS

Figure 1: 0-Plan2 Architecture

194

3 Ordering Mechanisms in O-Plan

The O-Plan system seeks to include mechanisms to al-
low for the implementation of an efficient planning sys-
tem able to take an opportunistic approach to selecting
where computational effort should be concentrated dur-
ing planning. This aim was only partially achieved in
the original O-Plan. The basic mechanisms are listed in
the following sections.

3.1 Building up information in an Agenda
Record

O-Plan included the ability to allow a knowledge source
to examine a possible decision point (represented by the
agenda entry it was asked to process) and to add infor-
mation relating to the choice to the fields of the agenda
record. If the choice did not become suitably tightly re-
stricted as a result of the addition of this information,
it is possible to put the agenda entry back onto the out-
standing flaws list with improved information for decid-
ing on the time to reselect it for processing. The ability
to build up information around an agenda entry in an
incremental way prior to a final knowledge source activa-
tion is an important feature that ensures that work done
in accessing data bases and checking conditions can be
saved as far as possible when processing is halted. There
are some similarities to mechanisms within real-time re-
sponsive architectures such as RT-1 [Sridharan, 1988].

3.2 Granularity of Knowledge Sources

Each knowledge source within the 0-Plan2 architecture
encodes a piece of planning knowledge. For example,
how to expand an action, bind a variable, check a re-
source, etc. From a modularity viewpoint, there is some
advantage in having a very fine grain of knowledge source
to implement planning knowledge. However, this can
lead to tens of agenda entries and knowledge source ac-
tivations with the overheads associated with such ac-
tivations for even the simplest types of action expan-
sion. In simpler planners, such as Nonlin, an expansion
is efficiently handled as an atomic operation. There is a
conflicting desire to have efficient large grain knowledge
sources implementing planning knowledge and very fine
grain knowledge sources detailing each individual step of
some higher level plan modification operator.

With a finer grain of knowledge source, it was also
found that ordering relationships between agenda entries
left in the agenda list had to be stated to ensure efficient
processing. The controller was then required to unravel
the web of activation orderings that resulted. A special
form of agenda entry called a sequence was implemented
to assist the controller in this task, it would only consider
the head of the sequence for activation at any time, sub-
sequently releasing the following agenda items clustered
in the sequence in the order indicated. This process is
similar to the control blocks used in the Tecknowledge
S.l system [Tecknowledge, 1988].

3.3 Priority of Processing Agenda Entries

O-Plan assigns priorities to every flaw placed on the
agendas at the time they are placed. The priorities are

calculated from the flaw type, the degree of determi-
nancy of the flaw and information built up in the Agenda
Record as described earlier. These provide measures
of choice within the flaw. Two heuristic measures are
maintained in each agenda entry. One called BRANCH-1
indicates the immediate branching ratio for the choice
point. An upper bound on this can be maintained
quite straightforwardly. The second measure is called
BRANCH-N and gives a heuristic estimate of the num-
ber of distinct alternatives that could be generated by
a naive and unconstrained generation of all the choices
represented by the choice point.

In O-Plan, three agendas are maintained to efficiently
select between agenda entries which are ready for knowl-
edge source activation and ones awaiting further infor-
mation to bind open variables in the agenda information.
This is described in [Currie & Täte, 1985]. Eventually
though, the ready to run agenda entries are simply rated
according to a numerical priority maintained for each
agenda entry on the basis of flaw type and the BRANCH-
1 and BRANCH-N estimators. This forms too simplistic
a measure for allowing the controller to decide between
waiting agenda entries. Consideration was given to a
rule based controller with knowledge of other measures
of opportunism but no implementation of this was done
within the original O-Plan.

4 Ordering Mechanisms in 0-Plan2
0-Plan2 seeks to provide a more coherent set of mecha-
nisms to enable the planning and control system builder
to select suitable implementation methods for describing
choices, posting constraints which will restrict choice,
postponing choice making decisions until the most op-
portune time to make them, and triggering choices that
are ready to be acted upon.

4.1 Knowledge Source Stages

The O-Plan mechanism for building up information in
an agenda entry prior to making some selection between
alternatives was a very useful feature but proved difficult
to use in practice. A knowledge source had to be acti-
vated to initiate processing which might simply add a lit-
tle information to the agenda entries and then suspend
to allow the controller to decide whether to progress.
This is very inefficient.

In 0-Plan2, knowledge sources are defined in a series
of stages. There can be one or more stages, only the last
may make alterations to the plan state (thus locking out
other knowledge source final stages which can write to
the same portion of the plan state). Any earlier stages
may build up information useful to later stages. At the
end of any stage, the knowledge source must be prepared
to halt processing if asked to by the controller. If it is
asked to halt at a stage boundary, the knowledge source
may summarise the results of its computation in a field
of the agenda record provided for this purpose. A con-
troller directed support routine is called by the knowl-
edge source at the end of each stage to identify whether
it must halt or may continue. This allows the controller
to dynamically re-direct computation as it considers all
the information available to it, while providing a simple

195

and efficient way for the knowledge source to continue
computation without intermediate state saving while it
continues to receive a go-ahead from the end of stage
continuation authorisation routine.

A Knowledge Source Formalism for 0-Plan2 is being
designed to allow for stage definition and to assist with
declaring the restrictions on the plan state portions af-
fected by the final plan state modifying stage of the
knowledge source - to assist in lock management.

4.2 Knowledge Source Triggers

In 0-Plan2, a mechanism of setting triggers on agenda
entries for activating knowledge sources (and an individ-
ual stage of a knowledge source if desired) is provided.
The triggers may use various "items" of data available
within the plan state and other global information avail-
able to the planner. These may include things such as
the availability of a specific binding for a plan variable,
the satisfaction of a condition at a specific action node
in the plan network, the use of a specific resource, the
occurrence of an external event, information from the
"clock" within the planner, etc. The Knowledge Source
Formalism referred to earlier will also be used to define
triggers on knowledge source stages. The triggering con-
structs in the language will initially be quite restrictive to
ensure that efficient agenda entry triggering mechanisms
can be implemented. However, as we gain experience, we
expect the triggering language to be quite comprehen-
sive. A knowledge source may also dynamically create
a trigger on a continuation agenda entry when halting
processing at a stage boundary.

Only agenda entries which are currently triggered will
be available to the controller for decisions on which en-
tries to activate through to a knowledge source running
on a knowledge source platform.

4.3 Compound Agenda Entries

Individual simple agenda entries can be grouped together
into compound agenda entries. Only the head entries
in the compound agenda entry are considered at any
time by the controller (and possibly by the triggering
mechanism considered above), thus cutting down on the
amount of processing required by the controller to select
the next agenda entry to execute when such pre-defined
orderings can be specified. Compound agenda entries
can be made by knowledge source to implement some
definite planning strategy or to implement planning al-
gorithms with finer grain knowledge sources to provide
modularity and real time response improvement.

A Support Routine is to be provided in 0-Plan2 to
allow any knowledge source to easily and reliably build
and return a compound agenda entry.

4.4 Controller Priorities

The controller is given the task of deciding which of the
current set of triggered agenda entries should be run on
an available knowledge source platform. It does this by
considering the priority and measures of opportunism
of the agenda entry. Four priority levels are available
within 0-Plan2 - Low, Medium, High and Emergency.
The Emergency priority level is only available to handle

incoming external events. The RT-1 system has simi-
lar priority based processing arrangements [Sridharan,
1988]. In certain cases, an 0-Plan2 implementation will
possess knowledge source platforms dedicated to pro-
cessing specific real-time responsive events appearing as
agenda entries - thus allowing for reliably real-time re-
sponse to events categorised as Emergency priority.

A waiting knowledge source platform will be able to
run one, several, many or all knowledge sources. Any
restriction on a specific platform will be known to the
controller. Only triggered agenda entries at the high-
est priority level which can be processed on a waiting
knowledge source are considered by the controller on
each cycle. Where there is still choice, a range of mea-
sures of opportunism and priority are employed to make
a selection. The underlying principle is to make a se-
lection according to a strategy given to the controller.
Initially this strategy will use user selected preferences
or by default will seek to reduce search to the extent
it can judge this (reflecting the opportunistic generative
planning nature of the early versions of 0-Plan2 - like
its predecessor O-Plan). Measures such as BRANCH-1
and BRANCH-N described earlier for O-Plan are relevant
to this. However, the use of a utility function guided
by task specifiers given to the controller will be explored
later for 0-Plan2 when it is used in continuous command
and control applications.

5 Summary

0-Plan2 seeks to provide a more coherent set of mecha-
nisms to enable the planning and control system builder
to select suitable implementation methods for control-
ling the flow and ordering of making choices in an AI
planner. These mechanisms are:

• the use of stages in knowledge sources to allow for
a linear thread of computation to be defined which
can be assumed to run through to completion, but
provides a means for interruption at defined staging
points.

• the definition of triggers on knowledge sources and
knowledge source stages to provide a clear means to
delegate a higher level of knowledge source activa-
tion checks to the controller.

• the use of compound agenda entries to put direct de-
pendencies of some tasks on others that must com-
plete earlier. This allows complex computational
dependencies and strategies to be created.

• the use of agenda manager priorities to allow the
controller to select appropriate ready-to-run agenda
entries and match these to waiting knowledge source
platforms.

All the mechanisms described above are part of the
0-Plan2 planner now being constructed.

Acknowledgements

My thanks to my colleagues on the O-Plan and 0-Plan2
projects: Ken Currie, Brian Drabble and Richard Kirby.

196

References

[Currie k Täte, 1985] Currie, K.W. k Täte. A. O-Plan:
control in the open planning architecture. In proc. of
the BCS Expert Systems '85, Warwick, UK, Cam-
bridge University Press, 1985.

[Currie k Täte, 1989] Currie, K.W. k Täte, A. O-Plan:
the Open Planning Architecture. Submitted to the
AI Journal. Also AIAI-TR-£7. 1989.

[Hayes-Roth k Hayes Roth, 1979] Hayes-Roth, B. k
Hayes-Roth, F. A Cognitive Model of Planning.
Cognitive Science,pp 275 to 310, 1979.

[McDermott, 1978] McDermott, D.V. A Temporal Logic
for Reasoning about Processes and Plans In Cogni-
tive Science, 6, pp 101-155, 1978.

[Sacerdoti, 1977] Sacerdoti, E. A structure for plans
and behaviours. Artificial Intelligence series, publ.
North Holland, 1977.

[Sridharan, 1988] Sridharan, N. Practical Planning Sys-
tems, Rochester Planning Workshop, AFOSR, 1988.

[Stefik, 1981] Stefik, M. Planning with constraints. In
Artificial Intelligence, Vol. 16, pp. III-I4O. 1981.

[Täte, 1977] Täte, A. Generating project networks. In
procs. IJCAI-77, Cambridge, USA, 1977.

[Täte, 1986] Täte, A. Goal Structure, Holding Peri-
ods and "Clouds". In Reasoning about actions and
plans, Morgan-Kaufmann, 1986.

[Täte, 1989] Täte, A. Coordinating the activities of a
planner and an execution agent. In Procs. of the
Second NASA Conference on Space Telerobotics,
(eds. G.Rodriguez & H.Seraji), JPL Publication 89-
7 Vol. 1 pp. 385-393, Jet Propulsion Laboratory,
Pasadena, CA, 1989.

[Täte, 1990] Täte, A. Interfacing a CAD system to an
AI planner, paper to the SERC seminar on inte-
grating knowledge-based and conventional systems,
Edinburgh, May 1990. Also Artificial Intelligence
Applications Institute AIAI-TR-76, 1990.

[Tecknowledge, 1988] Tecknowledge, s.l product De-
scription, Tecknowledge Inc., 525 University Av-
enue, palo Alto, CA 94301. 1988.

[Vere, 1981] Vere, S. Planning in time: windows and du-
rations for activities and goals. IEEE Transactions
on Pattern Analysis and Machine Intelligence Vol.
5, 1981.

[Wilkins, 1988] Wilkins, D. Practical Planning. Morgan
Kaufman, 1988.

197

Hypergames and AI in Automated Adversarial Planning

Russell R. Vane, ID
The Young Guard Company

400 Montpelier Road
Great Falls, VA 22066

Paul E. Lehner
Center for Excellence in C3I
George Mason University

4400 University Drive
Fairfax, VA 22030

plehner@gmuvax.gmu.edu

ABSTRACT

This paper1 examines how game theory techniques can
be combined with knowledge-based planning procedures
to reason about an adversary's beliefs and the extent to
which a competitive agent is capable of defeating a plan.
The main results are that (a) the hypergame provides a
convenient mechanism for representing and reasoning
about knowledge/data not available to a competitive
agent and (b) automated implementation of this form of
game theory-based reasoning is conceptually
straightforward.

1.0 INTRODUCTION

In multi-agent environments effective planning requires
that the planner have an ability to reason about beliefs,
intentions, and likely actions of other agents. This fact
has lead various researchers to explore alternative
formalisms for reasoning about other agents' beliefs (e.g.
Halpem, 1986; Vardi 1988). Unfortunately, most of these
approaches only deal with categorical assertions about
belief; and agent either does or does not believe some
sentence. Statements such as Probably 'A believes X,' or
Probably 'A is not aware of option X' cannot be reasoned
about. This is a severe limitation, since it is rare that
one can predict an agent's actions, particularly those of
an adversary, with an precision. Practical planning
requires the generation of plans that are flexible and
robust against probable actions of other agents.

In this paper we show how game theory techniques can
be combined with AI planning techniques to reason
probabilistically about an agent's beliefs. At the same
time, we demonstrate how AI techniques provide a new
approach to the "outguessing problem" in game theory.

1 This research is part of an ongoing research program in
automated adversarial planning. Support for this research
program is provided by the Center of Excellence in Command,
Control, Communications, and Intelligence at George Mason
University. The Center's general research program is sponsored
by the Virginia Center for Innovative Technology, MITRE
Corporation, the Defense Communications Agency, CECOM,
PRC/ATI, ASD(C3I), TRW, AFCEA, and AFCEA NOVA.

This discussion focuses on adversarial
planning/competitive games. However, the basic
approach and all the algorithms are applicable to
noncompetitive planning problems as well.

The material below is decomposed into two parts.
Section 2.0 is a self-contained discussion of game theory
and on use of hypergames in adversarial planning.
Section 3.0 then discusses how to implement this form of
reasoning as part of an automated adversarial planning
system.

2.0 GAMES AND HYPERGAMES

In this section we are going to introduce some primitive
game theory concepts, develop a consistent set of terms,
and give you a peek at hypergames. This system was
specifically designed to address problems which are
factorial or exponential in terms of possible strategies.

GAME THEORY
In game theory, an opponent is referred to as a player.
Each player has a countable number of choices, called
strategies. The possible outcomes of a game are a
function of all of the strategies available to both players.
The optimal solution of a game may be a pure strategy or
a mixture of pure strategies. A pure strategy is a single
strategy. A mixed strategy combines two or more of a
player's pure strategies. If the outcomes for one player
are the negative of the outcomes for the other player,
then the game is called a two-player, zero-sum game.
Only one value for each strategy pair is needed to
describe this kind of game. We usually show the
outcome from player A's perspective.

Extensive Form

The extensive game is a representation of all the
possible play by players and chance in a game. For even
games as simple as 2-player Monopoly™, this form must
consider all die rolls for both players and their buying
decisions (estimated conservatively as 11x2x2, or 44) for
each turn. This form has its computational problems.
However, it is the most information containing form, so a
more rigorous definition follows.

198

The extensive form of a game is a finite tree
which represents all of the possible moves in a game. Its
origin, o, represents the initial starting position. Each
node of the tree is a possible future position. Each edge
of the tree is a player's alternative. The endnodes are
those that have no future alternatives, that is the game is
over when an endnode position is reached. Any path
from the origin to an endnode is called a play.

The tree itself can be depicted as a n-ply tree,
where the number of opponents, n, are represented at
each ply. Each ply is used to show the alternatives
available to the player being examined. In standard
games such as Monopoly, Poker, and Chess each n-ply
are called a turn. Each ply can represent a simultaneous
decision or a sequential one. Therefore a Planner which
plans m turns ahead accounts for m x n plies in the tree.

A's strategies

B's strategies 1

Outcomes (1,1)

Normal Form

(1,2) (2,1) (2,2)

The normal (or matrix) form of a game is a
synopsis of the extensive form. The normal form is based
on choices of strategy, which may be thought of as a
complete set of contingency plans for every situation
which might arise. Although it is not easy to identify all
of the strategies available to a player, it is theoretically
possible to do this for every finite game. In this form
every player has but one move, the choice of a strategy.
Most examples in Game Theory are shown in this form.

Player B

Player A B's Strategy 1 B's Strategy 2

A's strategy 1 outcome(l,l) outcome(l,2)

A's strategy 2 outcome(2,l) outcome(2,2)

Normal form of 2 Player Game

Games represent the ultimate case of a lack of
information about the reasoning process of the opponent.
The result is that a very conservative criterion, the
MAXIMIN and MINIMAX criterion, is usually proposed
for two player zero-sum games. This criterion selects a
strategy which yields the best of the worst possible
outcomes.

MAXIMIN is the maximum of the minimums. It is
the lower bound of the value of the game.

MINIMAX is the minimum of the maximums. It is
the upper bound of the value of the game.

An optimal solution is defined as a strategy in which
neither player gains a benefit from altering his strategy.
In this case the game is said to be stable or in a state of
equilibrium.

Player B

Player A Strategy
1

Strategy
2

MAXIMTN

A's strategy 1 2 3 2

A's strategy 2 -1 4 -1

MINIMAX 2 4 2

An Example of a Game with a Pure Strategy Equilibrium

The example provides the following information:

A's MAXIMIN (rightmost column) strategy is
strategy 1 with a value of 2, italicized and
bolded in the MAXIMTN column.

B's MINIMAX (bottommost row) strategy is
strategy 1 with a value of 2, italicized and
bolded in the MINIMAX row.

The game is stable and the value of the game is 2 (in the
double box). We will adopt two terms from the US Army:

Course of Action (COA) - a strategy for our forces.
Plan - a strategy for enemy forces.

Enemy

US Forces Plan 1 Plan 2 MAXIMIN

C0A1 2 3 2

C0A2 -1 4 -1

MINIMAX 2 4 2

An Example of a US Forces Game with US
Outcomes.

Mixed strategy - a probabilistically weighted use of more
than one plan or CO A.

199

Enemy

% 0% 42% 58%

% US Forces Plan
1

Plan
2

Plan
3

MAXIMIN

75% COM 2

-1

1

3

4

-4

0

-2

5

0

0% COA2 -2

25% COA3 4

MINIMAX 2 4 5 0to2

An Example of a US Mixed Strategy

Using a linear program to solve, the US Forces should
use COAs 1-3 in the mix: [75%, 0%, 25%]. The enemy
is calculated to be optimal when using Plans 1-3 in the
following mix: [0%, 42%, 58%]. The actual value of the
mixed strategies is 1.25. The value of a game will
always lie between the MAXIMIN and MINIMAX bounds
(0 and 2, in this case). Several interesting properties are
seen in the above case.

(1) Some strategies are dominated by other
combinations of strategies, such as Plan 1 for the
enemy and COA 2 for us.

(2) The mixed strategy does not even include the
MTNIMAX strategy of player B, that is the pure
strategy which guarantees the worst result for
player B.

(3) The value of the game is something other than
a result in the chart.

But what if you know that the opponent is likely to use
plan 1? How do we reason about an opponent with whom
we are familiar? We are discussing a strategy selection
in a situation which is not at the equilibrium point. What
is our optimal plan against a mixed strategy which
incorporates such reasoning?

HYPERGAME THEORY
Hypergame theory has been used to discuss games where
both sides are playing different games (Bennett 1982).
This subjective approach has many intuitive features that
would be valuable if an optimal hyperstrategy could be
derived. It can be used to support the reason that master
game players rarely use their most sophisticated
strategies on novices. Hypergame theory is necessary
anytime one side knows information unavailable to the
other side. This information can be a novel course of
action, as well as the value of surprise, deception, or

unexpected reinforcement It could answer questions
about incorporating experience and planning time
differences when choosing a course of action. These
questions are particularly appropriate when lots of
combinations of tactical moves are available to players
such as in war games. It is also valuable when enemy
decisionmakers are concentrating on schemes of
maneuver using predictable doctrinal templates.

Our extension to hypergame theory is the process of
optimizing one's strategy using subjective probabilities
(expert judgments) about the game being considered by
an adversary. The basis of these judgments can be
military intelligence reports, previous tendencies of an
enemy commander, and our knowledge of the enemy's
doctrine. There is a conceit that the game that we are
using is a superset of the opponent's game, although
some probability can be assigned that the opponent is
using the complete hypergame. If we are certain about
which game an opponent is playing then the probability
used in our model is represented as 1.0 for that game. If
the enemy might be considering different games then we
estimate the probabilities of each. Note: an enemy only
considers one game, we apply probability to describe our
uncertainty about which game is being played. Game
theory is still used to determine the strategies for both
sides for each possible game. When the games are
combined into a hypergame, a hyperstrategy can be
determined.

Hypergames are analogous to a possible world framework
with explicit belief assigned to each possible world.
Reasoning is done on each of the frames and aggregated
for an overall assessment of the strategy adopted by an
opponent. Hypergames, therefore represent a modal
extension to the logic of normal game theory. In fact to
reason about an opponent's belief of our beliefs is an
interesting modal logic oriented future step in this work.

HYPERSTRATEGIES
The general form for determining a zero-sum
hyperstrategy follows. Let pi be the probability of an
opponent playing a subgame i of the hypergame, which
we will call a game. Note that:

IA = I
I=I

In other words, n accounts for all of the possible games
that the opponent might play. Let sj be the enemy
minimax strategy vector for the each game, whether
mixed or pure. This strategy is determined using standard
game theory assumptions and results in a rational
strategy. Unfortunately for the opponent, this is a local
optimization of only one game. Use the following:

200

s,=5>«

(» \

I*/ ",*
Vi=i y

where p/ is the probability weight of game i, and Sy is
the probability weight of playing strategy j for each game.

to determine Sj, the probabilistically weighted strategy
vector for the opponent. This vector is the weighted
average of the enemy strategies.

H = max
k

where ujk is the utility value for the outcome Plan j and
COAL

The hyperstrategy, H, can be chosen to maximize the
expected value of each row, k, by summing the utilities,
ujic, weighted by the probability of the enemy strategy,
Sj. The result is the new expected value of the
hyperstrategy. Since the decisions of each commander
are now decoupled, only a pure strategy is recommended.
That a single strategy is recommended is an extremely
important result. This means that we can make a definite
recommendation. While hyperstrategies are an
important, tractable, theoretical extension of game
theory, investigations are underway to provide evidence
about the practical usefulness of hyperstrategies (Vane
1990) in a wargaming environment.

A SIMPLE NOTATION
The following diagrammatic notation, designed by Vane,
is introduced to ease discussion of hypergames and
hyperstrategies.

P2% X

Pl% X X X

AST Plan 1 Plan 2 ■ ■■ Plan m

X X CCA I UM U12 U-m

X X C0A2 U2, U22 U2m
a
■

CQAn n2 I "J

This notation shows two games of an m x n hypergame,
game 1 weighted by Pl% and game 2 by P2%. The
complete game is shown in the heavy rectangle. In the
above diagram, Game 1 does not include all of the
friendly options in the reasoning (at least COA n is
missing). Game 2 uses only one enemy strategy, Plan 1.
These situations are shown by the X's above Plans and to
the left of CO As to show which CO As and Plans are
associated with each belief percentage.

Sj Si S2 Sm

P2% S21%

Pl% Si 18 Si 2% Sim%

Ex pected
Value

\ B
ANT Plan 1 Plan 2 ■ ■• Plan m

EV 1 X2l% Xl \% COA 1 un Ui2
U!m

EV2 X22% Xl2% COA 2 U2i u22 U2m

•
•

1 ■

EVn Xn2% |C0An u,, Un2 Unm|

NORMAL FORM OF HYPERGAME

NORMAL HYPERGAME WITH SOLUTION

The normal form with solution is a hypergame that is
solved. It includes all of the information of the normal
form of a hypergame, as well as the actual percentages
and expected value for the game. There is a value in
every place that an X occurred in the normal form. If the
strategy evaluates to 0%, a '0%' placeholder is still
placed in the entry, so that one can still reconstruct
games. The aggregate vector is determined, Sj, and the
expected values calculated. Obviously the maximum
value is the pure strategy to choose. This form will not
be used in the explanations which follow, so that a step
by step construction of the solutions can be presented.

APPLICATIONS OF HYPERSTRATEGIES

We will explain the use of hyperstrategies in one
notional case, in one historic example, and provide
guidance when uncertainty about enemy reasoning is
high.

THE PREDICTABLE FOE
But what if you know that the opponent is likely to use
plan 1? We are discussing a strategy selection in a
situation which is not at the equilibrium point. What is
our optimal plan against a mixed strategy which
incorporates such reasoning? First we judge that likely
in this case means 70%. Since we have no other

201

information we assign all of the remaining probability to
the hypergame (30%).

We set up a hypergame matrix incorporating the games
that are being considered as noted below by X'ing the
plans and CO As.

Enemy

Subgame
1

70% X

Subgame
2

30% X X X

1&2 US Forces Plan 1 Plan 2 Plan 3 MAXIMIN

X COM 2

-1

1

3

4

4

0

-2

5

0

X COA2 -2

X COA3 -4

MINIMAX 2, 4 5 0to2

An Example of a US Hypergame

Reasoning about both subgames, using standard game
theory: we determine that in subgame 1 that the opponent
plays the strategy [100%, 0%, 0%] and the rest of the
time [0%, 42%, 58%]. The expected enemy strategy, Sj,
is [70%,13%,17%] based on 70% for subgame 1 and 30%
for subgame 2. This strategy is a probabilistic composite
picture of two games. It is not subject to the equilibrium
based MINIMAX argument because the percentages
represent our subjective judgment of how likely the
opponent is to play each subgame.

Subgame
1

70% 100%

Subgame
2

30% 0% 42% 58%

1&2 US Forces Plan 1 Plan 2 Plan 3 MAXIMIN

X COA1 2

-1

1

3

4

4

0

-2

5

0

X COA2 -2

X COA3 4

MINIMAX 2 4 5 0to2

An Example of a US Hyperstrategy

By evaluating the expected value of Sj, the enemy
strategy, we see that COA 1 is our only rational choice,
which is H. We have undertaken some risk for potential
gain. The gain is equal to the risk, which is the expected
value of 1.79 versus 1.25, or .54.

Note that the hypergame solution does not have to lie in
the MAXIMIN range.

ILLUSTRATIVE HISTORIC EXAMPLE
Let's consider an illustrative game - The Flanders
Campaign 1940, from a game theoretic framework. It is
known to military practitioners, has been researched by
others (Bennett 1979) and shows the power of hypergame
theory. Germany and the Allies (France, Britain,
Belgium, and the Netherlands) were in a declared war,
where both sides had conducted few significant military
operations. Neither side was confident of its capacity to
wage a successful (decisive and economical) offensive
campaign. We will examine the different games that
both Allied and German planners were playing. We will
trace the military planning paradigm and show where
hypergame theory can be applied by decisionmakers in
war games, Or systems, or decision support systems.
Basically, analyzing avenues of approach there are 7
possible defensive plans and 3 offensive plans. The
Allied counterattack option of Dupuy (Dupuy 1987) has
been ignored , although it most definitely has merit.

The offensive plans are:

• attack in the north across the Belgian Plains (as
in 1914),

• attack in the south through the Maginot Line (as
in Franco-Prussian War 1870), or

• hey-diddle-diddle through the middle (the
Ardennes Forest).

The defensive plans are:

• weighted defense in the south (adding to the
already formidable Maginot complex,

• weighted defense in the north,
• weighted defense in the middle,
• defense with a strong reserve in the center,
• defense with strong reserve in the north,
• defense with strong reserve in the south, or
• flank weighted defense (use the natural terrain

advantages of the Ardennes for economy of
force).

Please see the following normal form matrix to view the
alternatives and from an Allied perspective. For ease of
exposition we will assume a zero-sum game.

202

Attack
North

Attack
South

Attack
Middle*

Defend North 1 -.8 -.5

Defend South -1 1 -.5

Defend Center -1 -.8 1

Reserve Center .4 .4 .8

Reserve North .8 -.4 .5

Reserve South -.8 .8 .5

Weighted Flanks* .6 .6 -.5

Flanders Campaign in normal form

* The actual choices of each side.

The utility values represent the range between complete
victory(l) to absolute defeat (-1). All of the battle tuples
were judged, not simulated, whether it was good from the
Allied perspective. Some of the semantics which
underlies the values is:

• the Ardennes (the middle) is inherently a slower
battlefield,

• fortifications of the Maginot line are valuable in
the protection of Allied troops,

• the inherent attritional nature of combat.

t the MAX of the MTNs is a lower bound, the MIN
of the MAXs is an upper.

The result is that the Allies should win with somewhere
between a substantial to a decisive victory. The
following linear equations can be used to describe the
problem, solve for the expected value, and prescribe the
proper mixed strategy.

Yr-.SY2 .^*3

max(w) = Yl + Y2 + Y3

5F3<1

-7I+y2-.5y3<i

-F-.8F2 + r3<l

.4r1+.4y2+.8r3<i

.8^-. 4F2+.5F3<1

.6Y{+.6Y2-.5Y3<1

YvY2,Y3>0

This formulation yields the following linear programming
tableau.

First we will look at the MTNs of the Rows and the
MAXs of the Columns and cull out any dominated
strategies in the matrix below to determine the effective
range.

Attack
North

Attack
South

Attack
Middle

*

MIN of
Rows

Defend North 1 -.8 -.5 -.8

Defend South -1 1 -.5 -1

Defend Center -1 -.8 1 -1

Reserve Center 4 .4 .8 .4

Reserve North .8 -.4 .5 -.4

Reserve South -.8 .8 .5 -.8

Weighted Flanks* .6 .6 -.5 -.5

MAX of columns 1 1 1 .4 to It

Flanders with MINIMAX

Sl

$2
S3
S4

S5
S6
S7

Y3 Si S3 S4 S5 S6 S7

Calculating for the original problem:

w

ü
w

y* = .

The dual tableau can be used to find the Allied strategy.
As a result the optimal strategy for both players is a
mixed strategy:

203

The Germans find that they should:

Attack North 62%
Attack South 25%
Attack Middle 13%.

The Allies should play:

Reserve Center 73%
Weighted Hanks 27%.

The value of the game is .45, a virtually guaranteed
substantial victory.

The Allies and the Germans did not reason this way,
though. Either the Allies did not consider the Ardennes
(Attack Middle) or they decided that the Germans would
discard it. They played the game:

Attack
North

Attack
South

Attack
Middle

*

x% 1-X% EXPECTED
VALUE

Defend North 1 -.8 -.5

Defend South -1 1 -.5

Defend Center -1 -.8 1

73% Reserve Center .4 .4 .8

Reserve North .8 -.4 .5

Reserve South -.8 .8 5

100% 27% Weighted
Flanks*

.6 .6 -5

Attack
North

Attack
South

MTNof
Rows

Defend North 1 -.8 -.8

Defend South -1 1 -1

Defend Center -1 -.8 -1

Reserve Center .4 .4 .4

Reserve North .8 -.4 -.4

Reserve South -.8 .8 -.8

Weighted Flanks* .6 .6 .6

MAX of columns 1 1 .6tol

The Allies' subgame.

The mixed strategy for the Germans would be:

Attack North 78%
Attack South 22%.

The Allied strategy is Weighted Flanks 100%.

The Germans thought that there was a significant chance
that the Allies were ignoring their Attack Middle option.
How confident did they have to be? From the following
matrix, we see that the Germans were able to rationally
attack in the middle when they were X% sure that this
subgame was being played.

Flanders with MINIMAX

They determined that if they were only e% sure that the
Allies were ignoring the middle that they should attack
there. They actually did attack in the middle and
achieved even better results than the expected -.5. They
broke through and achieved a decisive victory.

3.0 HYPERGAMES IN AUTOMATED
PLANNING

AI research in automated game playing, and to a lesser
extent automated planning, has also examined the
problem of intelligent play by adversaries. Unlike game
theory, AI systems generally deal with the extensive form
of the game directly. Move/action generation procedures
fall into two categories: game-based and knowledge-
based. Game-based enumeration uses the rules of the
game to generate options (e.g., a chess playing program
that generates all legal moves). Knowledge-based
enumeration, on the other hand, generates moves
according to a model of the objectives, goals, subgoals,
tactics, etc., each player might have. The knowledge-
based approach is common for "games" (e.g., go,
wargames, military planning, etc.) where there are far too
many legal moves to examine exhaustively (e.g., Lehner,
1982, 1990; Reitman and Wilcox, 1979; Young and
Lehner, 1986; Wilkins, 1980). It is of course also the
approach used ion nonadversarial planning problems
(Georgeff, 1987).

When a game-based move generation procedure is used,
the game theoretic and Al-based formulations are
equivalent. In principle, the extensive form generated by
the AI programs could be summarized in normal form,
and the same minimax option would be selected. On the
other hand, when a knowledge-based procedure is used,

204

there is a great deal of useful information in the
extensive for each branch of the extensive form, there is
information about how that branch was generated.

To illustrate the usefulness of this information, imagine a
context where one agent, after analyzing the situation
asserts, "If I were her, I would do X," but then asserts
"but determining that X will work involves knowing some
advanced tactics which I don't think she is familiar with,
so she will probably do Y instead." This type of
reasoning involves several steps. First generate the
extensive form of the game by solving the problem
yourself. Second, assess whether the agent is capable of
generating the same extensive form (i.e., identify the
subgames). Third, select the best option given your
assessment of the options that may not be in the other
agent's repertoire (i.e. select a hyperstrategy). Not that
the assessments in the second stage although
probabilistic, are not subject to the outguessing problem.
This is because the assessments determine whether or not
another agent is capable of generating and option (for
either side), and not how that agent will process the
option once it is generated. An adversary cannot
outguess a missing option.

Although this is simplified, the above discussion suggests
the following steps for automated adversarial planning.

1. Generate/examine a proposed sequence of
actions.

2. Identify a possible adversary action (or event)
that can defeat the plan.

3. Determine what knowledge/data the adversary
must have in order to determine the action
identified in step 2.

4. Assess the probability that the adversary has the
knowledge/data identified in 3. Each potential
element of missing knowledge defines a
subgame and the assessed probability is the
probability of that subgame.

5. If the probability value determined in step 4 is
too great, modify the plan. This can be done by
(a) generating a contingency branch, (b) back
tracking and selecting alternative actions, (c)
inserting actions that will decrease the
probability of failure (e.g., add in a deception
tactic, etc.).

6. If the probability of success is less than a
desired threshold, go to 1.

Steps 1,2, and 5 are well within the scope of existing AI
planning techniques. In particular, steps 2 and 5 can be
achieved by recursively calling the planner with the goal

of defeating/repairing individual aspects of a proposed
plan. In part, Step 3 is automatic. Whatever
knowledge/data was used in Step 2 can be used as a
basis for Step 3 processing.

Step 4, probability estimation, is by far the most
problematic. However, here the hypergame
representation allows a conservative strategy. The worst
case situation is one where the adversary is aware of the
complete game. To the extent that there is higher order
uncertainty regarding the probability that the adversary is
unaware of certain knowledge/data elements, the
probability of the corresponding subgame can be
decreased and the probability of the complete game
increased.

4.0 SUMMARY

In this paper we have sketched some of our ongoing
research in automated adversarial planning. In particular,
we have shown how game theory techniques can be
combined with knowledge-based planning procedures to
reason about an adversary's beliefs and the extent to
which a competitive agent is capable of defeating a plan.
The main results to keep in mind are: (a) the hypergame
representation provides a convenient mechanism for
representing and reasoning about knowledge/data not
available to a competitive agent and (b) automated
implementation of this form of reasoning is conceptually
straightforward.

REFERENCES

Bacchus, F. (1989) "LP: A Logic of Statistical
Inference," Proceedings of the Fifth Annual
Uncertainty in AI Workshop, University of Windsor.

Bennett, P.G.,and Dando, M.R., Complex Strategic
Analysis: A Hypergame Study of the Fall of France,
Journal of the Operational Research Society Vol. 30
pp. 23 to 32, 1979.

Bennett, P.G., and Huxham.C.S., Hypergames and what
they do: a 'soft O.R.' approach, /. Opl. Res. Soc. Vol.
33, pp. 41 to 50, 1982.

deKleer, J. (1986a) "An assumption-based Truth
Maintenance System," Artificial Intelligence, 29,
241-288

deKleer, J. (1986b) "Extending the ATMS," Artificial
Intelligence, 29, 289-318.

Dupuy, T.N., Understanding War. Paragon House, New
York, 1987, pp.91-100.

205

Fagin, R. and Halpern, J. (1988) "Belief Awareness and
Limited Reasoning," Artificial Intelligence, 34, 480-
490.

Georgeff, M. "Planning," Annual Review of Computer
Science, Volume 2 1987, Palo Alto, Annual
Reviews, Inc.

Halpern, J. (ed.) (1986) Theoretical Aspects of
Reasoning about Knowledge, Los Altos, Morgan and
Kaufmann.

Halpern, J. (1989) "The Relationship Between
Knowledge, Belief and Certainty," Proceedings of
the Fifth Annual Uncertainty Workshop, University
of Windsor.

Jackson, P., Reichgelt, H. and van Harmelan, F. (1989)
Logic-Based Knowledge Representation, MIT Press,
Cambridge, MA.

Jones, A. (1980) Game Theory: Mathematical Models of
Conflict, Chichester, Ellis Horwood.

Laskey, K.B. and Lehner, P.E. (1989) "Assumptions,
beliefs, and probabilities," Artificial Intelligence, 41,
65-77.

Laskey, K.B. and Lehner, P.E. (1990) "Belief
Maintenance: An Integrated Approach to Uncertainty
Management," in Readings in Uncertainty, Shafer,
G. and Pearl, J. (eds.), Morgan Kaufmann Publishers,
Inc., San Mateo, CA.

Lehner, P. (1983) "Strategic Planning in Go," in
Computer Game Playing: Theory and Practice, ed.
M. Bramer, Chichester, Ellis Horwood.

Lehner, P.E. (1990a) "Robust Inference Policies:
Preliminary Report," submitted Sixth Conference of
Uncertainty in AI.

Lehner, P.E. (1990b) "Inference Policies," in Uncertainty
in Artificial Intelligence: Volume 5, Henrion, M.
Schachter, R. Kanal, L.N., and Lemmer, J. (eds.),
Elsevier, North-Holland, to appear.

Lehner, P.E. (1990c) "Automated Planning in Systems
and Organizational Information Processing, " in
Concise Encyclopedia of Information Processing in
Organizations and Systems, A.P. Sage (ed.),
Pergammon Press.

Lehner, P.E. (1990d) "Probabilities and Reasoning about
Possibilities," International Journal of Approximate
Reasoning, to appear.

Lehner, P.E. (1990e) "Adversarial Planning Search
Procedures with Provable Properties," in New
Directions in Command and Control Systems
Engineering, S. Andriole (ed.), AFCEA International
Press, Fairfax, VA.

Lehner, P.E. and Tosten, R. (1990) "An Autoepistemic
Logic for Multiagent Reasoning," in preparation.

Lehner, P.E. and Ulvila, J.W., (1990) "A Note on the
Application of Classical Statistics to Evaluating the
Knowledge Base of an Expert System," submitted
IEEE Transactions on Systems, Man, Cybernetics.

Pearl, J. (1990) "Which is more believable, the probably
provable or the provably probable," Technical Note,
January 1990.

Reitman, W. and Wilcox, B., "Modeling Tactical
Analysis and Problem Solving in Go," in Proceedings
of the Tenth Annual Conference on Modeling and
Simulation, 1979, 2133-2144.

Shoham, Y. (1988) "Chronological Ignorance:
Experiments in Nonmonotonic Temporal Reasoning,"
Artificial Intelligence, 36, 379-331.

Tosten, R. (1990) A Logic of Belief and Time for Multi-
agent Time Dependent Belief and Reasoning,
Doctoral Thesis, George Mason University, in
preparation.

Vane, R. (1990) Doctoral Thesis Proposal, George Mason
University, in preparation.

Vardi, M. (ed.) (1988) Proceedings of the Second
Conference on Theoretical Aspects of Reasoning
About Knowledge, Los Altos, Morgan Kaufmann.

Wilkins, D. (1980) "Using Patterns and Plans in Chess,"
Artificial Intelligence, 14, 165-203.

Young, P.R. and Lehner, P.E., (1986) "Applications of a
Theory of Automated Adversarial Planning in
Command and Control," IEEE Transactions on
Systems Man, and Cybernetics, SMC-16, 806-812.

206

Nonlinear Planning with Parallel Resource Allocation

Manuela M. Veloso M. Alicia PeYez Jaime G. Carbonell

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
Most nonlinear problem solvers use a least-
commitment search strategy, reasoning about par-
tially ordered plans. Although partial orders are
useful for exploiting parallelism in execution, least-
commitment is NP-hard for complex domain de-
scriptions with conditional effects. Instead, a
casual-commitment strategy is developed, as a nat-
ural framework to reason and learn about control
decisions in planning. This paper describes (i) how
NoLlMlT reasons about totally ordered plans using
a casual-commitment strategy, (ii) how it generates
a partially ordered solution from a totally ordered
one by analyzing the dependencies among the plan
steps, and (iii) finally how resources are allocated
by exploiting the parallelism embedded in the par-
tial order. We illustrate our claims with the im-
plemented algorithms and several examples. This
work has been done in the context of the PRODIGY
architecture that incorporates NoLlMlT, a nonlinear
problem solver.

1 Introduction
Nonlinear problem solving is desired when there are strong
interactions among simultaneous goals and subgoals in the
problem space. NoLlMlT, the nonlinear problem solver of the
PRODIGY architecture [Carbonell et al, 1990, Veloso, 1989],
develops a method to solve problems nonlinearly that explores
different alternatives at the operator and at the goal ordering
levels. Commitments are made during the search process,
in contrast to a least-commitment strategy [Sacerdoti, 1975,
Täte, 1977, Wilkins, 1989], where decisions are deferred until
all possible interactions are recognized. With the casual-
commitment approach [Minton et al, 1989], background
knowledge, whether hand-coded expertise, learned control
rules, or heuristic evaluation functions, guides the efficient
exploration of the most promising parts of the search space.
Provably incorrect alternatives are eliminated and heuristi-
cally preferred ones are explored first. Casual commitment is
crucial because it provides a framework in which it is natural
to reason and learn about the control decisions of the problem
solver.

The immediate output of a problem solver that searches
using a casual-commitment strategy is a totally ordered plan.
It is advantageous to know the solution in terms of the least

constrained partial ordering of its steps, which NoLlMlT gen-
erates by analyzing the dependencies among the different op-
erators. The algorithm implemented constructs a directed
acyclic graph that relates preconditions and effects of opera-
tors and then translates this graph into a partial order.

The independent actions shown in the partially ordered
graph may not directly correspond to parallel executable ac-
tions due to resource contention. We show how a resource
allocation module further analyzes the partial order and gen-
erates the final parallel plan.

This paper is organized in five sections. Section 2 briefly
presents the casual-commitment search algorithm discussing
its motivation and claims. In section 3, we introduce the
algorithm that generates the partially ordered plan from the
totally ordered one. In section 4 we describe the method to
allocate resources, by analyzing the parallelism of the partially
ordered solution. Finally, in section 5, we draw conclusions on
this work. We illustrate our concepts, claims, and algorithms
with several examples throughout the paper.

2 Nonlinear Problem Solving using Casual
Commitment

NoLlMlT reasons about totally ordered plans that are nonlin-
ear, i.e., the plans cannot be decomposed into a sequence
of complete subplans for the conjunctive goal set. All deci-
sion points (operator selections, goal orderings, backtracking
points, etc.) are open to introspection and reconsideration. In
the presence of background knowledge - heuristic or defini-
tive - only the most promising parts of the search space are
explored to produce a solution plan efficiently [Veloso, 1989,
Veloso et al, 1990 forthcoming]. The skeleton of NoLlMlT's
search algorithm, shown in Table 1, describes the basic cycle
of the nonlinear planner.

In step 1 of the algorithm, the planner checks whether the
goal is true in the current state. If so, the planner has found
a solution to the problem. In step 2, it computes both the
set of pending goals and the set of applicable operators. A
goal is pending, if it is a precondition of a chosen operator
that is not true in the state. An operator is applicable, if all
its preconditions are true in the state. In step 3, the planner
selects a goal to work on or an operator to apply. If a goal
is chosen, the problem solver expands the goal in step 4, by
generating and selecting a relevant instantiated operator. If
an applicable operator is selected, then, in step 5, it is applied,
i.e. executed in the internal current state to produce a new
state.

207

1. Check if the goal statement is true in the current state, or there
is a reason to suspend the current search path.
If yes, then either return the final plan or backtrack.

2. Compute the set of pending goals Q, and the set of possible
applicable operators A.

3. Choose a goal G from Q or select an operator A from A that is
directly applicable.

4. IfG has been chosen, then
• expand goal G, i.e., get the set Ö of relevant instantiated

operators for the goal G,
• choose an operator O from Ö,
• go to step 1.

5. If an operator A has been selected as directly applicable, then
• apply A,
• go to step 1.

Table 1: A Skeleton of NoLlMlT's Search Algorithm.

PRODIGY provides a rich action representation language
coupled with an expressive control language. Preconditions
in the operators can contain conjunctions, disjunctions, nega-
tions, and both existential and universal quantifiers with typed
variables. Effects in the operators can contain conditional
effects, which depend on the state in which the operator is ap-
plied. The control language allows the problem solver to rep-
resent and learn control information about the various prob-
lem solving decisions, such as selecting which goal/subgoal
to address next, which operator to apply, what bindings to
select for the operator or where to backtrack in case of fail-
ure. Different disciplines for controlling decisions can be
incorporated [Drummond and Currie, 1989, Anderson and
Farley, 1990]. In PRODIGY, there is a clear division between
the declarative domain knowledge (operators and inference
rules) and the more procedural control knowledge. This sim-
plifies both the initial specification of a domain and the in-
cremental learning of the control knowledge [Minton, 1988,
Veloso and Carbonell, 1990].

Previous work in the linear planner of PRODIGY used
explanation-based learning techniques [Minton, 1988] to ex-
tract from a problem solving trace the explanation chain re-
sponsible for a success or failure and compile search control
rules. We are now extending this work to NoLlMlT, as well as
developing a derivational-analogy approach to acquire control
knowledge [Carbonell, 1986, Veloso and Carbonell, 1990].
The machine learning and knowledge acquisition work sup-
ports NoLlMlT's casual-commitment method, as it assumes
there is intelligent control knowledge, exterior to its search
cycle, that it can rely upon to make decisions.

2.1 Example
Consider a generic transportation domain with three simple
operators that load, unload, or move a carrier, as shown in
Figure 1 (variables in the operators are shown in bold face).

Suppose that the operator MOVE a carrier has constant
locations locA and locB. This transforms the current gen-
eral domain into a one-way carrier domain. The problem
we want to solve consists in moving two given objects objl
and obj2 from the location locA to the location locB using
a ROCKET as the carrier, for example. Without any control
knowledge the problem solver searches for the goal order-
ing that enables the problem to be solved. Accomplishing

(LOAD
(preconds

(and
(at obj loc)
(at carrier loc)))

(effects

(UNLOAD (MOVE
(preconds (preconds

(and (at carrier locA))
(inside obj carrier) (effects
(at carrier loc))) (add (at carrier locB))

(effects (del (at carrier locA))))
(add (inside obj carr)) (add (at obj loc))
(del (at obj loc)))) (del (inside obj carrier))))

Figure 1: A Transportation Domain.

either goal individually, as a linear planner would do, in-
hibits the accomplishment of the other goal, as a precondition
of the operator LOAD cannot be achieved: the ROCKET
cannot be moved back to the object's initial position. So
interleaving of goals and subgoals at different levels of the
search is needed to find a solution. NOLIMIT solves this
problem, where linear planners fail (but where, of course,
other least-commitment planners also succeed), because it
switches attention to the conjunctive goal (at obj2 locB) be-
fore completing the first conjunct (at objl locB). This is shown
in Figure 2 by noting that, after the plan step 1 where the
operator (LOAD ROCKET objl locA) is applied, NOLIMIT
changes its focus of attention to the other top-level goal and
applies the operator (LOAD ROCKET obj2 locA). NOLIMIT
returns the totally ordered solution (LOAD ROCKET objl
locA), (LOAD ROCKET obj2 locA), (MOVE ROCKET),
(UNLOAD ROCKET objl locB), (UNLOAD ROCKET obj2
locB).

Figure 2: The Complete Conceptual Tree for a Successful
Solution Path. The numbers at the nodes show the execution
order of the plan steps.

Clearly, NOLIMIT solves much more complex and general
versions of this problem. The present minimal form was
used to illustrate the casual-commitment strategy in nonlinear
planning, allowing full interleaving of goals and subgoals.
We present below examples with a complex logistics domain.

3 Total and Partial Orders
A partially ordered graph is a convenient way to represent the
ordering constraints that exist among the steps of the plan.
Consider the partial order as a directed graph (V, E), where

208

V, the set of vertices, is the set of steps (instantiated operators)
of the plan, and E is the set of edges (ordering constraints)
in the partial order. Let V = {opo,op2,... ,opn+\}. We
represent the graph as a square matrix P, where P[i, j] = 1,
if there is an edge from opi to opj. There is an edge from op,
to opj, if opi must precede opj, i.e. op, -< opj. The inverse
of this statement does not necessarily hold, i.e. there may be
the case where opi -< opj and there is not an edge from op,
to opj. The relation -< is the transitive closure of the relation
represented in the graph for the partial order. Without loss of
generality consider operators opo and opn+i of any plan to be
the additional operators named start and finish, represented
in the Figures below as s and /.

3.1 Transforming a Total Order into a Partial Order

A plan step opt necessarily precedes another plan step opj if
and only if opi adds a precondition of opj, or opj deletes a
precondition of opt. For each problem, the start operator s
adds all the literals in the initial state. The preconditions of
the finish operator / are set to the user-given goal statement.
Let the totally ordered plan T be the sequence op\,..., opn
returned by NoLlMlT as the solution to a problem. In Table 2,
we show the algorithm to generate the partially ordered plan
from this totally ordered one, T.

Input: A totally ordered plan T = opi, opi,..., opn, and the start
operator s with preconditions set to the initial state.

Output: A partially ordered plan shown as a directed graph V.

procedure Build_Partial.Order(T, s):
1. for i <— n down-to 1 do
2. for each precond in Preconditionsjof(op,) do
3. supporting .operator <—

<— Last_Op-Adding_Precond(precond,i)
4. Add_Directed J}dge(supportingjoperator,op; ,V)
5. for each del in Delete_Effects(opO do
6. supported .operators <—

<- All-Ops_Needing_Effect(del,i)
7. for each supported .operator do
8. Add_Directed_Edge(supported-operator,op;,'P)
9. V <— Remove_Transitive_EdgesCP)

Table 2: Building a Partial Order from a Total Order

Step 1 loops through the plan steps in the reverse of the
execution order. Lines 2-4 loop through each of the pre-
conditions of the operator, i.e. plan step. The procedure
Last-Op .Adding-Precond (not shown) searches from the op-
erator opi back to, at most the operator s, for the first operator
(supportingjoperator) that has the effect of adding the pre-
condition in consideration. Note that one such operator must
be found as the given T is a solution to the problem (in
particular the initial state is added by the operator s). All
the supportingjoperators of an operator opi must precede it.
The algorithm sets therefore a directed edge from each of
the former into the latter. Lines 5-8 similarly loop through
each of the delete effects of the operator. The procedure
AlLOps-Needing_Effect (not shown) searches for all the ear-
lier operators that need, i.e. have as a precondition, each
delete effect of the operator. We call such operators, sup-
ported joperators. Lines 7-8 capture the precedence relation-
ships by adding directed edges from each supportedjoperator

to the operator that deletes some of their preconditions. Fi-
nally, line 9 removes all the transitive edges of the resulting
graph to produce the partial order. Every directed edge e
connecting operator opi to opj is removed, if there is an-
other path that connects the two vertices. The procedure Re-
move-Transitive-Edges tentatively removes e from the graph
and then checks to see whether vertex opj is reachable from
opi. If this is the case, then e is removed definitively, other-
wise e is set back in the graph.

If n is the number of operators in the plan, p is the average
number of preconditions of an operator, and d is the average
number of delete effects of an operator, then steps 1-8 of the
algorithm BuilcLPartial-Order run in 0((p+d)n2). Note that
the algorithm takes advantage of the given total ordering of
the plan, by visiting, at each step, only earlier plan steps. The
final procedure Remove_TransitiveJEdges runs in 0(e), for
a resulting graph with e edges [Aho et dl., 1974]. Empir-
ical experience with test problems shows that the algorithm
Build-Partial-Order runs in meaningless time compared to the
search time to generate the input totally ordered plan.

We now illustrate the algorithm in the simple one-way
rocket problem introduced in the previous section. NoLlMlT
returned the totally ordered plan T = (LOAD ROCKET objl
locA), (LOAD ROCKET obj2 locA), (MOVE ROCKET),
(UNLOAD ROCKET obj 1 locB), (UNLOAD ROCKET obj2
locB). Let opi be the ith operator in T. In Figure 3 we show
the partial order generated by the algorithm, before remov-
ing the transitive edges. As previously seen, the goal of the
problem we solved is the conjunction (and (at objl locB) (at
obj2 locB)). These two predicates are added by the UNLOAD
steps, namely by op4 and ops respectively. The edges labelled
"g" show the precedence requirement between op4 and ops,
and the finish operator /. The numbers at the other edges
in Figure 3 represent the order by which the algorithm intro-
duces them into the graph. As an example, while processing
op5 (UNLOAD ROCKET obj2 locB), it sets the edges 1 and
2, as the preconditions of ops, namely (inside objl ROCKET)
and (at ROCKET locB) (see Figure 1), are added by op2 and
op3 respectively. When processing op3 (MOVE ROCKET),
edge 5 is set because op3 's precondition (at ROCKET locA) is
in the initial state. The edges 6 and 7 are further set, because
op3 deletes (at ROCKET locA) that is needed (as a precondi-
tion) by the earlier steps opi and op2. Removing the transitive
edges, namely edges 1, 3, and 5, in this graph results in the
final partial order.

Figure 3: Partial Order with Transitive Edges.

4 Exploiting Parallelism in the Plan Steps
When there are multiple execution-time agents in a domain,
they must be able to organize their activities so that they can
cooperate with one another (e.g. to push a very heavy block)

209

and avoid conflicts (e.g. not to tyr to use the same tool at the
same time).

Our approach for doing multiagent planning is a centralized
one [Georgeff, 1983, Lansky and Fogelsong, 1987]. An ini-
tial planning phase produces a plan as parallel as possible by
reasoning about a presumably infinite number of resources.
Real available resources are then assigned to obtain the fi-
nal parallel plan [Wilkins, 1989]. A problem is first solved
creating generic instances of the resources. In this context,
"resources" refer to agents, such as robots, or trucks or air-
planes in a logistics transportation domain, or machines in a
process planning domain. Control rules assign different re-
sources to different unrelated goals to obtain a plan as parallel
as possible. In some cases the same resource can be used to
solve different unrelated goals. For example, it is better to
load different objects in the same truck if they have the same
destination), if minimization of resources usage is preferred
by the control knowledge.

Let T be the resulting plan and s the start operator. Table 3
outlines the algorithm for resource allocation.

1. Generate the partial order graph V using the algorithm in Ta-
ble 2 with inputs T and s.

2. Insert parallel split and join nodes in the partial order graph V
obtaining a graph V'.

3. Recursively analyze in V' the parallel branches inside a split-
join pair. If some of the parallel branches are in conflict insert
sequential split and join nodes. If all the parallel branches are in
conflict, transform the parallel split-join pair into a sequential
one. Let V" be the resulting graph.

4. From V", assign real resources to the generic instances.

5. Assign plans to the individual resources and monitor their ex-
ecution to avoid conflicts.

Table 3: Algorithm for Resource Allocation.

In step 1 the algorithm section 3.1 generates the partial
order graph from T. Step 2 extends this graph with nodes
that are not associated with steps in the plan. They only serve
as guidelines to determine which actions can be executed in
parallel. If a node opi has several successors op;,, ..., optn,
a parallel split node is inserted having opi as a predecessor
and op,-,, ..., opin as successors. The edges between op,
and opix, ..., opin are removed. Similarly, if a node opj
has several predecessors opj^, ...,opJn, a parallel join node is
inserted having opj as only successor and opjt, ..., opjn as
predecessors. The edges between opj^, ..., opjn and opj are
removed.

Step 3 analyzes the parallel branches. It may be necessary
to add sequential split and join nodes to the graph, or replace
some of the parallel ones. The branches inside a sequential
split-join pair must be executed sequentially although any
order is allowed.

A class of objects C can be declared as a possible reason
for conflict. Two actions are in conflict if they use the same
instance of C, and hence they are not allowed to occur si-
multaneously. A conflict between two branches is detected
when there is not a pair of actions, one of each branch, that
can be executed at the same time. If all the actions of the
two branches are in conflict, they are enclosed in a sequen-

tial split-join pair. If only some of them are, the parallel
split-join remains. Committing to executing the branches in
sequence would constrain the parallelism in the plan, as the
actions not in conflict could still be done simultaneously. As
we describe below, an execution monitor is responsible for
avoiding that the conflicting actions are performed simulta-
neously. This analysis is done recursively to deal with nested
split-join pairs.

Step 4 assigns real resources to the generic instances, by
recursively analyzing the branches inside a split-join pair. If
enough resources are available, the algorithm assigns different
ones to each branch. Otherwise the available resources are
shared by several branches. These branches are put inside
a sequential split-join pair so the monitor can execute them
without conflicts. The planner may have to be called again
to obtain the actions that situate the real resource in the same
initial state as the generic one it replaces.

From the global parallel plan obtained so far, step 5 gen-
erate plans for each of the agents or resources. A monitor
module is responsible for synchronizing the execution of the
different plans (for example, in the case when two or more
agents are necessary to perform an action). It uses the se-
quential split and join nodes to deal with conflicts or resource
sharing among different branches. Those conflicts can be
considered as critical regions. Standard operating systems
methods can be used to enforce synchronization in the plans
so the conflicting critical regions are not entered at the same
time [Georgeff, 1983].

4.1 Example in the Extended-STRIPS Domain

To illustrate this we will consider a simple example where
two robots, Rl and R2, have to move two blocks, a heavy
one H, and a light one L. The two robots have to cooperate to
push H. The domain is an extension of the STRIPS domain; the
operators include going to locations, going through doors and
pushing objects to locations. There are also "team" operators
that require the cooperation of two robots to perform an action
(e.g. t-push-to-location). Only one robot can go through a
door at a time, therefore doors are considered reasons for
potential conflicts. Figures 4 (a) and (b) show the initial
state and goal statement, and (c) shows the initial state using
generic robots GR1, GR2 and GR3.

R2
Rl

dl2

3

2

1

0

dl2

3

2

1

0

GR2
GR1

dl2

m B H
E
El GR3

E
0 123 0123 0123

(a) (b) (C)

Figure 4: Initial State, Goal Statement, and Initial State with
Generic Resources for the Example Problem. Coordinates
represent the locations within the rooms.

The problem is first solved with generic robots. Their initial
situation was decided based on domain dependent heuristics
such as the initial situation of the available robots and of the
objects that have to be pushed. The solution is:

210

(goto-loc GR1 3 0 2 2)
(go-thru-door GR1 doorl2 2 2 2 1)
(goto-loc GR1 2 1 2 0)
(goto-loc GR2 3 0 2 2)
(go-thru-door GR2 doorl2 2 2 2 1)
(goto-loc GR2 212 0)
(t-push-to-loc GR1 GR2 heavy-block 2 0 3 1)
(push-to-loc GR3 light-block 0 0 3 1)

Figure 5: Partial Order Graph for the Example Problem.

Figure 5 shows the partial order generated by the algorithm
in section 3. The only conflict is between 2 and 5 when GR1
and GR2 try to go through the door at the same time. As
the other actions (1, 3, 4, 6) in the parallel branches do not
conflict, these branches are not put inside a sequential split
join pair. The resource assignment step assigns Rl to GR1,
and R2 to both GR2 and GR3. After this step the graph looks
like in Figure 6.

Figure 6: Graph after Assigning Resources.

Now the task of the monitor is to control the plan execution
avoiding the conflict at the door and deciding which of the
two branches will be executed first. The planner is called to
plan the actions of R2 to join the end of branch 1-2-3 with
the beginning of branch 4-5-6. A resulting parallel plan is
the one shown below, where branch 1-2-3, and branch 4-5-6
are monitored to be executed in parallel avoiding the conflict
between steps 2 and 5. Step 7' is added to the plan.

monitored-parallel-split
1 (goto-loc Rl 3 0 2 2)
2 (go-thru-door Rl doorl2 2 2 21)
3 (goto-loc Rl 2 1 2 0)

4 (goto-loc R2 3 0 2 2)
5 (go-thru-door R2 doorl2 2 2 21)
6 (goto-loc R2 2 1 2 0)
monitored-parallel-join

7 (t-push-to-loc R1 R2 heavy-block 2 0 3 1)
7' (goto-loc R2 3 1 0 0)
9 (push-to-loc R2 light-block 0 0 3 1)

4.2 Example in the Logistics Domain
We are currently implementing a complex logistics planning
domain. In this domain, packages are to be moved among
different cities. Packages are carried within the same city in
trucks and across cities in airplanes. Trucks and airplanes
may have limited capacity. At each city there are several lo-
cations, e.g. post offices (po) and airports (ap). This domain

(without introducing the capacity of carriers) is an extension
of the generic transportation domain (see Figure 1). Consider
carriers of type TRUCK and AIRPLANE. The logistics do-
main consists of the operators LOAD TRUCK (LT), LOAD
AIRPLANE (LA), UNLOAD TRUCK (UT), UNLOAD AIR-
PLANE (UA), DRIVE TRUCK (DT), FLY AIRPLANE (FA).
Consider the problem shown in Figure 7 where bo, pg and sf
stand for Boston, Pittsburgh and San Francisco respectively.
There are three packages (pl,p2,p3), two airplanes (al ,a2),
and four trucks {tbol, tbo2, tsf, tpg). NoLlMiT returns the plan
in Figure 8, and Figure 9 shows the partial order generated by
the algorithm in Table 2.

INITIAL STATE:
PS bo sf

po ap
GOAL STATEMENT:

Pg

m @ a2 ^

po ap
IT:

bo

m

w
po ap

sf

0 m
po ap po ap po ap

Figure 7: A Problem in the Logistics Domain.

l.(LTp3tpgpg-po)
2.(DTtsfsf-posf-ap)
3.(DTtpgpg-popg-ap)
4.(UTp3tpg pg-ap)
5.(LAp3 al pg-ap)
6.(FA al pg-ap bo-ap)
7.(UA p3 al bo-ap)
8.(LTp3 tbol bo-ap)
9.(DT tbol bo-ap bo-po)

10.(UTp3tbolbo-po)
11 .(DT tbo2 bo-ap bo-po)
12.(LTp2tbo2 bo-po)
13.(LTpl tbo2 bo-po)
14.(DT tbo2 bo-po bo-ap)
15.(UTp2tbo2 bo-ap)
16.(UTpi tbo2bo-ap)
17.(LA p2 a2 bo-ap)
18.(LApla2 bo-ap)

19.(FAa2 bo-ap sf-ap)
20.(UA p2 a2 sf-ap)
21.(UA pi a2 sf-ap)
22.(LTp2 tsf sf-ap)
23.(LTpl tsf sf-ap)
24.(DT tsf sf-ap sf-po)
25.(UTp2 tsf sf-po)
26.(UT pi tsf sf-po)

Figure 8: Totally Ordered Plan - Logistics Domain.

Figure 9: Partially Ordered Plan - Logistics Domain.

Suppose now that when executing this plan, there is avail-
able only one airplane (a) and only one truck in Boston (tbo).
The resource allocation algorithm assigns a to both al and
al, and tbo to both tbol and tbol after generating the parallel
serial graph. Figure 10 shows a possible solution for the plans
of a and tbo. Using the information on the graph built by
the algorithm, the monitor synchronizes the execution of the
plans for the different agents, without violating the constraints
discovered by the algorithm.

We are refining the monitor synchronization mechanism to

211

Plan for airplane a:

(LA p3 a pg-ap)
(FA a pg-ap bo-ap)
(UA p3 a bo-ap)
(LA p2 a bo-ap)
(LA pi a bo-ap)
(FA a bo-ap sf-ap)
(UA p2 a sf-ap)
(UA pi a sf-ap)

Plan for truck tbo:

(DT tbo bo-ap bo-po)
(LT p2 tbo bo-po)
(LTpl tbo bo-po)
(DT tbo bo-po bo-ap)
(UT p2 tbo bo-ap)
(UTpl tbo bo-ap)
(LT p3 tbo bo-ap)
(DT tbo bo-ap bo-po)
(UT p3 tbo bo-po)

Figure 10: Plans for Each Resource.

deal with more complex conflict constraints, by using domain
dependent heuristics.

5 Conclusion
In this paper, we first discuss the use of a casual-commitment
strategy to generate plans for nonlinear problems. This strat-
egy provides a natural framework to learn and reason about
control decisions during the planning process. The method
becomes increasingly efficient as the planner learns control
knowledge from experience. Committing while searching
generates a totally ordered solution. As it is advantageous to
know the least constrained partial ordering of the plan steps,
we then discuss how we efficiently generate a partial order
from the total order returned by the casual-committing prob-
lem solver. Finally, we show a resource allocation strategy
that reasons about the partially ordered plan to convert it into
a parallel executable graph.

This work has been done in the context of the PRODIGY
architecture that is designed as a testbed for machine learn-
ing research. Casual commitment relies upon learned control
knowledge to efficiently make decisions. The resource alloca-
tion module is an ongoingresearch effort to address multiagent
(or multi-resource) planning and execution.

Acknowledgements
Our special thanks to Daniel Borrajo for a major part of NOLIMIT'S
implementation. Without him, it would have been very difficult
to include many powerful features in NoLlMlT. We acknowledge
Craig Knoblock and Yolanda Gil for providing useful comments on
a draft. The authors thank the whole PRODIGY research group for
helpful discussions.

This research was sponsored by the Defense Advanced Research
Projects Agency (DOD) and monitored by the Avionics Laboratory,
Air Force Wright Aeronautical Laboratories, Aeronautical Systems
Division (AFSC), Wright-Patterson AFB, OH 45433-6543 under
Contract F33615-87-C-1499, ARPA Order No. 4976, Amendment
20. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense
AdvancedResearch Projects Agency or of the U.S. Government. The
second author was supported by a Fellowship from the Ministerio de
Education y Ciencia of Spain.

References
[Aho et al., 1974] Alfred V. Aho, John E. Hopcroft, and Jef-

frey D. Ullman. The Design and Analysis of Computer Al-
gorithms. Addison-Wesley, Reading, Massachusetts, 1974.

[Anderson and Farley, 1990] J. S. Anderson and A. M. Far-
ley. Partial commitment in plan composition. Technical
Report TR-90-11, Computer Science Department, Univer-
sity of Oregon, 1990.

[Carbonell et al, 1990] J. G. Carbonell, C. A. Knoblock, and
S. Minton. Prodigy: An integrated architecture for plan-
ning and learning. In Kurt VanLehn, editor, Architectures
for Intelligence. Erlbaum, Hillsdale, NJ, 1990.

[Carbonell, 1986] J. G. Carbonell. Derivational analogy: A
theory of reconstructive problem solving and expertise ac-
quisition. In R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell, editors, Machine Learning, An Artificial Intelli-
gence Approach, Volume II. Morgan Kaufman, 1986.

[Drummond and Currie, 1989] M. Drummond and K. Currie.
Goal ordering in partially ordered plans. In Proceedings of
1JCAI-89, pages 960-965,1989.

[Georgeff, 1983] M. Georgeff. Communication and interac-
tion in multi-agent planning. In Proceedings of the Na-
tional Conference of the American Association for Artifi-
cial Intelligence, pages 125-129, Washington, DC, August
1983.

[Lansky and Fogelsong, 1987] A. L. Lansky and D. S. Fogel-
song. Localized representation and planning methods for
parallel domains. In Proceedings of the National Confer-
ence of the American Associationfor Artificial Intelligence,
pages 240-245, Seattle, Washington, August 1987.

[Minton et al., 1989] S. Minton, C. A. Knoblock, D. R.
Kuokka, Y. Gil, R. L. Joseph, and J. G. Carbonell. PRODIGY
2.0: The manual and tutorial. Technical Report CMU-CS-
89-146, School of Computer Science, Carnegie Mellon
University, 1989.

[Minton, 1988] S. Minton. Learning Effective Search Con-
trol Knowledge: An Explanation-Based Approach. PhD
thesis, Computer Science Department, Carnegie Mellon
University, 1988.

[Sacerdoti, 1975] E. D. Sacerdoti. The nonlinear nature of
plans. In Proceedings of 7/C4/-75, pages 206-213,1975.

[Täte, 1977] A. Täte. Generating project networks. In Pro-
ceedings ofIJCAI-77, pages 888-893,1977.

[Veloso and Carbonell, 1990] M. M. Veloso and J. G. Car-
bonell. Integrating analogy into a general problem-solving
architecture. In Maria Zemankova and Zbigniew Ras, ed-
itors, Intelligent Systems, 1990.

[Veloso et al., 1990 forthcoming] M. M. Veloso, D. Borrajo,
and M. A. Perez. NOLIMIT - The nonlinear problem solver
for PRODIGY: User's and programmer's manual. Techni-
cal report, School of Computer Science, Carnegie Mellon
University, 1990, forthcoming.

[Veloso, 1989] M. M. Veloso. Nonlinear problem solving
using intelligent casual-commitment. Technical Report
CMU-CS-89-210, School of Computer Science, Carnegie
Mellon University, 1989.

[Wilkins, 1989] D. E. Wilkins. Can AI planners solve prac-
tical problems? Technical Note 468R, SRI International,
1989.

212

SCHEDULING

Applying a Heuristic Repair Method
to the HST Scheduling Problem

Steven Minton and Andrew B. Philips
Sterling Federal Systems

AI Research Branch, Mail Stop: 244-17
NASA Ames Research Center

Moffett Field, CA 94035 U.SA.

Abstract

This paper describes a heuristic search
method that has been employed to solve the
Hubble Space Telescope Scheduling problem.
Given an initial schedule created by a greedy
algorithm, the method operates by search-
ing though the space of possible rearrange-
ments of the initial schedule. The search
is guided by an ordering heuristic, the min-
conflicts heuristic, that attempts to minimize
the number of constraint violations after each
step.

1 Introduction

In a previous paper, Minton et al.[l0] described a local
search method for solving large-scale constraint satis-
faction and scheduling problems. The method oper-
ates by generating an initial, suboptimal solution and
then applying a local repair heuristic, which we refer
to as the min-conflicts heuristic. Local search tech-
niques have met with empirical success on many prob-
lems, including the traveling salesman and graph par-
titioning problems [5]. Such techniques also have a long
tradition in AI, most notably in problem-solving sys-
tems that operate by debugging initial solutions [14;
15]. However, this approach is a relatively new ap-
proach for solving constraint-satisfaction problems,
and offers some important advantages over traditional
methods.

The local search method described here was dis-
tilled from an analysis of a surprisingly effective
neural network developed by Johnston and Adorf[l;
7]. for scheduling the use of the Hubble Space Tele-
scope. The method is very effective at solving the
Hubble Space Telescope scheduling problem, and em-
pirical studies have demonstrated that it also performs
extremely well on some standard problems. For ex-
ample, we have shown that instances of the n-queens
problem with one million queens can be solved very
rapidly. The method also has the virtue of being ex-
tremely simple. In this paper, we describe the ba-
sic method and its application to the Space Telescope
Scheduling problem.

2 The Min-Conflicts Heuristic

A constraint-satisfaction problem consists of n vari-
ables, Xi... Xn, with domains Di...D„, and a set of
constraints. We will assume for the moment that each
constraint is a binary constraint, that is, each con-
straint Ca(Xj,Xk) is a subset of Dj x Dk specifying
incompatible values for a pair of variables. In this pa-
per we consider the task of finding a single solution to
a problem, i.e., an assignment for each of the variables
such that the constraints are satisfied.

Our method takes an initial, inconsistent assignment
for the variables in a constraint satisfaction problem
(CSP) and incrementally repairs constraint violations
until a consistent assignment is achieved. The method
is guided by a simple ordering heuristic for repairing
constraint violations: select a variable that is currently
participating in a constraint violation, and choose a
new value that minimizes the number of outstanding
constraint violations. This heuristic can be specified
as follows:

Min-Conflicts heuristic:
Given: A set of variables, a set of binary con-
straints, and an assignment specifying a value
for each variable. Two variables conflict if their
values violate a constraint.
Procedure: Select a variable that is in conflict,
and assign it a value that minimizes the number
of conflicts. (Break ties randomly.)

As an illustration of our approach, consider the n-
queens problem, a standard benchmark for testing
CSP algorithms. The n-queens problem requires plac-
ing n queens on an n x n chessboard so that no two
queens share a row, column or diagonal. To solve the
problem, we begin by randomly placing a queen on
each row of the board. This gives us an initial assign-
ment. Then we take a queen that is currently in con-
flict, and move it to the column (in the same row) that
has the fewest conflicts (with ties broken randomly).
This "repair process" is repeated until a solution is
found, or a preset iteration bound is reached.

The method outlined above is a hill-climbing algo-
rithm. Thus, it is entirely possible that a local max-
imum may be encountered, in which case the sys-
tem will typically oscillate between a small number of
states. However, as described in [10], the min-conflicts

215

heuristic can be used with a variety of search strate-
gies, including best-first search, simulated-annealing
and backtracking. For the scheduling applications de-
scribed in this paper, the hill-climbing approach was
employed, due to its effectiveness and simplicity.

In [10], we analyzed the min-conflicts approach in
order to determine the types of problems for which
the algorithm will work well. Not surprisingly, it ap-
pears that the algorithm is likely to be more effec-
tive if the preprocessing stage can generate an assign-
ment that is close to a solution, i.e., an assignment
in which relatively few repairs need to be made. In
the n-queens problem, we can generate a good initial
assignment in the following manner. In the preprocess-
ing phase, when each queen is assigned to an inital row
and column, we prefer columns where there are no con-
flicts, rather than choosing a random column. Using
this technique, we reported that the "million queens"
problem could be solved in less than two minutes on
a SparcStationl (with very high probability). This is
orders of magnitude better than has be achieved with
traditional backtracking CSP algorithms.

3 The HST Scheduling Problem

By almost any measure, the Hubble Space Telescope
(HST) scheduling problem is a complex task [16; 13;
6]. Between ten thousand and thirty thousand as-
tronomical observations per year must be scheduled,
subject to a vast variety of constraints involving time-
dependent orbital characteristics, power restrictions,
priorities, movement of astronomical bodies, stray
light sources, etc. Because the telescope is an ex-
tremely valuable resource with a limited lifetime, ef-
ficient scheduling is a critical concern. An initial
scheduling system, SPSS, developed in FORTRAN us-
ing traditional programming methods, highlighted the
difficulty of the problem; among other problems, it was
estimated that the system would take several weeks to
schedule one week of observations. A more successful
constraint-based system, the SPIKE system, was then
developed to augment the original system.

The input to SPIKE is a set of detailed specifications
for exposures that are to be scheduled on the telescope.
These exposures are submitted by astronomers whose
proposals have been approved by a peer review pro-
cess. An exposure specification includes a potentially
large number of configuration parameters describing
how the data is to be taken. Johnston [6] outlines the
problem:

There are a variety of properties and re-
lationships among these exposures that may
be specified by the proposer [astronomer].
Their relative order and time separation may
be important. Some exposures are designed
as calibrations or target acquisitions for oth-
ers. Some must be executed at specific times,
or at specific phases in the case of periodic
phenomena. Some are especially sensitive to
stray or scattered light. Exposure durations
may vary depending on background light in-

tensity. Some exposures must be executed
without interruption while others can be bro-
ken up as needed. In some cases a specific
orientation of an instrument aperture is re-
quired. Some exposures are conditional on
the results of other exposures.

In addition to proposer-specified con-
straints, there are a large number of other
constraints that must be considered when
scheduling HST operations. The range from
"strict" constraints that cannot be violated
under any circumstances, to "good operating
practices" that represent scheduling goals.
HST is not allowed to point closer than 50° to
the sun and 15° to the bright moon. Slewing
the telescope is relatively slow (90° in ~ 15
minutes) so it is important to minimize the
time spent in maneuvers. Many constraints
are a direct result of HST's low orbital al-
titude (500 km) and consequent 95 minute
orbital period. A typical target is occulted
by the earth for ~ 40 minutes of each or-
bit. Up to half the orbits in a day are con-
taminated for up to ~ 20 minutes by HST's
passage through the South Atlantic Anomaly,
a high particle density region during which
data cannot be collected. Scattered earth-
light changes dramatically over the course of
an orbit...

The scheduling team at the Space Telescope Sci-
ence Institute made the problem considerably more
tractable by breaking it into two parts: the long-
term scheduling problem and the short-term schedul-
ing problem. The long-term problem consists of tak-
ing approximately one year's worth of exposures, and
dividing them up into "bins" or time segments of a
few days length. The short-term problem consists of
coming up with a very detailed schedule for a time
segment, which can be translated into commands that
the telescope can then directly execute. As it turns
out, SPIKE handles only the long-term problem. The
short-term problem has a quite different nature, be-
cause it involves both planning and scheduling. (We
use the term planning to refer to the generation of a
partially-ordered set of activities to achieve a set of
goals, and the term scheduling to refer to the pro-
cess of placing a set of activities on a time line.) The
short-term problem requires planning because an ex-
posure may require activities such as warming up or
cooling down different instruments on the telescope,
pointing maneuvers, communication of data, etc. Cur-
rently, the short-term problem is handled by the orig-
inal SPSS system, however, Muscettola et al. [13] are
developing AI planning techniques that will hopefully
do a better job. Another possibility is the extension of
the SPIKE system so that it can generate a schedule
for significantly smaller time buckets. The research re-
ported here may contribute to this goal, by improving
the speed of the SPIKE system.

SPIKE operates by taking the exposure specifica-
tions prepared by astronomers and validating that

216

they are internally consistent. It then compiles the
specifications into a set of constraints, represented as
relative temporal relations and "suitability functions".
The relative temporal relations specify the relative be-
fore/after ordering of tasks, and the maximal/minimal
amount of time between tasks. Each suitability func-
tion is a function of time whose value represents the
desirability of starting an activity at a specified time,
as given by the constraint in question. For example,
one suitability function may represent the constraint
that the telescope should not point near the moon.
Thus, the suitability of scheduling an exposure when
the target is close to the moon will be low (perhaps
zero). Suitability functions are represented internally
as piecewise constant functions, enabling the product
of multiple suitabilities to be calculated efficiently.

Because of the uncertainty in calculating certain
constraints, and also because the grain-size of the time
segments may be relatively large, suitability functions
are often used to represent the statistical or aggregate
desirability of scheduling an exposure during a certain
time segment. For example, a particular orbital con-
straint might state that an exposure must be taken
when the telescope is pointing more than 5° from the
earth's limb and is in the earth's shadow. The result-
ing suitability function might indicate, for each time
segment, the average amount of time these conditions
are satisfied over that segment (which could encompass
many orbits). In other words, it would be preferable
to schedule the exposure in a time segment in which a
relatively high number of such viewing opportunities
occur.

Once SPIKE has compiled the astronomers pro-
posals into a set of constraints, it must search for a
good schedule. SPIKE employs a neural network to
carry out this search, the Guarded Discrete Stochastic
(GDS) networkfl; 7]. The GDS network is a modified
Hopfield network[3]. The most significant modification
is that the main network is coupled asymmetrically to
an auxiliary network of guard neurons which restricts
the configurations that the network can assume. This
modification enables the network to rapidly find a so-
lution for many problems, even when the network is
simulated on a serial machine. The disadvantage is
that convergence to a stable configuration is no longer
guaranteed, in which case the network can fall into
a local minimum involving a group of unstable states
among which it will oscillate. In practice, however, if
the network fails to converge after some number of neu-
ron state transitions, it is simply stopped and started
over.

To illustrate the network architecture and updat-
ing scheme, let us consider how the network is used
to solve the HST scheduling problem. Each task to
be scheduled (an exposure or block of exposures) is
represented by a separate set of neurons, one neu-
ron for each possible time segment in the schedule.
Each neuron is either "on" or "off"; if a neuron is
"on" it means the task is currently scheduled for that
time segment. Inhibitory (i.e., negatively weighted)
connections between the neurons are used to indicate

hard constraints between tasks, where the suitability
of placing two tasks in a certain configuration is zero.
To insure that each task is eventually assigned a time
segment there is a guard neuron for each set of neurons
representing a task; if no neuron in the set is on, the
guard neuron will provide an excitatory input that is
large enough to turn one on. (Due to the way the con-
nection weights are set up, it is unlikely that the guard
neuron will turn on more than one neuron.) The net-
work is updated on each cycle by randomly selecting
a set of neurons that represents a task, and flipping
the state of the neuron in that set whose input is most
inconsistent with its current output (if any). When
all neurons' states are consistent with their input, a
solution is achieved.

The network updating scheme roughly accomplishes
the following: If the task is currently in conflict then
it is removed from the schedule, and if the task is cur-
rently unscheduled then the network schedules it for
the time segment that has the fewest constraint vio-
lations. Note that the network only represents hard
constraints (i.e. it treats suitabilities as zero or one).
Soft constraints (where the suitability is between zero
and one) are only consulted when there are two or
more "least conflicted" places to move a task.

As discussed in [10], the min-conflicts algorithm ef-
fectively mimics the behavior of the GDS network. In
fact, the algorithm was developed from an analysis of
the network's performance. (The two approaches can
be parallelized in a similar manner, but currently both
are run on serial machines.) In the HST application,
the min-conflicts algorithm operates by constructing
an initial schedule in a preprocessing phase, and itera-
tively repairs the schedule until a conflict-free schedule
is found (or the process is terminated by a preset itera-
tion bound). Because our analysis of the min-conflicts
algorithm showed that a good initial assignment could
greatly improve the solution time, we use a greedy al-
gorithm to create an initial schedule, rather than ran-
domly assigning tasks.1 The greedy algorithm places
each task on the schedule, at each point trying to min-
imize the number of conflicts.

One advantage in using the min-conflicts algorithm,
as compared to the GDS network, is that much of
the overhead of using the network can be eliminated
(particularly the space overhead). The min-conflicts
algorithm has been shown to be at least as effective
as the GDS network on representative data sets pro-
vided by the Space Telescope Sciences Institute. More-
over, because the min-conflicts heuristic is so simple,
the scheduling program could be quickly coded in C
and is extremely efficient. (The scheduling program
runs at least an order of magnitude faster than the
network, although some of the improvement is due
to factors such as programming language differences,
which makes a precise comparison difficult.) While
this may be regarded as just an implementation issue,
we believe that the clear and simple formulation of the

We discovered the importance of a good initial assign-
ment by analyzing the min-conflicts algorithm, but it has
also been shown to hold for the network as well.

217

method was a significant enabling factor. We are cur-
rently experimenting with a variety of different search
strategies that can be combined with the min-conflicts
heuristic. Although this study is not yet complete, we
expect that the improvements in speed we have ob-
served will eventually translate into better schedules,
since the search process can explore a larger number
of acceptable schedules.

Several minor issues arose when implementing the
HST application. First, the algorithm, as specified
in section 2, deals with binary constraints. The HST
scheduling problem includes non-binary constraints,
i.e., constraints that may involve several variables. For
example, one constraint bounds the number of tasks
that may be scheduled during a given time segment.
For general CSPs, the exact method of counting the
number of conflicts for an assignment may depend on
the particular constraint in question. As it turned out,
for the HST application it sufficed to count each vio-
lated constraint as a single conflict, even though mul-
tiple tasks might be involved in the violation.

A second issue concerns a difference between the
GDS network and the min-conflicts algorithm. As de-
scribed earlier, the network will remove a conflicted
task from the schedule and then reschedule the task
in two separate steps, which may not occur consec-
utively. In contrast, the min-conflicts algorithm re-
arranges tasks on the schedule, rather than removing
them and reinserting them later. It appears that this
difference is not significant, except perhaps when the
schedule is over-constrained (as discussed below).

4 The Over-Subscription Problem
The HST scheduling problem can be considered a con-
straint optimization problem where we must maximize
both the number and the importance of the constraints
that are satisfied [2; 12]. We note that the telescope
is expected to remain highly over-subscribed, in that
many more proposals will be submitted than can be
accommodated by any schedule. Unfortunately, one of
the problems we have had is that no clear objective ex-
ists for determining the best schedule in such cases. In
particular, we would like to maximize both the overall
suitability of the schedule and the number of proposals
that can be accommodated - no clear policy for evalu-
ating the tradeoff between these two goals has yet been
established by the Space Telescope Science Institute.

SPIKE handles the problem in a somewhat ad-hoc
manner. There is, in effect, a pool of tasks that are
either unscheduled or in conflict, and SPIKE's net-
work updating scheme is equally likely to select any of
these tasks. (Unscheduled tasks will be moved onto the
schedule, and tasks that are in conflict will be moved
off the schedule.) Thus, the number of unscheduled
tasks to likely to remain approximately equal to the
number of tasks in conflict. When the algorithm is
eventually interrupted (assuming a conflict-free sched-
ule has not been found) tasks that are in conflict can be
removed. One of the advantages of the min-conflicts
algorithm is that it is relatively easy to try a vari-
ety of schemes for dealing with overconstrained prob-

lems. We are currently experimenting with two ba-
sic approaches. The first is to follow the approach
taken by the network (where tasks are removed and
later re-inserted), but vary the procedure for remov-
ing and inserting tasks. For example, we can alter the
probability of choosing an unscheduled task versus an
already scheduled task, or bound the number of un-
scheduled tasks. (If we set to the bound to zero, then
tasks will never be removed from the schedule, but
simply be moved from place to place on the schedule
as in the normal case.) Another approach is to use a
more principled method for removing conflicting tasks
after coming up with an initial schedule, so that only
the minimum number of conflicting tasks need to be
removed.

5 Evaluating the Algorithm

There are two contributions of this research. First, we
have analyzed a neural network that has been success-
fully applied to a complex scheduling task and derived
an easily understood symbolic algorithm that captures
the network's behavior. Second, the algorithm's sim-
plicity has lead to an implementation that is appar-
ently much faster than the network's implementation.
The algorithm has not yet been field-tested, but it has
been tested on sample problems.

Unfortunately, one problem in evaluating the per-
formance of the algorithm is that it is difficult to com-
pare against competing approaches. This, of course,
is a common problem. In particular, many operations
research algorithms make different assumptions about
the problem. For example, the over-subscription issue
introduces certain difficulties in evaluation and com-
parison. Nevertheless, we do have plans to conduct
such experiments.

To show the generality of our approach, we have
tested the min-conflicts approach on standard CSP
problems such as n-queens problem, where it performs
quite well [10]. The min-conflicts method has also been
tested on data on the Space Shuttle Payload Schedul-
ing problem, another complex, real-world scheduling
problem. Preliminary results show that the method
performs far better than a backtracking CSP pro-
gram that was previously built for this task[l8]. Ad-
ditional corroboration comes from a parallel study by
Zweben[l7], who has investigated a related method for
repairing schedules using simulated annealing. In gen-
eral, it appears that repair-based methods fare quite
well on this problem. An additional bonus, as Zweben
has pointed out, is that repair-based methods can also
be used for dynamic rescheduling. In many domains
this capability is important because unexpected events
may require frequent schedule revision.

6 Related Work
The heuristic method described in this paper can be
characterized as a local search method[5], in that each
repair minimizes the number of conflicts for an indi-
vidual variable. Local search methods have been ap-
plied to a variety of important problems, often with

218

impressive results. For example, the Kernighan-Lin
method, perhaps the most successful algorithm for
solving graph-partitioning problems, repeatedly im-
proves a partitioning by swapping the two vertices
that yield the greatest cost differential. The much-
publicized simulated annealing method can also be
characterized as a form of local search[4]. However,
it is well-known that the effectiveness of local search
methods depends greatly on the particular task.

There is also a long history of AI programs that
have used repair or debugging strategies to solve prob-
lems (e.g., [15; 14]). These programs have gener-
ally been successful, although the repair strategies
they employ may be complex, or domain specific.
In the area of scheduling, Kurtzman[9; 8] has de-
veloped a class of iterative improvement algorithms
that use a hill-climbing approach, similar to our algo-
rithm. His approach is being used commercially for
several space station scheduling applications. Kurtz-
man's method for repairing schedules appears more
"intelligent" than ours, and more complex as well. In
the area of constraint-satisfaction problems, Morris[ll]
has also recently developed an iterative improvement
algorithm. His system uses an interesting technique
called "breakout" to avoid being caught in local min-
ima. We have not yet compared our algorithm to ei-
ther Kurtzman's or Morris'. We suspect that their
algorithms will perform better in certain domains due
to their additional "intelligence", however, the advan-
tage of the algorithm described here is that it is simple
and relatively easy to analyze (see [10]). With this in
mind, we are currently investigating the the possibility
of adding a learning method to our algorithm so that
more informed behavior is produced.

7 Conclusions

This paper has discussed a local search technique that
has been successfully applied to the Hubble Space
Telescope scheduling problem. The algorithm was de-
rived from a neural network developed at the Space
Telescope Science Institute. Our technique offers two
main advantages. First, it is relatively easy to under-
stand and analyze. Second, it requires less overhead
than the network. The technique has been applied to
other problems, and we are continuing to investigate
and evaluate its computational properties.

References

[1] H.M. Adorf and M.D. Johnston. A discrete
stochastic neural network algorithm for constraint
satisfaction problems. In Proceedings of the In-
ternational Joint Conference on Neural Networks,
San Diego, CA, 1990.

[2] E.C. Freuder. Partial constraint satisfaction. In
Proceedings IJCAI-89, Detroit, MI, 1989.

[3] J.J. Hopfield. Neural networks and physical sys-
tems with emergent collective computational abil-
ities. In Proceedings of the National Academy of
Sciences, 1982.

[4] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and
C. Schevon. Optimization by simulated anneal-
ing: an experimental evaluation, Part II. To ap-
pear in Journal of Operations Research, 1990.

[5] D.S. Johnson, C.H. Papadimitrou, and M. Yan-
nakakis. How easy is local search? Journal of
Computer and System Sciences, 37:79-100, 1988.

[6] M.D. Johnston. Automated telescope scheduling.
In Proceedings of the Symposium on Coordination
of Observational Projects, Cambridge University
Press, 1987.

[7] M.D. Johnston and H.M. Adorf. Learning in
stochastic neural networks for constraint satisfac-
tion problems. In Proceedings of NASA Confer-
ence on Space Telerobotics, Pasadena, CA, Jan-
uary 1989.

[8] C.R. Kurtzman. Time and Resource Constrained
Scheduling, with Applications to Space Station
Planning. PhD thesis, Dept. of Aeronautics and
Astronautics, MIT, Cambridge, MA, 1988.

[9] C.R. Kurtzman and D.L. Aiken. The Mfive space
station crew activity scheduler and stowage logis-
tics clerk. In Proceedings the AIAA Computers in
Aerospace VII Conference, Monterey, CA, 1989.

[10] S. Minton, M.D. Johnston, Philips A.B, and
Laird P. Solving large-scale constraint satisfaction
and scheduling problems using a heuristic repair
method. In Proceedings AAAI-90, Boston, MA.,
1990.

[11] P. Morris. Solutions without exhaustive search:
An iterative descent method for binary constraint
satisfaction problems. In Proceedings the AAAI-
90 Workshop on Constraint-Directed Reasoning,
Boston, MA, 1990.

[12] Fox M.S. Constraint-Directed Search: A Case
Study of Job-Shop Scheduling. Morgan Kaufmann
Publishers, Inc., 1987.

[13] N. Muscettola, S.F. Smith, G. Amiri, and D.
Pathak. Generating Space Telescope Observation
Schedules. Technical Report CMU-RI-TR-89-28,
Carnegie Mellon University, Robotics Institute,
1989.

[14] R.G. Simmons. A theory of debugging plans and
interpretations. In Proceedings AAAI-88, Min-
neapolis, MN, 1988.

[15] G. J. Sussman. A Computer Model of Skill Ac-
quisition. American Elsevier, New York, 1975.

[16] M. Waldrop. Will the Hubble space telescope
compute? Science, 243:1437-1439, 1989.

[17] M. Zweben. A Framework for Iterative Improve-
ment Search Algorithms Suited for Constraint
Satisfaction Problems. Technical Report RIA-90-
05-03-1, NASA Ames Research Center, AI Re-
search Branch, 1990.

[18] M. Zweben and M. Eskey. Constraint satisfaction
with delayed evaluation. In Proceedings IJCAI-
89, Detroit, MI, 1989.

219

Integrating Planning and Scheduling
To Solve Space Mission Scheduling Problems

Nicola Muscettola and Stephen F. Smith

Center for Integrated Manufacturing Decision Systems
The Robotics Institute, Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

In this paper, we describe HSTS, a system that constructs
executable observation schedules for the Hubble Space
Telescope (HST). HST observation scheduling is a complex
task, requiring attendance to a myriad of constraints relating to
orbit characteristics, power and thermal balance requirements,
instrument capabilities, viewing conditions, guidance
requirements, overall allocation objectives, and astronomer
specific restrictions and preferences. HSTS provides a general
framework for representing and solving such complex
scheduling problems. Generally speaking, scheduling in
HSTS is viewed as the process of constructing a prediction of
the behavior of a physical system (e.g. the HST operating
environment) that reflects specified goals and constraints. The
HSTS architecture provides a domain description language for
specifying the structure and dynamics of the physical system,
a temporal data base for modeling possible system behaviors
over time, and a scheduling/planning framework that flexibly
integrates decision-making at different levels of abstraction to
construct a system behavior (or set of behaviors) consistent
with stated scheduling goals and constraints.1

1. Introduction
A fundamental goal of space mission scheduling is efficient

use of complex systems with large operating costs. In many
cases (e.g. communication satellites, orbiting observatories,
manned space vehicles, manned space stations), the system of
interest has been designed to provide a wide range of
capabilities over an extended lifetime. Such space technology
offers unique opportunities for scientific experimentation and
information gathering, and, on a given mission, potential
demands for system resources to accomplish specific
objectives are virtually unlimited. To maximize mission cost-
effectiveness, it is important to accommodate as many
demands as possible. This, in turn, depends directly on an
ability to construct schedules that efficiently allocate system
resources to competing mission activities.

Global optimization of resource usage in such domains is a
very complex problem. Candidate mission objectives specify

sets of activities to perform, each having a specific priority
and designating specific resource requirements, temporal
ordering constraints, allowable time windows, and scheduling
preferences. Moreover, complex physical constraints relating
to the behavior of various components of the system dictate
the actual circumstances under which target activities can be
performed. For example, successful execution of an onboard
experiment may require minimal spacecraft vibration, which
implies restrictions on parallel activity and the prior execution
of any activities (e.g. stabilizing maneuvers) required to
establish a vibration-free state. Satisfaction of physical
constraints depends on the particular predicted state of the
overall system, thus raising the additional issue of generating,
synchronizing, and allocating resources to the activities
required to support (enable) accomplishment of selected
mission objectives. Over any given time frame, there are
typically insufficient resources to satisfy all user demands,
making it necessary to selectively relax problem requirements
(e.g. drop mission objectives). Such decisions must balance
the preferences of individual mission objectives with overall
resource allocation goals.

Space mission scheduling can be seen generally as the
process of constructing a behavior (or set of behaviors) of a
complex dynamical system that is consistent with specified
goals and constraints [Muscettola 90]. It requires an
integration of what have historically been distinguished as
"scheduling" and "planning" techniques, as each offers
specific strengths with respect to the required overall process.2

Recent research in scheduling [Fox and Smith 84, Smith et al
90, Sadeh 90] has emphasized the problem of efficiently
allocating resources to competing activities over time in the
presence of conflicting objectives and preferences, and has
produced heuristic techniques that exploit the structure of the
problem constraints (in particular, implied resource
contention) to opportunistically focus solution development
toward an acceptable global compromise. The power of these
techniques vis a vis classical dispatch-based approaches has
been demonstrated in large-scale manufacturing scheduling
contexts [Ow and Smith 88]. At the same time, the ability to
exploit such problem structure relies on specific

'This work was sponsored in part by the National Aeronautics and Space
Administration under contract # NCC 2-531 and the Robotics Institute

2We in fact do not consider scheduling and planning to be fundamentally
different processes and see this distinction more as a consequence of the
capabilities of current techniques.

220

representational assumptions held in common with classical
manufacturing scheduling research [Baker 74]. In particular,
it is assumed that physical constraints are "pre-compilable" so
that the complete set of activities requiring resources, as well
as their ordering relationships and durations, are known in
advance. This leaves resource availability as the only aspect of
state that must be attended to over time, and permits a model
of resource availability wherein a resource is considered
unavailable during any interval that it is allocated to an
activity and otherwise available. These representational
assumptions are insufficient in domains like mission
scheduling where the ability to execute a given target activity
(e.g. a step in an onboard experiment) is a complex function of
the state of the underlying physical system and variably
implies different networks of supporting activities and
resource requirements. In such domains, techniques based on
these assumptions can at best provide guidance in focusing the
development of an executable schedule.

Research in planning, alternatively, has focused on the
problem of "compiling" activity networks that bring about
desired goal states from more basic representations of the
effects of actions in the world. However, as with scheduling
research, the techniques that have emerged do not fully
address the requirements of the class of problems described
above. The appropriateness of classical STREPS-style
representational assumptions [Fikes et al. 72, Wilkins 88] is
limited given the obvious need to deal explicitly with time (in
both absolute and relative senses). More recently developed
representational frameworks [Allen and Koomen 83, Dean et
al. 88, Lansky 88, Vere 83] do provide these capabilities.
However, with few exceptions (e.g., [Lansky 88]), these
frameworks have not attempted to exploit the inherent
structure of the underlying physical system. Given the
complexity of the systems of interest in space mission
scheduling, the ability to work with decomposable models of
system behavior is fundamental to managing the
combinatorics of search. More generally, current planning
representations and frameworks do not provide a convenient
basis for reasoning globally about efficient resource
allocation. Interactions in resource requirements emerge only
as the represented physical constraints are applied to achieve
planning goals. Allocation conflicts can be avoided, but there
is no leverage to anticipate resource contention, compromise
among conflicting objectives and dynamically organize
planning on this basis.

In this paper we describe HSTS, a scheduling/planning
architecture for solving problems that require efficient
allocation of resources over time in the presence of complex
physical constraints. HSTS is based on a unifying perspective
of scheduling and planning as a process of predicting the
behavior of a dynamical system. Accordingly, HSTS provides

• a domain description language for modeling the
structure and dynamics of complex systems at
different levels of abstraction - Overall system
dynamics is expressed in terms of interactions
among structural components, providing a
modularity that facilitates incremental

development of both models and
scheduling/planning heuristics.

• a temporal behavior data base for representing
possible evolutions of the state of the system over
time - System behaviors are represented as
constraint networks, providing a basis for both
analysis of current solution structure and
incremental construction of consistent system
behaviors (via successive posting of constraints
and propagation of consequences).

• a scheduling/planning framework that flexibly
integrates decision-making at different levels of
abstraction - Abstract models are used to globally
focus the development of the final, executable
schedule in accordance with overall resource
allocation objectives and preferences.

An initial version of the HSTS scheduling architecture has
been implemented and applied to the complex problem of
generating short-term, executable observation schedules for
the Hubble Space Telescope. Preliminary experimental results
have been obtained relative to a simplified but representative
model of the telescope and its operating environment which
indicate the potential of the architecture in solving large-scale
mission scheduling problems.

To provide a context for describing the HSTS scheduling
architecture and its current implementation status, we first
consider the nature of the space telescope observation
scheduling problem and its constraints.

2. The HST Observation Scheduling Problem
The initial motivation and domain of focus for the HSTS

project has been the development of executable observations
schedules for the Hubble Space Telescope (HST). HST is a
sophisticated orbiting astronomical observatory that was
deployed in April 1990 and is expected to have an operating
lifetime of 15 years. When fully operational, HST will allow
the world astronomical community to observe celestial objects
at distances 7 to 10 times further and with a resolution 10
times higher than is possible from Earth-based observatories.
HST is expected to provide insights into some fundamental
questions about our Universe, such as its age, its density, how
it began, and how it might end.

The development of observation schedules for HST is a
large and complex task. On an annual basis, an allocation
committee at the Space Telescope Science Institute (STScI)
selects, among the submitted observation program proposals,
those to be considered for the coming year. In order to insure a
very high utilization of the telescope, the number of proposal
accepted exceeds those that can be actually executed by the
telescope. The objective of the observation scheduler for HST
is to accommodate as many observation programs as possible
in a given scheduling horizon, taking into account assigned
program and observation priorities, and satisfy all constraints
relating to the physical operation of HST. The principal
measure of scheduling effectiveness is the fraction of time
spent actually recording data on any scientific instrument on
HST.

221

Astronomers specify observation programs according to a
specification language [STScI 86] that allows the
representation of complex constraints on the execution of the
component observations. The basic structure of each program
is a partial ordering of observations, each specifying the
collection of light from a celestial object with one of the
telescope's six scientific instruments. A diverse set of
temporal constraints can be imposed on the observations in a
program, including precedences, windows of opportunity for
groups of observations, minimum and maximum temporal
separations, and coordinated parallel observations with
different viewing instruments. It is possible to prioritize the
observations specified in a given program, and to specify
preferences with respect to observation completion levels
(e.g., 25% completion is minimally acceptable, 50%
completion would be desirable, 75% completion is the
maximum required). Each program also has an associated
priority, decided by the allocation committee, which specifies
if the program has to be considered "required" (i.e., its
execution has to be insured within the scheduling horizon) or
"supplemental" (i.e., its execution is conditioned to the
availability of time on HST).

An observation program accurately describes the
performance that the user requires from the telescope but
leaves unspecified the operational constraints associated with
actually executing the exposure. In fact, these constraints
relate directly to the "physics" of picture-taking with the
telescope, and are usually independent of the particular
observations to be executed.

In general, the execution of an observation requires the
satisfaction of three main requirements:

1. The telescope must be pointed at the target while
the picture is being taken;

2. The required scientific instrument must be
operational (i.e., exposing) for the specified
duration.

3. The data collected by the scientific instrument
must be communicated to Earth.

Each of these conditions, in turn, places additional
constraints on the required state of the telescope and/or of the
surrounding environment with which the telescope interacts,
which must be similarly established for the exposure to take
place.

If Condition 1 is not already satisfied, it can be achieved by
rotating (or slewing) the telescope from the orientation
required by the previous target to that of the required target.
The duration of a slewing operation depends on the position of
the previous target on the celestial sphere and can therefore be
calculated only when an observation sequence has been
determined. In addition to orienting the telescope in the
direction of the target, it is necessary to lock the target in the
center of the field of view of the required instrument, a
process that requires the execution of additional operations.
Both locking and picture taking require the target to be
unocculted by the earth, the moon or the sun; these occultation
periods can be deterministically known within a 1-2 month
scheduling horizon, and can therefore be considered as data of

the problem. If an observation is designated as "interruptible"
it can continue after an occultation period; however, it is
necessary to reestablish the target lock when the target
becomes visible again. These aspect of telescope behavior are
graphically illustrated in Figure 2-1.

Slewing

Unlocked

„ - Locking

- Locked

Figure 2-1: A sequence of transitions to point HST

The achievement of Condition 2 typically requires the
execution of complex sequences of instrument setup
operations. Some instruments are in fact composed of several
independent detectors, possibly sharing some service devices
(e.g., temperature control systems). Each detector and service
device has an associated operating status, which can undergo
warming up and cooling down transitions with several
intermediate states; each state and transition typically has an
associated range of possible durations. Limitations on the
availability of electric power and structural characteristics the
instruments require the satisfaction of parallelism and mutual
exclusion constraints among the various warmup/cooldown
processes. For example, a given detector might be required to
be switched off while another is undergoing a warm-up or
cool-down process. Similarly, while a detector is in an
intermediate warmup state, the corresponding service base
might be constrained to undergo only a well specified
subsection of its warmup process. Figure 2-2 graphically
illustrates one such constraint on the operating states of the
Wide Field/Planetary Camera service base (WFPQ and one of
its two detectors, the Wide Field Camera (WF).

Finally, Condition 3 implies that satisfaction of
communication constraints is a function of the specified
instrument and viewing mode (e.g., the rate amount of data
produced by an instrument requires the use of a IMbyte/sec
channel through a TDRSS communication satellite), as well as
various user-specified special requirements (e.g., criticality of
an observation requires both immediate down-linking of data
and local storage on the tape recorder). Transmission of data
to earth requires both visibility of one of the two currently
available TDRSS satellites and the availability of an
appropriate communication link. Storage of collected data for
later transmission requires sufficient on-board tape recorder
capacity.

222

ON

i

/ \ OFF

\

/

WFPC

ON 1/ ■

1/2 ON

OFF

:..■''■■■

/

Figure 2-2: Constraint: WFPC must be on while WF is on

3. Modeling the Dynamics of Telescope
Operations
As indicated at the outset of this paper, scheduling in HSTS

is viewed as the process of constructing a behavior of a system
that satisfies given constraints. Assuming this view, the first
problem to address is that of describing the structure and
dynamics of the system to be managed. Our approach reflects
the following broad modeling requirements:

• Representational adequacy:
In-depth analysis of the HST scheduling problem
has led to the identification of several
representational requirements:

1. the ability to model actions and states that
have definite, and often context-
dependent, durations (e.g., slewing time).

2. the ability to deal with actions and events
that depend on the occurrence of particular
combinations of states as opposed to the
execution of explicit actions (e.g., a lock
on a target is lost if the visibility window
closes)

3. the ability to model not only sequence
constraints among actions and states but
also constraints on their parallel
occurrence (e.g., constraints on WFPC
reconfiguration).

The HSTS modeling framework addresses all of
these issues.

223

• Independence from the particular application:
It is evident that the representational issues
identified above are not unique to the HST
domain, but are instead common to a wide range
of scheduling problems. For example, a
representation of context-dependent durations is
fundamental to management of automated
factories where mobile robots are used to move
parts around, as optimization of paths and travel
times would necessarily play an important role.
The HSTS modeling framework provides a
general approach to the representation of physical
systems, which we have used to construct a
specific model of the HST operating environment

• Independence from the problem solving
strategy:
Use of an opportunistic scheduling methodology
implies the need to variably adopt different
problem solving strategies during the construction
of system behaviors (e.g. backward chaining,
forward simulation). Thus, the system description
must truly encompass all possible behaviors of the
system, and be decoupled from any assumptions
about the nature of problem solving strategy to be
applied.
The HSTS modeling framework achieves such
independence by clearly separating the
description of the structure and the dynamics of
the system, which is of general use, from any
heuristics and preferences that might be added to
the model to specialize it with respect to a specific
problem solving strategy.

In the following subsections, we describe the salient
features of the HSTS modeling framework. We first consider
the basic primitives for specifying system structure and
dynamics, and then the extensions necessary to accommodate
multiple levels of representation.

3.1. The HSTS Domain Description Language
Within the HSTS domain description language, a system is

defined, at the basic structural level, as a collection of
interacting parts or system components. Each component is
characterized by a set of properties that are relevant to the
scheduling problem. For example, one of the components of
the current model of the HST operating environment is the
HST optical system. For purposes of scheduling, the state of
the optical system is fully specified once one knows what it is
pointing at; thus, its sole property is POINTING STATUS.
Another important class of components is that of fixed targets
(stars, globular clusters, galaxies, etc.) (see Figure 3-1). One
of their properties is the position on the the celestial sphere,
identified by a <Right Ascension, Declination> coordinate
pair; another is their visibility with respect to the space
telescope.

At any instant of time, each property of each component of
the system has one and only one associated value. In general,
a value of a property is a description of some relation existing
among several components of the system. Some properties

{{fixed-target
LOCATION:

VISIBILITY: }}

Figure 3-1: The class of fixed targets

are static, i.e., their value does not change over time. Others
are dynamic, i.e., their value might change over time; in the
following we will also refer to these as state variables.
Referring again to the example in Figure 3-1, a fixed target's
LOCATION is a static property while its VISIBILITY is dynamic
(i.e., some times it will be visible from HST while other times
it will be occulted). Other examples of dynamic properties in
the HST domain include the POINTING STATUS of the
telescope's optical system and the OPERATING STATUS of an
instrument

It is important to note here that in order to determine a
behavior of a system that achieves specified goals it is
necessary to model not only the dynamical behavior of the
system to be managed but also the dynamical behavior of
those elements of the environment (in the HST case, the
targets) whose behavior affects our capability to achieve those
goals. Within the HSTS domain description language, both
the environment and the system to be managed are represented
uniformly with the same primitives, leaving to the problem
solver the responsibility to decide what is to be considered
accessible and modifiable and what has to be considered as
given.

The HSTS Domain Description Language requires explicit
declaration of the set of possible values that can be assumed
by each dynamic property in the model. Since a value
represents the existence of a particular relationship among
system components at a certain instant of time, a set of values
is represented as a set of tuples belonging to one or more
relations. Each set of tuples is represented as a set of predicate
calculus assertions, with predicate names designating specific
relations and arguments denoting variables or constants; by
convention variable arguments are preceded by a question
mark. Returning to our examples from the HST domain, the
VISIBILITY state variable of a given fixed target ?r is defined
to take on one of the two possible values at any point in time:
VISIBLE (IT) or NOT-VISIBLE (IT). The set of possible
values for the POINTING STATUS of the optical system of the
telescope is given in Figure 3-2, where the variables IT, ?71
and ?72 designate arbitrary targets.

LOCKED (HST, IT)
UNLOCKED (HST, IT)
LOCKING (HST, IT)
SLEWING (HST, 1T\, ?T2)

Figure 3-2: Possible values of POINTING STATUS

A behavior of the system is an evolution over time of the
values of its state variables. A behavior of the system is
completely specified once a value has been associated with
each state variable for each instant of time. Scheduling is
concerned with the construction of such behaviors, and we

224

will consider their representation in HSTS in Section 4. For
now, we are concerned with specification of the possible
behaviors that can be realized by the system.

The HSTS domain description language allows the
specification of the "laws" that govern the possible behaviors
of the system, as constraints on the values that the state
variables can assume over time. Each possible value of each
state variable has an associated value descriptor, which
collectively specify the legal patterns of values relative to the
variables of the system that may occur over time. More
precisely, in order for a value v to be present in a behavior B
of the system, it must be possible to recognize in B one and
only one of the patterns specified in the value descriptor of v.
Value descriptors allow the specification of simultaneity and
sequentialiry constraints on the occurrence of specific values.

A value descriptor specifies two distinct pieces of
information; the duration and the compatibility
specification.

The duration of a value is a constraint on the amount of
time during which a value can appear continuously in a
behavior of the system; it is represented as a pair of temporal
distances [d,D], D > d > 0, where d and D are respectively
the lower bound and the upper bound on the duration. For
example, the pair [0, +<*>] denotes an indefinite duration; in
this case the duration of the value is totally determined by the
occurrence of other values that constrain its start and end time.
On the other hand, [c,c], where c is a constant, denotes a
definite duration for a value; in this case the duration of the
value is totally independent of the rest of the behavior of the
system.

In general, both d and D may be functions of the parameters
determining the associated value. The duration of
SLEWING (HST, ?71,1T1), for example, is:

[dsUw(HST, ?H, ?72), dsUw(HST, TT1, ?77)]

This constraint returns a definite duration only when the
both targets ?7T and ?72 are completely specified.

The compatibility specification of a given value
determines how the continuous occurrence of that value is
constrained over time by the occurrence of other state values.
A compatibility specification may consist of one or more sets
of compatibilities (not necessarily disjoint). The meaning of a
compatibility specification for a value v is the following: for
each possible behavior b of the system, if the value v appears
in b over an interval of time, then there is a compatibility set
in the compatibility specification such that all the
compatibilities in the set are satisfied in b.

Each compatibility is expressed as a temporal relation
between two values, indicating the existence of one or more
temporal separation constraints between the start and/or end of
the continuous occurrences of the two values. The temporal
relations used in the HSTS domain description language are
equivalent to those in [Allen and Koomen 83] but also allow
the specification of temporal distances among the extremes of
the intervals [Dean and McDermott 87]. For example, the fact
that a target IT must be visible in order to take a picture of it
with viewing instrument II in operational status IS, is
expressed as:

VISIBLE (IT)

{contains, [0, +°°], [0, +°°]}

EXPOSE (71, IS, IT)

This indicates that, for any II, IS and ?r, if
EXPOSE {V, IS, IT) appears in the behavior of the system,
then the value VISIBLE (IT) has to appear continuously
during an interval of time such that its start precedes the start
of EXPOSE (II, IS, IT) by an indefinite amount of time and
its end follows the end of EXPOSE (II,1S,1T) by an
indefinite amount of time. Another temporal relation available
in the domain description language is {before, [d, D]}, which
specifies that the end of the constraining value must precede
the start of the constrained value, and the time interval
separating the two events is constrained by [d,D]; The
relation {before, [0,0]}, for example, requires the
simultaneity of the two events.

Figure 3-3 illustrates the sole compatibility set in the
compatibility specification of EXPOSE (WF, An, IT), which
corresponds to taking a picture of a given target with the WF
in operational state An.

POINTING-STATUS (HST-frame)
LOCKED (?tgt)

Comp-relation: { contains, [0, + ~/, [0, + «°/j

Property
Value:

Property: OPERATING-STATUS (WF)
Value: TRANSITION (3n,4n)
Comp-relation: {before, [0, 0]}

Property: OPERATING-STATUS (WF)
Value: TRANSITION (4n,3n)
Comp-relation: { after, [0, 0]}

OPERATING-STATUS (PC)
STATE (2s)

Comp-relation: { contains, [0, + °°], [0, + *>]}

Property:
Value:

OPERATING-STATUS (WFPC)
STATE (4n)

Comp-relation: { contains, [0, + °°], [0, + °°]}

Property:
Value:

Figure 3-3: Compatibility spec for EXPOSE (WF, An, ?7)

3.2. Levels of Representation
The complexity of large scale scheduling requires the

analysis of the problem at an aggregate level, in order to focus
the problem solving effort on the more pressing issues. While
detailed models are fundamental to generate schedules that
satisfy all the constraints imposed by the physics of system
operation, abstract models can facilitate the focusing effort.
The HSTS domain description language provides primitives
for specifying models of a system at different levels of
aggregation and establishing their correspondence.

An abstract model consists of system components and state
variables that aggregate several components and state
variables of the detailed model. In the HST domain, for
example, at the abstract level the telescope is modeled as a
single capacity resource, with a single system component, the

225

HST itself, and a single property, HST OBSERVING STATE,

which provide a summary of the state of all the components of
the detailed model.

Abstract values provide high level descriptions of entire
segments of detailed behavior. In general, several detailed
activities (e.g., the "setup" sequences) can be determined only
with respect on the fully detailed system model. Therefore,
the mapping between abstract and detailed representation is
given through refinement descriptors that for each abstract
value give the necessary conditions to be satisfied in the
corresponding detailed behavior, i.e., a set of detailed state
values, and a set of temporal relations constraining their
occurrence over time. In the HST domain, one of the values
of the abstract HST OBSERVING STATUS variable refers to
specific "observations" (e.g., 0BSERVE(1P,V,7S,1T,...),
where IP designates an observation program, ?/ designates a
viewing instrument, ?5 designates the required operating state
of ?/, and ?T designates a target); the corresponding
refinement descriptor listed in Figure 3-4 requires the
occurrence of two values, EXPOSE(V,7S,TT) and
READOUT(\Mb-link,H) on the OPERATING STATUS state
variables of the instrument and communication device
respectively, such that the end time of the EXPOSE and the
start time of the READOUT are within the duration of a single
orbit. Furthermore, the start and end time of the EXPOSE
coincide respectively with the start and end time of the
abstract OBSERVE. These latter constraints provide a basis
for downward imposition of time constraints, as well as
upward propagation of detailed scheduling decisions.

At the abstract level, the description language primitives
allow the generation of rough estimates of the characteristics
of the corresponding detailed behaviors before their complete
expansion on the detailed model. For example, in order to
account for the duration of the context-dependent "setup"
activities associated to an 0BSERVE(7P,V,1S,7T,...), the
lower and upper bounds of the duration of the abstract value
are modeled as functions of the proximity of the previous and
current targets, and of the previous and current configurations
of the scientific instruments and communication devices.

{{refine-desc-1
VALUE:

OBSERVE(7P, II, IS, IT,...)
SUBVALUES:

VI (OPERATING-STATUS EXPOSE(V, IS, 7T))
V2 (OPERATING-STATUS READOUT(lMb-link,?I))

ORDERTNG-CONSTRAINTS:
V1 {before, [0, * orbit-duration*]) V2

SAME-START: VI
SAME-END: VI }}

Figure 3-4: Refinement descriptor for OBSERVE

4. Representing System Behaviors
Given a description of the system to be managed, a second

broad architectural issue concerns the manner in which
specific system behaviors (i.e. schedules) constructed by the

scheduler are represented. Within HSTS, this is accomplished
through the use of an underlying temporal data base. The
HSTS temporal data base has the following general
characteristics:

1. It stores behaviors of a system: In fact, the data
base satisfies a stronger requirement, since its
only legal states are those that satisfy the
constraints on the dynamics of a pre-specified
system model;

2. It is a constraint network: Behaviors are
represented implicitly by a series of constraints
that have been either externally imposed (e.g. by
requirements of the problem) or directly
extracted from the system model. This provides
a representation of a partial schedule as a state of
the database where several aspects of the system
behavior currently under construction are left
underspecified.

3. It supports opportunistic scheduling: At any
point during scheduling, several parts of the data
base might require refinement (through
additional constraint posting) to produce a
complete specification of the final schedule.
The database leaves complete freedom as to the
order in which these refinements are made.

The HSTS temporal data base extends in several ways the
philosophy of the time map formalism developed in [Dean and
McDermott 87]. Perhaps the most fundamental departure in
our approach is the tight connection that is established
between the state of the data base and the model of a system
This association provides a strong basis to support planning
and enforce database consistency.

The process of building a system behavior that satisfies a
given set of scheduling goals involves the determination of
sequences of values for system state variables that include
these designated values and coordinate temporally in a manner
consistent with the compatibility constraints specified in the
system model. At any stage of this process, the HSTS
Temporal Behavior Data Base represents the set of values,
sequences and compatibility constraints that have been posted
so far and the specifications of the compatibility constraints
that are known to be needed but have not yet been posted.

For each state variable, the scheduling horizon is subdivided
into a sequence of intervals, or tokens, each being a triple
<st,et,type>, where st and et represent respectively the
token's start and end time and type is a set of values.

We distinguish two distinct kinds of tokens:
• value token: a value token indicates that the

interval represents the occurrence of a single
constant value; therefore, the type of a value
token has cardinality one. A value token
originates either from the external posting of a
scheduling goal or from the direct implementation
of a compatibility constraint For example, in the
HST domain, value tokens of type
EXP0SE(V,1S,1T) generally correspond to a
proposer's request to take a picture, while tokens
of type LOCKED (HST, IT) are typically
justified as enabling conditions for a

226

corresponding EXPOSE. Notice, however, that
the distinction between tokens that are scheduling
goals and tokens justified by compatibilities
depends on the specific scheduling problem that is
being solved and are not at all intrinsic to the
system model. In other words, it could be
perfectly reasonable to formulate problems that
require as external goal the occurrence of a
LOCKED token, e.g., during calibration and/or
instrument maintenance routines.

• constraint token: a constraint token denotes a
segment of the evolution of a state variable that
has not yet been constrained to any value token.
Therefore, this token implicitly represents a set of
sequences of values. No restriction is imposed on
the length of the sequence, and it can possibly be
empty. Each value of the sequence is constrained
to belong to the set type, while st and et represent
respectively the start of the first value and the end
of the last value in the sequence. A constraint
token can be considered as a "hole" in the
evolution of a state variable within which it is
possible to find room for a new value.

As mentioned earlier, any value posted in the temporal
database must be consistent with the compatibility constraints
in the corresponding system model. When a value token is
introduced into the sequence of a state variable, it is connected
with instances of the duration and compatibility specifications
that are associated with its type in the system model. In order
for the value token to be justified, there must be an
implementation of these specifications such that the overall
schedule is consistent. Given a duration constraint [d,D] for
the token TOK, its implementation implies the introduction of
the following temporal separation constraint;

d < et (TOK) - st (TOK) < D
Given a token TOKv implementing a compatibility

constraint of the kind:

TEMPORAL RELATION: {contains, [0, -H»], [0, +«.]]
TYPE: P

corresponds to selecting or generating a token TOK2 of type
P and introducing the temporal constraints;

stfJOK^-stiJOK^ >0

et{TOK^-et(JOK^tQ
A fundamental aspect of the operation of the HSTS

Temporal Behavior Data Base is that constraints can be posted
irrespective of the existence of an overall consistent
assignment of values to each variable. Consistency
verification can be an expensive operation and it can be
redundant if it is known that the addition of a constraint will
not make the network inconsistent (even if a complete
assignment of values to state variables is not yet known).
Constraint propagation is decoupled from constraint posting to
allow the scheduler to take advantage of such knowledge.

One important consequence of representing a schedule as a
network of temporal constraints is that it allows commitment
to a specific assignment of start and end times for each

scheduled value token to be avoided whenever possible. An
HSTS schedule explicitly represents a window of opportunity
for the occurrence of each event in a system behavior.
Moreover, the explicit representation of the network of
temporal constraints reduces the solution of some simple
reactive scheduling problems to polynomial constraint
satisfaction processes. For example, Figure 4-1 represents the
network of reconfiguration activities needed on the WF/PC
state variables and on the telescope pointing status in order to
take a picture with the WF (the black value token corresponds
to the EXPOSE value). The four temporal constraints
connected to the target visibility correspond to the selection of
the orbit during which the exposure is scheduled to be taken.
If, after the development of a schedule, it becomes necessary
to delay the exposure of one orbit (e.g., because the scheduler
has been suddenly required to make room for a higher priority
exposure), we would just need to redirect the four orbit
selection links and repropagate through the resulting network
of temporal constraints.

NCC-2KK
VI.SIIIIUTY:

HSTFRAME
raiNTING STATUS:

PLANETARYCAMERA
OI'EKATING-STATUS:

WIDE-FIELD-CAMERA
. OPERATING STATUS:

WFPC-BASE
OPERATING-STATUS:

Figure 4-1: Network of temporal constraints for exposure.

5. Integrating scheduling and planning
The temporal behavior data base is partitioned into a series

of layers, each corresponding to a level of abstraction of the
system model, to reflect the current state of the solution during
the schedule generation process. Within the current HST
scheduler two layers are distinguished:

• Abstract layer: This is a representation of the
scheduling goals and temporal scheduling
constraints that constitute the current scheduling
problem (e.g., programs of observations) and of
the abstract model of the HST. Initially no
observations are scheduled and the OBSERVING
STATUS of HST is AVAILABLE over the entire
scheduling horizon.

• Detailed layer: This represents a set of behaviors
that are consistent with the refinements of the
scheduling goals selected so far. Initially, the
temporal data base reflects external events that are

227

deterministically known (e.g., periods of target
visibility) and assumptions regarding the initial
state of other system state variables (e.g., the
initial state of each instrument, the initial pointing
status, etc.)

Generation of a schedule proceeds incrementally, by
repeatedly selecting one or more as yet unachieved scheduling
goals (or alternatively selecting one or more previously
achieved goals to be retracted), inserting them into the abstract
state variable sequence (or extracting them, if the goals have
to be retracted), communicating the refined goals to the
detailed layer, and constructing the detailed system behavior
that extends the detailed layer to include the achievement of
the newly posted goals (or desired retraction of previously
achieved goals). This cycle is repeated until either all of the
scheduling goals have been achieved or it has been determined
that it is not possible to achieve those that remain.

The different layers are suitable for different problem
solving activities according to the level of detail of their
constraint representation. At the abstract level, telescope
reconfigurations needed to achieve a scheduling goal (e.g.,
telescope slewing, instrument warm ups and shut downs) are
implicitly modeled as adjustments on the duration of each
observation. Here, decision-making is concerned with
allocating available slots of time on the telescope operating
status to unscheduled observations. This level of abstraction
is well suited for global focusing activities such as distributing
observations over the scheduling horizon to minimize the
possibility of resource contention (i.e., avoiding resource
bottlenecks) and sequencing observations to minimize
estimated telescope reconfiguration (setup) times. On the
other hand, the detailed representation of the system supports
the actual expansion of required setup activities and their
mutual synchronization. Depending on the accuracy of the
abstractions of the detailed constraints in the abstract model, it
may not be possible to reliably make certain decisions (e.g.,
the selection of the orbit during which an exposure is taken)
until all detailed constraints have been elaborated. In these
cases, decision-making at the abstract layer will involve the
communication of preferences (e.g., "schedule the observation
in the earliest possible orbit within the imposed time
constraints") to be implemented on the detailed layer.

At any point during problem solving, there may be several
value tokens in a given layer of the temporal data base whose
occurrence is still incompletely justified. This is the case if
there are value tokens in the temporal data base that do not
have a compatibility set with all compatibilities implemented.
To establish if the current temporal data base actually contains
some consistent behavior of the system, it is necessary to
select and implement additional compatibilities. This process
is carried out through a heuristic search that combines two
principal selection steps:

1. Selection of an open compatibility to implement
We refer to the value token to which the
compatibility is connected as the the constrained
token;

2. Selection of a value token to be connected to the
constrained token according to the directives of

the selected compatibility. If a value token does
not already exist in the current temporal data
base, a constraint token whose type matches the
value required by the compatibility is selected
and a new value token is inserted into it.

After some number of temporal constraints have been
posted, a temporal constraint propagation process spreads the
consequences to the rest of the temporal data base and
possibly detects the inconsistency of the current state of the
data base. In the latter case, backtracking is needed before the
search process can continue.

The architecture provides several mechanisms to encode
heuristic knowledge to govern the search process. Such
knowledge includes:

1. selection among alternative value refinements
during translation of scheduling goals at the
abstract layer into networks of goals at the
detailed layer. For example, in the current HST
scheduler, direct communication of data to earth
is preferred to local storage on the tape recorder
when the choice exists, and these alternative
refinements are explored in this order.

2. decomposition of the overall search into
subproblems. For example, in the current HST
scheduler, the search to achieve an EXPOSE and
READOUT goal pair that results from the
refinement of an OBSERVE is partitioned into a
search to achieve the EXPOSE, a search to
achieve the READOUT and a final search to
select the target and communication satellite
visibility windows. Each of these subproblems
can be further sub-divided into still smaller
subproblems. For example, to achieve an
EXPOSE requiring the WF detector, the planner
first builds the network of values switching on
the WF/PC and then that switching off the other
instruments. To switch on the WF, the planner
considers the reconfiguration of the state
variables associated to the whole WF/PC
instrument, first reconfiguring the WF, PC and
WFPC state variables independently and then
mutually synchronizing them.

3. selection among mutually exclusive
compatibilities that discriminate among different
compatibility sets within an open compatibility
specification; For example, in the current HST
scheduler, communication of data to earth
requires the visibility of either of the two
TDRSS satellites, and a heuristic that exploits
the degree of overlap with the viewing target's
visibility is employed.

4. selection of value or constraint tokens to
implement the selected compatibility. For
example, in the current HST scheduler, the goal
of executing an observation as soon as possible
translates into a preference for the earliest token
in time (value or constraint) that locally satisfies
the requirements of the current compatibility.

5. execution of the temporal constraint
propagation. It is possible to specify when the
propagation is needed with respect to the current

228

decomposition of the problem into subproblems.
Moreover, it is possible to specify different
preferences with regard to the traversal of
parallel propagation paths in the network of
temporal constraints, with the intent of speeding
up the propagation by traversing the most
restrictive paths first.

Heuristic knowledge is also required in order to relax the
detailed layer of the temporal data base in situations where a
revision to the constraints posted on the abstract layer requires
the retraction of a network of detailed values (e.g., the
insertion of a new observation between two observations
previously considered to be consecutive might require
substantial changes in the telescope reconfiguration
sequences). After the detailed values are retracted, constraint
tokens take their places on the corresponding state variables,
providing the "holes" into which the values required by the
new reconfiguration networks can be placed.

6. Current Status and Preliminary Results
The development of a scheduling system for HST has been

pursued by building and experimenting with increasingly
realistic models of the operating environment The model of
the Hubble Space Telescope over which the system is
currently operational consists of 14 state variables: 1 in the
abstract model and 13 in the detailed model. The state
variables contained in the detailed model relate to the
following system components:

• 5 represent the operating status of the 2
instruments that are currently modeled; 3 for the
WF/PC and 2 for the Faint Object Spectrograph
(FOS)

• 1 represents the HST pointing status
• 4 represent the status of instrument data buffers
• 2 represent the status of the two data transmitters
• 1 represents the status of local tape recorder.

Additional state variables represent the visibility status of each
target and of the two TDRSS satellites.

The current automatic scheduler operates according to a
"dispatching" strategy. At each cycle, an observation is
selected among the current unscheduled tasks and appended to
the current sequence of scheduled observations. The selection
is made according to a dispatching rule that attempts to
minimize "dead time" (i.e., an estimate taking into
consideration instrument reconfiguration, telescope
repositioning, and target and TDRSS visibility windows).
Figure 6-1 describes some preliminary results on a scheduling
problem consisting of 16 single observation programs, with
requirements for all the 4 detectors of the two modeled
instruments and all the communication links and the tape
recorder. The cumulative viewing time required by this set of
observation was 5 hours and 9 minutes. The system constructs
a schedule that covers a scheduling horizon of 23 hours and 35
minutes, with schedule efficiency (i.e., the ratio between the
science time and the covered scheduling horizon) of about 22
%. The schedule efficiency is artificially low with respect to
the theoretically estimated upper bound of 30-35% [Johnston

85] due to the fact that the model includes the requirement that
the FOS (respectively WF/PC) must be switched off every
time an exposure is performed on the WF/PC (FOS).
Experiments conducted with a less restrictive (and more
realistic) model allowing both the WF/PC and the FOS to be
on in parallel yielded a schedule efficiency of 29.43 %.

Notice that the temporal data base minimizes the number of
time points needed in the temporal distance graph. When an
equality constraint (i.e., [0,0] distance) is posted, the two
connected time points are collapsed. Figure 4-1 gives an
indication of the topology of the network of temporal
constraints that need to be built for each scheduled
observation.

CPU time: 5 minutes 40 seconds
Value tokens: 306
Time points: 273
Temporal distances: 1138

Figure 6-1: Preliminary results

The current HST scheduler can also be operated in an
interactive mode. The user is allowed complete freedom in the
development and revision of the overall observation sequence.
The user need only specify, at each step, the unscheduled
observations to be added, the position in the current sequence
of scheduled observations where they should be inserted,
which currently scheduled observations (if any) should be
removed, and the preference with respect to the time of
occurrence of the selected observations (e.g., as soon as
possible, after a calendar date). The interactive scheduler
provides the basic capabilities on which the development of a
more flexible and opportunistic automatic scheduler will rely
(see below).

The modularity of the HSTS framework has allowed an
incremental development of both the model and the
scheduling and planning knowledge. This development took
place in several stages, each consisting in the construction of a
complete scheduler on increasingly more complex models.
The first stage involved a model consisting only of the WF/PC
and the HST pointing status; then the model was expanded to
include the FOS; finally the rest of the state variables was
added to account for the communication of data to earth.

that flexibly integrates decision-making at different levels
of abstraction to produce consistent system behaviors that
attend to overall allocation objectives.

An initial version of the HSTS architecture has been applied
to the problem generating short-term observation schedules for
the Hubble Space Telescope, and preliminary experimental
results obtained relative to an incomplete but substantial
model of the telescope and its operating environment indicate
the utility of the architecture as a basis for effectively
managing the combinatorics of large-scale problems.

One area of current research concerns the development of
more sophisticated, constraint-directed strategies for globally
structuring the scheduling process. The currently
implemented HST scheduler relies strictly on a local greedy
heuristic for optimizing overall resource usage. While the
schedule efficiency results given in Section 6 are respectable,
the effectiveness of the local heuristic is due in part to the
absence of many of the more complex temporal constraints
that may be specified in observation programs in the
scheduling problem that was solved. More importantly,
schedule efficiency is not the sole objective in HST
observation scheduling, it must ultimately be balanced against
other allocation objectives (e.g. program and observation
priorities). We believe that a key to better solutions to the full
problem lies in the ability to dynamically direct problem
solving according to the evolving structure of the underlying
solution space. In fact, it was the desire to exploit such
opportunistic problem structuring techniques that, in large
part, originally motivated the HSTS scheduling
architecture. [Muscettola et al. 89] We are currently
investigating the use of previously developed preference
representations [Muscettola and Smith 87, Johnston 90, Sadeh
90] as a basis for more general characterizations of current
solution constraints, and the development of problem
decomposition heuristics that operate with respect to these
representations. On a related note, we currently have hole
insight into performance tradeoffs concerning the relative
amount of problem solving effort expended at different levels
of abstraction, and the relative amount of problem solving
responsibility that should be apportioned to each level.
Experimental analysis of this tradeoff is required.

7. Concluding Remarks
In this paper, we have presented HSTS, a problem-solving

architecture aimed at the solution of complex problems, like
space mission scheduling, that require efficient allocation of
resources in the presence of complex physical constraints. The
HSTS architecture is grounded in a uniform view of planning
and scheduling as a process of constructing behaviors of a
complex dynamical system. Following this view, the HSTS
architecture provides a domain description language for
modularly specifying the structure and dynamics of complex
systems at different levels of abstraction, a temporal behavior
data base that represents possible system behaviors over time
and flexibly supports the incremental construction of
solutions, and a scheduling/planning framework

Acknowledgements
We gratefully acknowledge the efforts of the other members

of the HSTS project team: Gilad Amiri, Amedeo Cesta,
Daniela D'Aloisi, and Dhiraj Pathak.

References
[Allen and Koomen 83]

Allen, J. and Koomen, J.A.
Planning Using a Temporal World Model.
In Proceedings of the 8th International

Joint Conference on Artificial
Intelligence, pages 741-747. 1983.

229

[Baker 74] Baker, K.R.
Introduction to Sequencing and Scheduling.
John Wiley and Sons, New York, 1974.

[Dean and McDermott 87]
Dean, TJL. and McDermott, D.V.
Temporal Data Base Management.
Artificial Intelligence 32:1-55,1987.

[Dean et al. 88] Dean, T. and Firby, R J. and Miller, D.
Hierarchical Planning Involving Deadlines,

Travel Time, and Resources.
Computational Intelligence 4:381-398,

1988.

[Fikes et al. 72] Fikes, R.E., Hart, P.E. and Nilsson, N.J.
Learning and Executing Generalized Robot

Plans.
Artificial Intelligence 3:251-288,1972.

[Fox and Smith 84]
Fox, M.S. and Smith, S.F.
ISIS: A Knowledge-Based System for

Factory Scheduling.
Expert Systems l(l):25-49,1984.

[Johnston 85] Johnston, M.D.
A Note of ST Observing Efficiency,
unpublished internal note, STScI,

Baltimore, MD.

[Johnston 90] Johnston, M.D.
SPIKE: AI Scheduling for NASA's Hubble

Space Telescope.
In Proceedings of the 6th Conference on

Artificial Intelligence Applications,
pages 184-190. IEEE Computer
Society Press, 1990.

[Lansky 88] Lansky, A.
Localized Event-based Reasoning for

Multiagent Domains.
Computational Intelligence 4:319-340,

1988.

[Muscettola 90] Muscettola, N.
Planning the Behavior of Dynamical

Systems.
Technical Report CMU-RI-TR-90-10, The

Robotics Institute, Carnegie Mellon
University, 1990.

[Muscettola and Smith 87]
Muscettola, N. and S.F. Smith.
A Probabilistic Framework for Resource-

Constrained Multi-Agent Planning.
In Proceedings of the 10th International

Joint Conference on Artificial
Intelligence, pages 1063-1066. Morgan
Kaufmann, 1987.

[Muscettola et al. 89]
Muscettola, N. and Smith, S P. and Amiri,
G. and Pathak, D.
Generating Space Telescope Observation

Schedules.
Technical Report CMU-RI-TR-89-28, The

Robotics Institute, Carnegie Mellon
University, 1989.

[Ow and Smith 88]
Ow, P.S. and Smith, S.F.
Viewing Scheduling as an Opportunistic

Problem Solving Process.
In R.G. Jeroslow (editor), Annals of

Operations Research 12. Baltzer
Scientific Publishing Co., 1988.

[Sadeh 90] N. Sadeh, and M.S. Fox.
Variable and Value Ordering Heuristics for

Activity-based Job-shop Scheduling.
In Proceedings of the Fourth International

Conference on Expert Systems in
Production and Operations
Management, Hilton Head Island, S.C..
1990.

[Smith et al 90] Smith, S.F. and Ow, P.S. and Muscettola,
N. and Potvin, J.Y. and Matthys, D.
An Integrated Framework for Generating

and Revising Factory Schedules.
Journal of the Operational Research

Society 41(6):539-552,1990.

[STScI 86] STScI.
Proposal Instructions for the Hubble Space

Telescope.
Technical Report, Space Telescope Science

Institute, 1986.

[Vere 83] Vere, S.
Planning in Time: Windows and Durations

for Activities and Goals.
IEEE Transactions on Pattern Analysis and

Machine Intelligence PAMI-5, 1983.

[Wilkins 88] Wilkins, D.E.
Practical Planning.
Morgan Kaufmann, 1988.

230

SOLUTION OF TIME CONSTRAINED SCHEDULING PROBLEMS
WITH PARALLEL TABU SEARCH

by

E. L. Perry, Ph. D.
Ford Aerospace

9970 Federal Drive
Colorado Springs, Colorado 80921

Phone: 719 594-1911

Abstract

Many critical decisions involve
the solution of scheduling prob-
lems where time does not permit
the consideration of all alter-
natives. Military examples
include weapon-target pairing
and evaluation of courses of
action. Civilian examples are
found in the assignment of
computing jobs to processors and
humans to tasks. Often the size
of the solution space grows
exponentially with the number of
threats and a schedule must be
produced within seconds. The new
technigue of Tabu Search offers
a method for systematically
searching the solution space to
find an optimal or near optimal
solution in a short period of
time. This paper combines Tabu
Search with parallel processing
to increase the number of feasi-
ble schedules that can be con-
sidered in a short time period.
The technigue also overcomes the
problem of local optimality. A
Naval Anti-Air Warfare schedul-
ing problem is used to illus-
trate the method.

1.0 INTRODUCTION

Most scheduling problems have
extremely large solution spaces
which cannot be searched by
traditional methods in any
reasonable amount of time. We
give an example from the mili-
tary which is representative of

the numerous time constrained
scheduling problems.

1.1 Illuminator Scheduling in
Naval Anti-Air Warfare

In Naval Anti-Air Warfare,
suppose that we have n incoming
threats (missiles or planes).
Surface to air missiles (SAMs)
are to be launched against the
threats. There are m terminal
illuminator's (TIs) which serve
as terminal homing radars for
the SAMs. During the last three
to fifteen seconds of the SAM's
flyout, one of the TIs must be
locked onto the threat. The
reflected beam of the TI guides
the SAM into the threat for a
certain kill. The problem is to
schedule the illuminators so
that one is always available for
each SAM at the proper time. The
objective is to maximize the
depth of fire; that is, to get
the most possible shots at the
incoming threats. The illumina-
tors may have times when they
are unavailable due to previous
scheduling. It has been shown
that there are mn * n! possible
schedules [Boyer, et al, 1990].
This problem is an example of a
very complex assignment problem
called the time constrained
scheduling problem. In non-
military terms it can be de-
scribed as a many-to-one assign-
ment of computing jobs to usable
processors where the cost of
assigning job i to processor j
is time dependent. It is as-
sumed that the processors may

231

already have a preset schedule
that must be considered as new
jobs are added. Furthermore, the
assignments must be made by some
deadline (the time constraint on
processing) that prevents con-
sideration of all the feasible
schedules. It is therefore
necessary to use an iterative
method where the best schedule
found to date is always avail-
able in case processing is cut
short. In this process, the
initial feasible solution must
be found quickly to insure
availability of a solution. We
must also overcome the problem
of local optimality. The search
through the solution space can
become fixed on a locally opti-
mal solution and completely miss
the globally optimal one.

The problem itself is a member
of the set of problems known to
be NP-Complete [Garry and John-
son, 1979]. This means that no
efficient algorithm has been
developed which will always find
the solution. However, several
techniques have been found to
yield an approximate solution in
a reasonable amount of time
[Glover, 1988, 1989 and Davis,
1987]. We will extend Glover's
Tabu Search technique to a
particular form that is appro-
priate for implementation on a
parallel processor. We show the
application of the general
method to problems of the type
described above.

We now describe the Parallel
Tabu Search method and then show
its application to the example
described above. A summary of
the method and its wide applica-
bility to other problems is
described in the last section.

2.0 PARALLEL TABU SEARCH

Tabu Search has been successful-
ly implemented in a wide range

of settings as a metastrategy to
guide other heuristics to over-
come limitations of local opti-
mality [Glover, 1988, 1989 &
1990]. It utilizes a form of
short term memory called a tabu
list to assure the search will
not revisit a previous solution
except by a path not traveled
before. Attributes of the solu-
tion space are identified which,
if prevented from recurring in a
future move, will assure the
present move cannot be reversed.
These attributes are recorded on
the tabu list, where they reside
for a specified number of itera-
tions before they are removed.

In order to implement Tabu
Search, we must have:

tsl) a graph theoretic descrip-
tion of the solution space;
ts2) a characterization of a
solution in the space;
ts3) a heuristic method of
generating a new solution from
an old one in the solution
space; and
ts4) a way to compare one solu-
tion against another to decide
which is better.

In the Parallel Tabu Search
method, we divide the solution
space into approximately equal
size segments using a permanent
tabu list. The number of seg-
ments is determined by the
number of processors that are
available. One processor will
search each segment thus assur-
ing that all processors are
doing useful and non-redundant
work. Each processor does the
following:

pi) get a solution from my seg-
ment of the solution space;
p2) use ts3) to get a new solu-
tion; put the old solution on
the tabu list; the tabu list is
used to make sure that we do not
repeat solutions and the perma-

232

nent tabu list is used to make
sure that we remain within our
allocated segment; the tabu list
also overcomes the problem of
local optima [Glover, 1990];
p3) use ts4) to compare the new
solution to the best one
found to date; record the best
solution found;
go to ps2);

This process continues until
time expires. After the allot-
ted time, each processor reports
the best solution it found.
These are compared and the best
overall solution is returned.

3.0 PARALLEL TABU SEARCH AND THE
ILLUMINATOR SCHEDULING PROBLEM

For an example, we turn now to
the illuminator scheduling prob-
lem.

Assume we are given a set of n
threats

T = { t(l),...,t(n) }

and a set of m terminal illumi-
nators

TI = { ilium(1),...,ilium(m) }

For each of the threats t(i) we
have a collection of p engage-
ability intervals

eng(i) = { eng(i,1),
eng(i,2), ... ,eng(i,m) }

where

eng(i,k) = { t: fe(i,k) <= t <=
se(i,k) }

indicates that t(i), can be
engaged by a SAM using a termi-
nal illuminator ilium(k) during
the period of time between
fe(i,k) and se(i,k). We use E
for the union of the engageabil-
ity intervals.

The depth of fire, d(i) for a
given threat t(i) based on a set
of engageability intervals
eng(i) is the maximum number of
SAM'S that could be launched
against this threat employing a
specified firing doctrine.

Also, there is a plan function,
P, such that for each threat i
and each terminal illuminator j,
we can determine whether or not
the illuminator can be used for
terminal guidance against the
ith threat. The plan function
is defined by

P : TxTI -> BxRxRxRxIxI

where B represents the set
(TRUE, FALSE}, R represents the
real numbers, and I is the
integers. The first component
of P(i,j) is TRUE if and only if
threat t(i) can be intercepted
using terminal illuminator
ilium(j) to guide the SAM to the
threat during the final seconds
of flyout. When the first
component is TRUE, the second
component is set to the earliest
available starting time (comput-
ed from j's que of illumination
intervals) that can be used to
address threat t(i) (i.e., the
earliest possible time for
beginning illumination, bill(i),
that is consistent with a feasi-
ble launch time) while the third
component of P(i,j) is set to
the predicted intercept time,
pint(i). Of course, pint(i) must
be in eng(i, j). The fourth
component of P(i,j) is set to
the launch time, ltime(i), for
the SAM while the fifth and
sixth components of P(i,j) give
the indices of the participating
units that provide the launch
and terminal illuminator respec-
tively for the SAM. The launch
time must be chosen so that a
launch device is available on
unit x at ltime(i). The inter-
val

233

(bill(i), pint(i))

is called the illumination
interval and it includes the
time for slewing the terminal
illumination device and locking
onto the ith threat. We often
write delta(i) = pint(i)
bill(i). Thus,

P(i,j) = (TRUE, bill(i),
pint(i), ltime(i), x, k)

represents a plan for an engage-
ment of the ith threat using the
jth terminal illuminator on unit
k. In this plan, the SAM is
launched from participating unit
x at time ltime(i), the jth
illuminator provides terminal
illumination in the time inter-
val (bill(i), pint(i)). When
there is only one ship involved,
we can suppress the last two
terms of P(i,j) because the
source of the launch is readily
apparent and there is only one
participating unit.

Also, there is a cost function

c:TxTIxE -> R

in which c(t(i), illum(j),
pint(i)) gives the cost of
engaging t(i) at time pint(i)
using terminal illuminator
illum(j). The cost function
gives the method for evaluating
one possible schedule for the
terminal illuminators against
another. This cost function
together with the plan function
provide much of the intelligence
of the heuristic underlying our
Tabu Search method. We note that
the cost function can be any
function of the threat, the
terminal illuminator and the
intercept time that accomplishes
the desired objective.

A linear cost function is given
by

c(t(i), illum(j), pint(i)) =
d(i) * (pint(i) - fe(i))

where fe(i) is the earliest
possible intercept time for
threat i, pint(i) is the pre-
dicted intercept time for threat
i and d(i) is the depth of fire
for threat i. This cost func-
tion will schedule the launches
and terminal illuminators to
maximize the depth of fire.

A schedule for terminal illumi-
nator illum(j) is a set

S(j) = { (t(Ji), P(Ji, j))
l,2,...,n(j) }

l =

of threats paired with outputs
of the plan function such that:

aO) the first component of P(j-j_,
j) is TRUE for all i;
al) t(j^) is in T for i =
l,..,n(j) ;
a2) t(jj^) is different from
tCjj.) when i is not equal k;
a3) the illumination intervals
are all mutually disjoint.

Conditions al and a2 together
guarantee that each threat in T
ap p e a r s ,
schedule
tor.

at most, once in a
for the jth illumina-

An optimal schedule is a collec-
tion of schedules

S = {S(j): j = 1,...,m}

such that

for schedule
, . ,m;
... +n(m) = n;
of c(t (jj_) ,

bl) S (]) is a
illum(j), j = 1,..
b2) n(l) + n(2) +
b3) The sum
illum(j), pint(jjj) is minimal
where the sum is taken over all
i and j.

A feasible schedule is a collec-
tion of schedules satisfying

234

bl) and b2).

Then in an optimal schedule, all
threats in T are addressed and
the total cost is minimal. In a
feasible schedule, all threats
are addressed but the total cost
is not necessarily minimal.

The problem is to produce an
optimal schedule. If an optimal
schedule is not possible in the
allotted amount of processing
time then we shall relax condi-
tion b3 and produce a feasible
schedule satisfying bl, b2, and
with the double sum in b3 as
small as possible. Such a sched-
ule will be referred to as a
best schedule.

3.1 The Solution Space

We describe the solution space
via a directed acyclic graph
[Bertsekas and Tsitsiklis,
1989].

The problem can be formulated as
a shortest route problem from a
start node s to an end node t
through a network. Each node in
the network corresponds to a
threat paired with a terminal
illuminator, an output of the
planning function and a cost for
the engagement. Thus a node in
the network can be thought of as
a tuple of the form

(t(i), illum(j), P(i,j),
c(t(i), illum(j), pint(i))),

where

P(i,j) = (TRUE, bill(i),
pint(i), ltime(i), x, z) .

The network itself is a tree and
also a directed acyclic graph
if we disregard the end node.
Each path from s to level n
through the network will corre-
spond to a feasible schedule.
The totalcost of a path is

simply the sum of the costs of
the individual nodes on that
path. The shortest path (accord-
ing to cost) through the network
from s to level n will satisfy
b3 (above) and give us the
optimal schedule that we want.
The tree is made up of n levels
(recall that n is the number of
threats). Each of these levels
correspond to the appending of
an interval to the schedule for
the terminal illuminators.

From s (the start node), we
build the nodes in level 1 of
the network. The following
actions are performed.

For each i = l,2,...,n and for
each j = 1,2,...,m we compute
P(i,j). If the first component
is TRUE then a node

(t(i), illum(j), P(i,j),
c(t(i), illum(j), pint(i))

is placed into level 1. Other-
wise, no node is constructed.

Note that the cost for the node
is computed only if the plan
function is successful in plan-
ning this engagement. Each path
from s to t will pass though
exactly one node in level 1.
Hence each feasible schedule
will include exactly one of
these nodes.

Now, by induction, we continue
the node construction process.
Suppose that levels l,...,k have
been constructed. We construct
level k+1 as follows.

1. For each node N at level k,
we expand that node by connect-
ing N to all of its children.
These children constitute level
n. They are found by the
following action.
2. For each i = 1,2,...,n, if
t(i) occurs as a threat in a
node on the unique path from N

235

to s we do nothing. If t(i) does
not occur on this path then for
each j = l,2,...,m we compute
P(i,j). If the first component
is TRUE then the node

(t(i), illum(j), P(i,j), c(t(i)
illum(j), pint(i))

is placed as a child of N.

The network is complete when n
levels have been constructed.
Each of the nodes in level n is
connected to the end node t. The
problem mathematically is to
find the shortest path from s to
t through the network. The fact
the solution space (disregarding
t) forms a tree allows us to
generate feasible schedules
easily. We start with any node
in level 1 and find a child of
that node. We continue finding
children until we reach level n.
Figure 1 below shows the genera-
tion of solutions for a 2 illu-
minator, 3 threat case. For
simplicity, in this example, we
assume that Plan always returns
TRUE. Nodes are denoted by
listing the illuminator, the
threat and the level of the
node.

All threats are placed on
illuminator schedules in
order shown by the levels,
is, the pairing in level
formed first, followed by
pairing from level 2, an
forth. In Figure 1, suppose
the required illumination t

the
the

That
1 is
the

d so
that
imes

(1, 1. 1) (1, 3,
1

D

(2, 2, 2, (2, 2,
1

1)

(1, 3, 3) (1. 1, 3)

Figure 1. Generation of schedules in a 2 illuminator,
3 threat example. In the left hand schedule, threat 1

is put on illuminator l's schedule at the earliest possible
time, then threat 2 is put on illuminator 2's schedule

and finally threat 3 is placed on the schedule for
illuminator 1 at the earliest possible time assuming that
threat 1 is already scheduled there. To generate the right
hand schedule, va choose two of the nodes in the left hand
schedule at random (the asterisks indicate the choices).
Then the threats for these two are interchanged. The
illuminators are changed with probability 0.5. In this

example the illuminators remained the same.

for the threats are given by
delta(1) = 5, delta(2) = 10, and
delta(3) = 4. Suppose further
that illuminator 1 is already
busy between the times of 5 and
10 and illuminator 2 was previ-
ously scheduled between times 0
and 5. Then the left hand
schedule from Figure 1 could be
represented as shown in Figure
2.

illum(l) (t(l))xxxxxxx(t(3))

ilium(2} xxxxxxxx(t(2))
 >

time 0 5 10

Figure 2. Another representation of the left hand illuminator
schedule from Figure 1. Here the required illuminator times are
taken as delta(l) = S, delta(2) = 10 and delta (3) = 4. It is

also assumed that illuminator 1 was previously scheduled between
times 5 and 10 as shown by the x's and illuminator 2 was busy

between times 0 and 5.

Threat 1, (shown as t(l)) is
first inserted on the schedule
for illuminator 1. The period
from time 0 to time 5 just
exactly gives us the required 5
units of illumination time.
Threat 2 (shown as t(2)) is then
inserted from time 5 to time 15
on illuminator 2. Threat 3
(shown as t(3)) then must be
placed on illuminator 1 from 10
to 14.

Figure 3 shows the right hand
schedule in Figure 1 displayed
on a time line using the same
required illumination times.
First threat 3 is placed on the
schedule for illuminator 1.
Since threat 3 requires 4 units
of illumination, it can be
placed in illuminator l's sched-
ule prior to the busy period.
Threat 2 is thus scheduled from
5 to 15 on illuminator 2 and
finally threat 1 is placed on
illuminator 1 from 10 to 15.

illum(l) (t(3)) xxxxxxx(t(l)

illum(2) xxxxxxxx(t(2)

time 0 5 i 5 10 15 20

Figure 3. The right hand schedule from Figure 1. The same
deltas are used as in Figure 2.

236

Figure 1 also illustrates the
method of generating new sched-
ules from old ones. Two nodes
on the old schedule are chosen
at random. These choices are
shown with asterisks in Figure
1. The threats for the nodes are
interchanged. Although the
illuminators were not changed in
Figure 1, they can also change
in the creation process. A
random number is generated and
compared to a preset threshold
which in this case is 0.5. If
the random number is less than
the threshold, the illuminator
is changed to another legal
value. This technique gives us
a heuristic method of generating
new schedules from old ones.

3.2 Comparing Schedules

We compare schedules using the
minimum of a cost function. For
example let us consider the
linear cost function described
in Section 3.0:

c(t(i), illum(j), pint(i)) =
d(i) * (pint(i) - fe(i))

where d(i) is the depth of fire
and fe is the first possible
time for engagement. Suppose, in
Figure 2 & 3, that the engage-
ability intervals are:

eng(l) = (0, 20), eng(2) = (3,
18) and eng(3) = (0, 15)

while the depth of fire is given
by:

d(l) = 2, d(2) = 1, and d(3) = 3.

Then the cost values for each of
the schedules shown in Figures
2&3 are computed by:

totalcost = 2*(5 - 0) + 1*(15 -
3) + 3*(14 - 0) = 64

for Figure 2 and

totalcost = 2*(15 - 0) + 1*(15 -
3) + 3*(4 - 0) =54

for Figure 3. Thus the schedule
in Figure 3 is considered better
than the one in Figure 2. The
construction of the cost func-
tion is an important part of
this algorithm but is not perti-
nent to the current discussion.
It is described in other litera-
ture [Boyer, et al, 1990].

3.3 Parallel Tabu Search for the
Illuminator Scheduling Problem

We can now use the Tabu Search
technique to solve the Illumina-
tor Scheduling Problem. First
we partition the search space
among the processors using the
permanent tabu. This is done by
restricting the level 1 nodes
that each processor can use.
For example, with 2 processors,
the permanent tabu list for
processor 1 could be { (2, 1,
1) , (2, 2, 1), (2, 3, 1) } using
the notation of Figure 1 in the
2 illuminator and 3 threat
example. This means that proc-
essor 1 only considers schedules
which use illuminator 1 in level
1. Processor 2 would then have
the permanent tabu list { (1, 1,
1) , (1, 2, 1) , (1, 3, 1)) .
This assures that the processors
are searching different areas of
the solution space. The (tempo-
rary) tabu list can be of any
length but a length of 2 is good
for the 2 illuminator, 3 threat
example. As nodes are changed to
get new schedules, the old nodes
are put on the tabu list.
Before any change is made, the
prospective new nodes are com-
pared to those on the tabu list
and the permanent tabu list.
The change is not completed if
any of the new nodes would
produce nodes on either tabu
list unless that change produces
a smaller cost than the best one
to date. Glover [Glover, 1989]

237

has suggested the use of an
aspiration list. This aspira-
tion list contains conditions
that can override the tabu list.
A new schedule may be produced
even if some of the nodes are on
the tabu list (not the permanent
tabu list) if the conditions in
the aspiration list are satis-
fied. In this case, our aspira-
tion list contains only one
condition. If the new schedule
has a smaller totalcost than the
best one to date, it is con-
structed.

In general, the algorithm pro-
ceeds as follows:

xO) generate any solution that
does not violate the permanent
tabu list; record it as the
best one found to date;
xl) generate a new solution from
the old one;
x2) if the new solution has any
nodes on the permanent tabu list
then goto xl);
x3) if the new solution has any
nodes on the tabu list and the
condition of the aspiration
list is not satisfied then goto
xl) ;
x4) compare the new solution to
the best old one; If the new
solution is better record it as
the best found to date; Put
nodes that were changed on the
tabu list;
x5) make this new solution the
old one and goto xl).

The algorithm terminates when
time expires. Each processor re-
ports the best solution that it
found. The best of these is
reported as the nearest to the
optimal. In many cases it will
be the global optimal solution.

4.0 SUMMARY

The example of Tabu Search which
we presented illustrates the
potential usefulness of the

approach, especially when com-
bined with parallel processing.
Glover [Glover, 1990] has de-
scribed many more applications
such as mixed integer program-
ming and multi-variable decision
problems. As the number of
applications for this new search
technique continues to grow, we
learn more and better ways to
apply it. This paper serves the
purpose of introducing it to
those that solve time con-
strained scheduling problems.

5.0 REFERENCES

Bertsekas D. and Tsitsiklis, J
(1989), Parallel and Distributed
Computation: Numerical Methods,
Prentice-Hall, Englewood Cliffs,
N. J.

Boyer, D. , Price, E., and Perry,
E. L (1990), "Force Level Con-
trol in Naval Anti-Air Warfare",
Proceeding of the 199 0 IEEE
Symposium on Command and Con-
trol , Ford Aerospace Corpora-
tion, 9970 Federal Drive, Colo-
rado Springs, Colorado.

Davis, L. (1987), Genetic Algo-
rithms and Simulated Annealing.
Pitman Publishing, London.

Garey, M. R. and Johnson, D. S.
(1979), Computers and Intracta-
bility: A Guide to the Theory of
NP-Completeness f W. H. Freeman
and Company, New York.

Glover, F. (1988), "Tabu
Search", CAAI Report 88-3 ,
Center for Applied Artificial
Intelligence. University of
Colorado at Boulder, Boulder,
CO.

Glover, F. (1989), "Tabu Search,
Part I", ORSA Journal on Comput-
ing, Vol. 1, No. 3, pp. 190-206.

Glover, F. (1990), "Tabu Search,
Part II", ORSA Journal on Com-

238

puting, Vol. 2, No. 1, pp. 4-32.

Hillier, Frederick S. and Lieb-
erman, Frederick J. (1980),
Introduction to Operations
Research, Third Edition, Holden-
Day, San Francisco.

239

Managing Resource Allocation in
Multi-Agent Time-Constrained Domains

Katia Sycara, Steve Roth, Norman Sadeh, Mark Fox

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present an approach to perform asynchronous,
opportunistic, constraint-directed search in multi-agent
time-bound, and resource limited domains. Such domains
are extremely complex because of the presence of temporal
and resource constraints that give rise to tightly interacting
subproblems. In a distributed environment lacking a global
system view and global control, the complexity increases
further. Our approach relies on a set of textures of the
problem space being searched. Textures provide a
probabilistic, graph theoretic definition of the complexity
and importance of decisions in the local problem space of
each agent. In other words, they provide sophisticated local
control. In addition, textures provide good predictive
measures of the impact of local decisions on system goals.
As a result, textures can be used to make control decisions
that significantly reduce the amount of search required to
solve complex distributed problems. We explore the utility
of the approach in the context of cooperative multi-agent
job-shop scheduling.

1. Introduction
In this paper we present mechanisms to enable efficient

distributed search for multi-agent, time-bound and
resource-limited problems. Such problems are
characterized by the presence of temporal precedence
constraints and resource constraints. These constraints
result in conflicts over the use of shared resources and
make the local decisions of distributed agents highly
interdependent and interacting. Our investigation is
conducted in the domain of job-shop scheduling. Our work
addresses concerns in three research areas: (1) managing
resource allocation in multi-agent planning, (2) constraint
satisfaction, and (3) job-shop scheduling. Research in
multi-agent planning has primarily focused on problems
where agents contend only for computational resources,
such as computer time and communication bandwidth (e.g.,

'This research has been supported, in part, by the Defense Advance
Research Projects Agency under contract #F30602-88-C-0001, and in part
by grants from McDonnell Aircraft Company and Digital Equipment
Corporation.

[Cammarata 83, Durfee 87a]). In most real world
situations, however, allocation of (non-computational)
resources that are needed by a planner to carry out actions
in a plan is of central concern. Conry [Conry 86] has
investigated (non-computational) static resource allocation
not involving temporal constraints. The constraint
satisfaction research community has investigated the
efficiency of heuristics for incrementally building a
solution to a constraint satisfaction problem by instantiating
one variable after another within a single agent setting
[Haralick 80,Mackworth 85,Purdom 83,Dechter 88].

Job-shop scheduling has been the subject of intense
investigation by both Operations Research and AI
communities (e.g., [Smith 85, Ow eL al. 88, Baker
74, French 82,Rinnooy Kan 76]). With few
exceptions [Parunak 86, Smith&Hynynen 87], there has
been almost no research in distributed scheduling. Prosser
[Prosser 89] has investigated job-shop scheduling within a

hierarchical distributed architecture where the high level
agent has a global view and can act as conflict arbiter. In
our system, the agents form a heterarchy, where no agent
has a global view of the problem and actions of others. We
provide mechanisms both for conflict avoidance and
conflict resolution.

Our model enables a set of agents to structure their
individual agent problem space and focus their attention
during search so as to optimize decisions in the global
search space. The beneficial effects of sophisticated local
control on the coordination of distributed problem solving
have been recognized by prior research [Durfee
87a, Durfee 87b]. Our approach, based on problem space
textures [Fox 89], allows agents to make rapid, intelligent
local decisions without the need of excessive information
exchange or the availability of detailed models of each
other's problem solving activities. Our hypothesis is that
these textures provide good predictive measures of the
impact of local decisions on system goals and constitute
abstract information summaries of expectations concerning
the decision making activities of other agents. Basing local
decisions on such predictive measures is very important in
distributed problem solving by opportunistic scheduling
agents. Since the agents operate in an asynchronous and
opportunistic manner, and since each local decision

240

interacts with subsequent decisions of other agents, each
agent must predict and take into consideration in its local
decision making the future resource needs and problem
solving behavior of other agents.

2. The Distributed Scheduling Problem
The scheduling task can be described as assigning

resources to the activities present in a plan over time in a
consistent manner, i.e., so as to avoid the violation of
resource and precedence constraints. In our model, a group
of autonomous opportunistic schedulers build a schedule in
order to synchronize their activities to avoid and resolve
conflicts. The schedule is built in a cooperative fashion
through local computation and communication. There is no
single agent with a global system view, nor any agents
whose role is coordination. In distributed job-shop
scheduling, each agent has a set of orders to schedule on a
given set of resources. Each order consists of a set of
activities (operations) to be scheduled according to a
process plan which specifies a partial ordering among these
activities. Additionally, an order has a release date and a
due date. Each activity also requires one or several
resources, for each of which there may be one or several
substitutable resources. There is a finite number of
resources available in the system. Some resources are only
required by one agent, and are said to be local to that agent.
Other resources are shared, in the sense that they may be
allocated to different agents at different times2.

We distinguish between two types of constraints:
activity precedence constraints and capacity constraints.
The activity precedence constraints together with the order
release dates and due dates restrict the set of acceptable
start times of each activity. Capacity constraints restrict the
number of activities that can be allocated to a resource at
one time. Typically the limited capacity of the resources
induces interactions between orders competing for the
possession of the same resource at the same time. In such
an environment, schedules are constructed in an
incremental fashion. Agents make local decisions about
assignments of resources to particular activities at
particular time intervals and a complete schedule for an
order is formed by incrementally merging partial schedules
for the order. If the merging of partial schedules results in
constraint violations, the resulting schedule is infeasible.

Distributed scheduling has the following characteristics:
• To achieve global solutions, agents must make

2This model mirrors actual factory floor situations where the factory is
divided into work areas that might share resources, such as machines,
fixtures and operators in order to process orders.

consistent allocations of resources needed to
perform system activities. Conflicts in the
system arise due to contention over optimal
allocation of limited capacity shared resources.

• Because of conflicts over shared resources it is
impossible for each agent to optimize the
scheduling of its assigned orders using only
local information.

• Due to limited communication bandwidth, it is
not possible to exchange detailed constraint
information during problem solving.

• All the given orders have to be scheduled. In
other words, agents cannot drop any local
goals. In addition, constraints cannot be
relaxed (e.g., precedence constraints among
the operations of an order, resource capacity
constraints, and due dates).

• Because of the tightly interacting nature of
scheduling decisions, an agent's problem
solving context is rapidly changing. Moreover,
an agent's decisions can produce constraint
violations for other agents which may lead to
backtracking. Backtracking can have major
ripple effects on the multi-agent system since it
may invalidate resource reservations that other
agents have made.

A consequence of the above characteristics is that agents
need methods to deal efficiently with incomplete
information and a rapidly changing problem solving
context. In addition, agents must maintain coherent
behavior [Durfee 87b] in a hierarchical setting. To
address these requirements, our approach gives the agents
mechanisms to enable them to accomplish the following:
(1) predict and evaluate the impact of local decisions on
global system goals, (2) develop and communicate in a
concise form robust expectations and predictions about the
resource needs and decision-making behavior of other
agents, (3) avoid and resolve conflicts over resources and
time intervals, and (4) help focus the attention of the agents
opportunistically on parts of their search space where it is
expected that good solutions, in terms both of schedule
quality and minimal interactions, will be found. These
mechanisms, based on problem textures, result in search
and communication efficiency.

3. Constrained Heuristic Search
Our approach to scheduling relies on the combination of

local constraint propagation techniques with texture-based
heuristic search. We have developed a formal model of
this search mechanism which we call Constrained Heuristic
Search (CHS) [Fox 89]. CHS provides a methodology for
solving Constraint Satisfaction Problems (CSPs) and

241

Constrained Optimization Problem (COPs). A CSP is
defined by a set of variables, each with a predefined
domain of possible values, and a set of constraints
restricting the values that can simultaneously be assigned to
these variables [Montanari 71, Mackworth 77, Dechter 88].
A solution to a CSP is a complete set of assignments that
satisfies all the problem constraints. COPs are CSPs with
an objective function to be optimized. The general CSP is
a well-known NP-complete problem [Garey 79]. There are
however classes of CSPs and COPs that do not belong to
NP, and for which efficient algorithms exist. The CHS
methodology is meant for those CSPs/COPs for which
there is no efficient algorithm. A general paradigm for
solving these problems consists in using Backtrack Search
(BT)[Golomb 65, Bitner 75]. BT is an enumerative
technique that incrementally builds a solution by
instantiating one variable after another. Each time a new
variable is instantiated, a new search state is created that
corresponds to a more complete partial solution. If, in the
process of building a solution, BT generates a partial
solution that it cannot complete (because of constraint
incompatibility), it has to undo one or several earlier
decisions. Partial solutions that cannot be completed are
often referred to as deadend states (in the search space).

Because the general CSP is NP-complete, BT may
require exponential time in the worst-case. CHS provides a
methodology to reduce the average complexity of BT by
interleaving search with local constraint propagation and
the computation of texture-based heuristics. Local
constraint propagation techniques are used to prune the
search space from alternatives that have become impossible
due to earlier decisions made to reach the current search
state. By propagating the effects of earlier commitments as
soon as possible, CHS reduces the chances of making
decisions that are incompatible with these earlier
commitments [Mackworth 85]. Typically, pruning the
search space can only be done efficiently on a local basis
[Nadel 88]. Hence local constraint propagation techniques

are not sufficient to guarantee backtrack-free search. In
order to avoid backtracking as much as possible as well as
reduce the impact of backtracking when it cannot be
avoided, CHS analyzes the pruned problem space in order
to determine critical variables, promising values for these
variables, promising search states to backtrack to, etc. The
results of this analysis are summarized in a set of textures
that characterize different types of constraint interactions in
the search space. These textures are operationalized by a
set of heuristics to decide which variable to instantiate next
(so-called variable ordering heuristics), which value to
assign to a variable (so-called value ordering heuristics),
which assignment to undo in order to recover from a
deadend, etc.

In the factory scheduling domain, variables are activities
whose values are reservations consisting of a start time and
a set of resources (e.g. a human operator, a milling
machine, and a set of fixtures). Local constraint
propagation techniques are used to identify reservations
that have become unavailable for an unscheduled activity
due to the scheduling of another activity (e.g. a resource
that has been allocated to an activity over some time
interval, or a start time that has become infeasible due to
the scheduling of an earlier activity in a process plan).
Within this context, texture-based heuristics are concerned
with such decisions as which activity to schedule next,
which reservation to assign to an activity, which
reservation assignments to undo if the current partial
schedule cannot be completed.

4. Distributed CHS Scheduling
The model concerns a set of scheduling agents, r={a, ß,

...}. Each agent a is responsible for the scheduling of a set
of orders 0<I={o1 ,...,oN }. Each order ol consists of a set

a

of activities A/a={A,a,...,A„a } to be scheduled according to 1 "la
a process plan (i.e. process routing) which specifies a

Id. partial ordering among these activities (e.g. A BEFORE

1°), Additionally an order has a release date and a latest
acceptable completion date, which may actually be later
than the ideal due date. Each activity Ak also requires one

or several resources RJ* (1 < i ^P^), for each of which
there may be one or several alternatives (i.e. substitutable
resources) R^- (1 < jf < q£). There is a finite number of
resources available in the system. Some resources are only
required by one agent, and are said to be local to that agent.
Other resources are shared, in the sense that they may be
allocated to different agents at different times.

We distinguish between two types of constraints:
activity precedence constraints and capacity constraints.
The activity precedence constraints together with the order
release dates and latest acceptable completion dates restrict
the set of acceptable start times of each activity. The
capacity constraints restrict the number of activities that a
resource can be allocated to at any moment in time to the
capacity of that resource. For the sake of simplicity, we
only consider resources with unary capacity in this paper.
Typically the limited capacity of the resources induces
interactions between orders competing for the possession of
the same resource at the same time. These interactions can
take place either between the order of a same agent or
between the orders of different agents.

With each activity, we associate preference functions
that map each possible start time and each possible

242

resource alternative onto a preference. These preferences
[Fox 83, Sadeh 88] arise from global organizational goals

such as reducing order tardiness (i.e. meeting due dates),
reducing order earliness (i.e. finished goods inventory),
reducing order flowtime (i.e. in-process inventory), using
accurate machines, performing some activities during some
shifts rather than others, etc. In the cooperative setting
assumed in this paper, the sum of these preferences over all
the agents in the system and over all the activities to be
scheduled by each of these agents defines a common
objective function to be optimized. The sum of these
preferences over all the activities under the responsibility
of a single agent can be seen as the agent's local view of
the global objective function. In other words, the global
objective function is not known by any single agent.
Furthermore, because they compete for a set of shared
resources, it is not sufficient for an agent to try to optimize
his own local preferences. Instead, agents need to consider
the preferences of other agents when they schedule their
activities. This is accomplished via a communication
protocol described in section 6.

Ja
4.1. Activity-based Scheduling

In our model we view each activity A'k as an aggregate
variable (or vector of variables). A value is a reservation
for an activity. It consists of a start time and a set of
resources for that activity (i.e. one resource Rki- for each

resource requirement Rki of Ak , 1 < i ^pk).

Each agent asynchronously builds a schedule for the
orders he has been assigned. This is done incrementally by
iteratively selecting an activity to be scheduled and a
reservation for that activity. Each time a new activity is
scheduled, new constraints are added to the agent's initial
scheduling constraints that reflect the new activity
reservation. These new constraints are then propagated
(local constraint propagation step). If an inconsistency (i.e.
constraint violation) is detected during propagation, the
system backtracks. Otherwise the scheduler moves on and
looks for a new activity to schedule and a reservation for
that activity. The process goes on until all activities have
been successfully scheduled.

If an agent could always make sure that the reservation
that he is going to assign to an activity will not result in
some constraint violation forcing him or other agents to
undo earlier decisions, scheduling could be performed
without backtracking. Because scheduling is NP-hard, it is
commonly believed that such look-ahead cannot be
performed efficiently. The most efficient constraint
propagation techniques developed so far [LePape&Smith
87] for scheduling do not guarantee total consistency. In
other words the reservation assigned by an agent to an

activity may force other agents or the agent himself to
backtrack later on3. Consequently it is important to focus
search in a way that reduces the chances of having to
backtrack and minimizes the work to be undone when
backtracking occurs. This is accomplished via two
techniques, known as variable (i.e. activity) and value (i.e.
reservation) ordering heuristics.

The variable ordering heuristic assigns a criticality
measure to each unscheduled activity; the activity with the
highest criticality is scheduled first. The criticality
measure approximates the likelihood that the activity will
be involved in a conflict The only conflicts that are
accounted for in this measure are the ones that cannot be
prevented by the constraint propagation mechanism. By
scheduling his most critical activity first, an agent reduces
his chances of wasting time building partial schedules that
cannot be completed (i.e. it will reduce both the frequency
and the damage of backtracking). The value ordering
heuristic attempts to leave enough options open to the
activities that have not yet been scheduled in order to
reduce the chances of backtracking. This is done by
assigning a goodness measure to each possible reservation
of the activity to be scheduled. Both activity criticality and
value goodness are examples of texture measures. The
next two paragraphs briefly describe both of these
measures4.

4.1.1. Variable Ordering
Each agent's constraint propagation mechanism is based

on the technique described in [LePape&Smith 87]. It
always ensures that unscheduled activities within an order
can be scheduled without violating activity precedence
constraints. This is not the case however for capacity
constraints: there are situations with insufficient capacity
that may go undetected by this constraint propagation
technique. Accordingly a critical activity is one whose
resource requirements are likely to conflict with the
resource requirements of other activities. [Sadeh 88, Sadeh
89] describes a technique to identify such activities. The
technique starts by building for each unscheduled activity a
probabilistic activity demand. An activity Ak 's demand for

a resource Ä,™ at time t is determined by the ratio of l*y
la reservations that remain possible for Ak and require using

la Rkr at time t over the total number of reservations that

3This is already the case in the centralized version of the scheduling
problem. Because of the additional cost of communication it is even more
so in the distributed case.

4For a more complete description of these measures, the reader is
referred to [Sadeh 90].

243

remain possible for A*. Clearly activities with many
possible start times and resource reservations tend to have
smaller demands at any moment in time, while activities
with fewer possible reservations tend to have higher ones.
In a second step, each agent aggregates his activity
demands as a function of time, thereby obtaining his agent
demand. This demand reflects the need of the agent for a
resource as a function of time, given the activities that he
still needs to schedule5. Finally, for each shared resource,
agent demands are aggregated for the whole system thereby
producing aggregate demands that indicate the degree of
contention among agents for each of the (shared) resources
in the system as a function of time. Time intervals over
which a resource's aggregate demand is very high
correspond to violations of capacity constraints that are
likely to go undetected by the constraint propagation
mechanism. The contribution of an activity's demand to the
aggregate demand for a resource over a highly contended-
for time interval reflects the reliance of the activity on the
possession of that resource/ time interval. It is taken to be
the criticality of the activity.

To choose the next activity to schedule, each agent looks
among the resource/ time intervals that he may need and
selects the one with highest aggregate demand. He then
picks his activity with the highest contribution (i.e. highest
criticality) to the aggregate demand for that resource/time
interval. In other words, each agent looks for the
resource/time interval over which he has some demand that
is the most likely to be involved in a capacity constraint
violation. He then picks his activity with the highest
probability of being involved in the conflict.

4.1.2. Value Ordering
Once an agent has selected an activity to schedule next,

it must decide which reservation to assign to that activity.
Here several strategies can be considered. In particular, we
distinguish between two extreme strategies: (1) a least
constraining value ordering strategy (LCV) and (2) a
greedy value ordering strategy (GV). Under LCV an agent
will select the reservation that will be the least constraining
both to itself and to other agents. LCV is a mechanism for
avoiding conflicts over resources and over time intervals.
This heuristic can be viewed as resulting in altruistic
behavior on the part of an agent. Under the GV strategy,
an agent can select reservations based solely on its local
preferences, irrespectively of its own future needs as well
as those of other agents. This heuristic results in

Notice that, an agent's demand at some time t for a resource is
obtained by simply summing the demand of all his unscheduled activities
at time /. Because these probabilities do not account for limited capacity,
their sum may actually be larger than 1

egotistic/myopic behavior on the part of the agent. In this
paper, we report experimental results obtained using the
LCV value ordering strategy.

5. Using Textures for Decentralized
Scheduling
This section describes additional theoretical concerns

and new mechanisms that arose in our application of the
texture approach to decentralized, multiagent, resource-
constrained scheduling. The issues that we addressed
include:

• scheduling with incomplete information about
the intentions and future behavior of other
agents.

• scheduling with uncertain/changing
information (i.e. even when detailed
information regarding other agents' intentions
is communicated, this information is not stable
over time, since agents are scheduling
asynchronously), and

• scheduling without the help of coordinating
agents for avoiding conflicts and achieving
global goals.

The following subsections describe our approach to
addressing these issues.

5.1. Incomplete information
In a multi-agent system, complete information is

unavailable to each agent about the constraints, partial
plans/schedules and heuristic analyses of other agents.
Incomplete information results because of limitations in the
amount of inter-agent communication that can reasonably
occur. Hence, some level of summarization and abstraction
is needed. In our approach, summarization information is
expressed in terms of the texture measures that have been
effective for centralized problems. Specifically, we
represent an agent's intentions with respect to resource use
in terms of that agent's demand density for the resource for
different time intervals. All agent densities are further
abstracted to produce an aggregate density, which
represents the system-wide expectation for resource
utilization over time.

An important outcome of this approach is the ability to
efficiently communicate those aspects of an agent's partial
schedules which are most relevant to each of the other
agents in a system, without the need to explicitly determine
relevance. An element of a partial schedule is relevant to
another agent if it influences the agent's expectations
regarding the demand for resources the agent requires.
Since the effects of most scheduling decisions indirectly

244

influence the computation of an agent's expected demand
for shared resources, these implicitly include an abstraction
of all relevant decision making elements.

5.2. Rapidly changing information
The continuous, asynchronous behavior of agents can

reduce the validity of information they exchange,
regardless of how complete that information may be.
Therefore, an agent cannot depend on the certainty of
information when it elects to use it, because other agents'
decisions interact with its already constructed partial
schedules as well as with its future scheduling decisions
thus producing new expectations. In addition, because of
the associated communication costs, agents cannot afford
to communicate, update and evaluate information with
every change that occurs. Hence the information
communicated must remain predictive robustly in the face
of communication lags.

There are several aspects of the texture approach that
address the problem of rapid information obsolescence in
asynchronous, multi-agent systems: First, texture measures
produce relatively accurate early predictions of agent
behavior, as long as expectations are communicated by all
agents at the initiation of scheduling and constraints remain
constant. Second, the uniform representation of
expectations as densities and the incremental nature of
activity scheduling allows changes in expectations to be
incorporated as soon as they are received. Third, agents can
monitor their current expectations to determine when these
have changed significanüy from those that were last
communicated.

In the multi-agent system, other agents can make
reservations throughout an agent's search, making it
difficult to determine which set of previous reservations
were responsible for a constraint violation when it is
eventually detected. The task facing an agent at this point
is to find the last set of reservations it made which, together
with those made by other agents, does not violate
constraints. A simple backtracking procedure will
eventually find this state, but is extremely inefficient.

In order to deal with this problem, we have developed a
variation of backjumping [Dechter 89] for uncertain, multi-
agent environments. In our approach, backjumping
involves iteratively undoing each activity's scheduled
reservation and determining whether constraint violations
remain, until the set of acceptable activity reservations has
been partitioned. No alternative values are tried for any one
activity until this set has been determined. This procedure
avoids the inefficient testing of alternate values for
variables when, in fact, violations already exist for values

assigned to previously addressed variables. Our version of
backjumping locates the appropriate search point with
computation that is just a linear function of the number of
variables traversed, a tremendous saving over
chronological backtracking.

53. Absence of explicit coordination
Coordination within the texture approach to multi-agent

scheduling is achieved through mutual acceptance and
adherence to shared policies of decision-making. In our
system, the goal of supporting other agents' attempts to
achieve a solution to their portions of the global scheduling
problem is realized through three policies. First, agents use
information about other agents' expectations to avoid over-
constraining them through the application of LCV value
ordering heuristics. Second, reservations for resources are
granted without contest when requested by an agent (i.e.
reservations granted on a first-come, first served basis).
Reservations are also surrendered promptly by agents if
they decide not to use them as a result of local constraint
violations. Third, once an agent has made a reservation, it
is not required to surrender it i.e., no provision is made for
one agent to request another to backtrack. An important
principle is that all agents assume that the global good is
best realized through the application of these policies and
therefore, do not depart from them to maximize local
objective functions.

6. A Communication Protocol for Distributed
Scheduling
The agents make decisions using local available

knowledge as well as information communicated by the
other agents. In our model, resources are passive objects
that are monitored by active agents. Each resource has a
monitoring agent and each agent monitors one or more
resources. Thus, monitoring responsibility is distributed
among many agents. Monitoring resources does not give
an agent either a global view or preferential treatment
concerning the allocation of the monitored resources but is
simply a mechanism that enables agents to perform load
balancing in bookeeping efforts and efficient detection of
capacity constraint violations. Since there is no single
agent that has a global system view, the allocation of the
shared resources must be done by collaboration of the
agents that require these resources (one of which is the
monitoring agent).

The multi-agent communication protocol is as follows:
1. Each agent determines required resources by

checking the process plans for the orders it has to
schedule. It sends a message to each monitoring agent
informing it that it will be using shared resources.

245

2. Each agent calculates its demand profile for the
resources (local and shared) that it needs.

3. Each agent determines whether its new demand
profiles differ significantly from the ones it sent
previously for shared resources. If its demand has
changed, an agent will send it to the monitoring agent.

4. The monitoring agent for each resource combines
all agent demands when they are received and
communicates the aggregate demand to all agents
which share the resource6.

5. Each agent uses the most recent aggregate demand
it has received to find its most critical resource/time-
interval pair and its most critical activity (the one with
the greatest demand on this resource for this time
interval). Since agents in general need to use a resource
for different time intervals, the most critical activity and
time interval for a resource will in general be different
for different agents. The agent communicates this
reservation request to the resource's monitoring agent
and awaits a response.

6. The monitoring agent, upon receiving these
reservation requests, checks the calendar of the resource
it is monitoring to find out whether the requested
intervals are available. There are two cases:

• If the resource is available for a requested time
interval, the monitoring agent of the resource (a)
communicates "Reservation OK" to the
requesting agent, (b) marks the reservation on
the resource calendar, and (c) communicates the
reservation to all concerned agents (i.e. the
agents that had sent positive demands on the
resource).

• If the resource had already been reserved for the
requested interval, the request is denied. The
agent whose request was denied will then
attempt to substitute another reservation, if any
others are feasible, or otherwise perform
backjumping.

7. Upon receipt of a message indicating its request
was granted, an agent will perform consistency
checking to determine whether any constraint violations
have occurred. If none are detected, the agent proceeds
to step 2. Otherwise, backjumping occurs with undoing
of reservations until a search state is reached which does
not cause constraint violations. Any reservations which
were undone during this phase are communicated to the
monitor for distribution to other agents. After a
consistent state is reached, the agent proceeds to step 2.

The system terminates when all activities of all agents
have been scheduled i.e. when all demands on resources
become zero. In this version of the protocol we assume

'With the exception of the first time demands arc exchanged, agents do not wait
for aggregate demands to be computed and returned prior to continuing their
scheduling operations (although they can postpone further scheduling if desired).

that reservations are not changed because of backtracking.

7. Experimental Results
The main goal of our experiments was to determine the

feasibility of the texture approach to multi-agent scheduling
across a number of different scheduling experiments and
across a variety of system configurations. We have
developed a testbed and performed experiments with 1-, 2-
and 3-agent configurations. The experiments were run
asynchronously on a number of machines corresponding to
each of the agent configurations. In addition, we wanted to
test particular mechanisms and parameters that influence
system performance. In particular, our experiments
considered:

• the effects of agents' incomplete knowledge of
each other's plans (i.e. the robustness of
texture measures when aggregated across
multiple agents and with the resulting loss of
detailed information),

• the effects of rapidly changing expectations on
performance (i.e. the robustness of these
measures with respect to delays in the
communication of densities),

• the consequences of asynchronous scheduling
(e.g., asynchronous use of variable-ordering
strategies) without external coordination.

The experiments summarized here were created from
problems found to be difficult in previous research on
centralized scheduling [Sadeh 89] and they reflect system
performance with respect to search efficiency rather than
schedule optimality. We selected problems on which more
traditional constraint satisfaction approaches performed
poorly (e.g. Purdom's dynamic search rearrangement
technique [Sadeh 89, Purdom 83]). The problems were also
selected and distributed across the agents in a way that
maximized resource coupling within orders and across
agents. The problems were constructed so that a change in
reservation for any activity or resource would influence
expectations for every other.

All experimental problems were selected so that orders
could be distributed evenly between two agents, all
resources were shared by the two agents (high inter-agent
resource coupling), every order used all resources (high
intra-order resource coupling), and problems ranged from
40-100 activities.

Over 100 experiments were run in order to vary several
properties of each problem. The asynchrony in the system
prevents exact replication of experiments. So, we repeated
each experimental run a minimum of three times. If
different runs of the same experiment produced wide

246

variations in the results, we repeated the experiment five
times. The reported results (see figure) are the average of
these runs. In each case, the dependent variable was the
efficiency with which the scheduling system found a
solution. Efficiency is expressed in terms of the total
number of states needed to reach a solution. For example,
for a problem with 40 activities, the minimum number of
states needed to assign a reservation to each activity is 40.
Every reservation that needed to be redone added an
additional state to the total. This allowed comparing a
40-activity 1-agent problem to a pair of 20-activity
problems solved simultaneously by 2 agents, or a 10,15,15
split of the 40 activities among three agents. There were 5
resources (all shared among all the agents). These
resources were used by 8 orders, each having 5 activities.

Problem versions differed in several ways. First, to
establish a baseline, we created a 1-agent system, which
was similar to the 2-agent and 3-agent systems in every
way, except that the aggregate densities were constructed
from a single agent. This was still different from the
original centralized system in that decisions were based on
an abstract aggregate demand profile that did not include
detailed information about the number of activities which
contributed to the densities. Furthermore, we varied the
frequency with which the aggregate was computed, thereby
isolating the effect of uncertain expectations caused by
infrequent and delayed communication of densities in the
2-agent and 3-agent systems.

Specifically, we implemented several simplified versions
of the heuristic used by agents to determine when to
communicate their changed densities. In the minimum
delay condition, a single reservation on any resource by
any agent initiated the exchange of densities for all
resources. In the increased delay conditions, densities
were exchanged for each resource independently,
whenever N reservations were made on it, where N = 1, 3,
and 5. This provided a way to observe the effects of wide
ranges in communication bandwidth in the 2-agent and 3-
agent systems and comparable conditions in a 1-agent
system.

Another version of the 1-agent system was created which
used a semi-random version of the variable-ordering
heuristic. The goal was to isolate and assess the effects of
less accurate variable ordering that might occur in a multi-
agent system. Recall that variable ordering is performed in
parallel in a multi-agent system (each agent selects the best
activity to schedule from its subset of all activities which
require a critical resource). Agents do not coordinate the
selection of activities to schedule to ensure that the globally
most critical ones are scheduled first As a result, variable
ordering is probably less effective than in a 1-agent system.

The semi-random heuristic still selects activities to
schedule from those which require the most critical
resource/time-interval (which narrows the selection to a
maximum of 20% of the activities in these problems).
However, it then randomly selects from this subset, instead
of selecting the activity with the greatest demand for the
critical resource. Relative to completely random variable
ordering, the semi-random condition is still highly selective
in that only activities which use the most critical
resource/time interval are considered. In fact, we found that
random variable ordering resulted in terrible performance,
even in the 1-agent case. Solutions were not found in over
500 states.

Two system versions were created to compare the use of
backtracking and backjumping search techniques. As
expected, the use of a backjumping strategy substantially
reduced the search in the 2- and 3-agent systems. The
results presented in the Figure are results of the
backjumping version. The reported results are for a
representative group of 40-activity experiments (8 orders, 5
activites per order, and 5 shared resources). The four
curves represent the effects of increasing the delay (from 0
to 5) prior to initiating creation of aggregate demand
densities for 1-, 2- and 3-agent configurations and for a
1-agent case with a semi-random variable ordering strategy
(labelled 1-agent SR variable ordering in the figure).

- or
States
to Solve
Problem

80-1

70

60-

50

40 -

1-agent, SR
variable
ordering

2-agents
3-agents

1-agent

0 13 5

Communication Delay

Figure 7-1: Experimental Comparisons of Distributed
Scheduling Systems

The first important observation is that the use of
abstracted texture measures was sufficient to allow near
perfect performance (solving the problem in 40 states)
when the texture information was updated frequently
(minimum delay conditions, expressed as 0 on the x-axis)
in all experimental configurations. This matches
performance obtained in the original centralized scheduling
system [Sadeh 89]. Thus, despite the incompleteness of
information available in the 2- and 3-agent systems, texture
measures provide satisfactory summarizations. Second, as
expected, performance of the 2- and 3-agent systems does

247

deteriorate as the communication of changing texture
information is delayed. Since current texture information is
used to perform both variable and value ordering, it is
likely that both these processes deteriorate. An interesting
observation is that in this set of experiments, the 3-agent
system did better in terms of search efficiency than the
2-agent system7.

The effect of delaying communication/computation of
demand densities is greater for the 2- and 3-agent systems
than the 1-agent system. This interaction may reflect the
compensatory relation between variable and value ordering
observed in [Sadeh 89]. Note that 2- and 3-agent
performance is still better than the semi-random condition,
suggesting that variable ordering strategy is robust with
respect to the conditions of the multi-agent environment
(incomplete, changeable information and asynchronous
behavior without external coordination).

8. Concluding Remarks
In this paper we have presented mechanisms to guide

distributed search. The domain of investigation is
distributed job-shop scheduling. In particular, we have
presented measures of characteristics of a search space,
called textures, that are used to focus the attention of agents
during search and allow them to efficiently find scheduling
solutions that satisfy all constraints. In addition, the
textures express the impact of local decisions on system
goals and allow agents to form expectations about the
needs of others. This ability is critical in multi-agent
complex environments, such as the factory floor, where
agents have to plan under considerable uncertainty. We
have presented two types of textures (activity criticality and
value goodness), their operationalization into variable and
value ordering heuristics and their use in distributed
problem solving. In addition, a communication protocol
that enables the agents to coordinate their decisions has
been presented.

A testbed has been implemented that allows for
experimentation with a variety of distributed protocols that
use variable and value ordering heuristics. The testbed also
provides unique opportunities to compare closely matched
single- and multi-agent scheduling systems. This
comparison helps establish baseline performance measures
and isolate conditions that influence performance in multi-

This was true in the majority of comparisons between the 2- and
3-agent systems. No easy generalization can be made, however, since in
some of the experimental groupings, the 3-agent system performance was
very bad in the increased delay conditions, whereas the 2-agent system
performed with graceful deterioration for the corresponding increased
delay conditions.

agent systems.

Our results demonstrated that a texture approach to
multi-agent scheduling can produce search efficiency that
approximates that of a centralized system, even for
problems that are difficult for traditional approaches to
constraint satisfaction. Furthermore, the texture approach
proved to be robust in the face of decreasing
communication frequency, thus substantially decreasing
communication overhead.

References
[Baker 74]

[Bitner 75]

[Cammarata 83]

[Conry 86]

[Dechter 88]

[Dechter 89]

K.R. Baker.
Introduction to Sequencing and

Scheduling.
Wiley, 1974.

J.R. Bitner and E.M. Reingold.
Baketrack Programming Techniques.
Communications of the

ACM18(ll):651-655,1975.

Cammarata, S. McArthur, D. and Steeb,
R.
Strategies of cooperation in distributed

problem solving.
In IJCAI-83, Pages 767-770. UCAI,

Karlsruhe, W. Germany, 1983.

Conry, S.E., Meyer, R.A., and Lesser,
V.R.
Multistage Negotiation in Distributed

Planning.
Technical Report COINS-86-67,

COINS, University of
Massachusetts,

december, 1986.

Rina Dechter and Judea Pearl.
Network-Based Heuristics for Constraint

Satisfaction Problems.
Artificial Intelligence34(l): 1-38,1988.

Dechter, R., and Meiri, I.
Experimental Evaluation of

Preprocessing Techniques in
Constraint Satisfaction Problems.

In Proceedings of the Eleventh
International Joint Conference on
Artificial Intelligence, Pages
271-277. American Association of
Artificial Intelligence, Detroit, ML,
August, 1989.

248

[Durfee 87a] Durfee, E.H.
A Unified Approach to Dynamic

Coordination: Plannign Actions and
Interactions in a Distributed
Problem Solving Network.

PhD thesis, COINS, University of
Massachusetts, 1987.

[Durfee 87b] Durfee, E.H, Lesser, V.R., and Corkill,
D.D.
Coherent Cooperation Among

Communicating Problem Solvers.
IEEE Transactions on

ComputersC(36):l275-l29l, 1987.

[Fox 83] Fox, M.S.
Constraint-Directed Search: A Case

Study of Job Shop Scheduling.
PhD thesis, Computer Science

Department, Carnegie-Mellon
University, 1983.

[Fox 89] MarkS. Fox, Norman Sadeh, and Can
Baykan.
Constrained Heuristic Search.
In Proceedings of the Eleventh

International Joint Conference on
Artificial Intelligence, Pages
309-315. 1989.

[French 82] S.French.
Sequencing and Scheduling: An

Introduction to the Mathematics of
the Job-Shop.

Wiley, 1982.

[Garey 79] M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide

to the Theory of NP-Completeness.
Freeman and Co., 1979.

[Golomb 65] Solomon W. Golomb and Leonard
D. Baumert.
Backtrack Programming.
Journal of the Association for

Computing
Machinery\2{4):5\6-524, 1965.

[Haralick 80] Robert M. Haralick and Gordon
L. Elliott.
Increasing Tree Search Efficiency for

Constraint Satisfaction Problems.
Artificial IntelligenceU(3):263-3l3,

1980.

[LePape&Smith 87]
LePape, C. and S.F. Smith.
Management of Temporal Constraints

for Factory Scheduling.
In Proceedings IFIP TC 8IWG 8.1

Working Conference on Temporal
Aspects in Information Systems
(TAIS 87), Elsevier Science
Publishers, held in Sophia Antipolis,
France, May, 1987.

[Mackworth 77]

[Mackworth 85]

[Montanari 71]

[Nadel 88]

[Ow et. al. 88]

[Parunak 86]

[Prosser 89]

Consistency in Networks of Relations.
Artificial IntelligenceS(l):99-US, 1977.

Mackworth, A.K., and Freuder, E.C.
The Complexity of some Polynomial

Network Consistency Algorithms for
Constraint Satisfaction Problems.

Artificial Intelligence25(l):65-74,1985.

Ugo Montanari.
Networks of Constraints: Fundamental

Properties and Applications to
Picture Processing.

Technical Report, Department of
Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213,
1971.

Bernard Nadel.
Tree Search and Arc Consistency in

Constraint Satisfaction Algorithms,
In L. Kanal and V. Kumar, Search in

Articial Intelligence. Springer-
Verlag, 1988.

Ow, P.S., S.F. Smith, and A. Thiriez.
Reactive Plan Revision.
In Proceedings AAAI-88, St. Paul,

Minnesota, August, 1988.

Parunak, H.V., P.W. Lozo, R. Judd,
B.W. Irish.
A Distributed Heuristic Strategy for

Material Transportation.
In Proceedings 1986 Conference on

Intelligent Systems and Machines,
Rochester, Michigan, 1986.

Prosser, P.
A Reactive Scheduling Agent.
In Proceedings of the Eleventh

International Joint Conference on
Artificial Intelligence, Pages
1004-1009. American Association of
Artificial Intelligence, Detroit, MI.,
August, 1989.

249

[Purdom 83] Paul W. Purdom, Jr.
Search Rearrangement Backtracking and

Polynomial Average Time.
Artificial Intelligencelhl 17-133,1983.

[Rinnooy Kan 76] A.H.G. Rinnooy Kan.
Machine Scheduling Problems:

Classification, complexity, and
computations.

PhD thesis, University of Amsterdam,
1976.

[Sadeh 88] N. Sadeh and M.S. Fox.
Preference Propagation in

Temporal!Capacity Constraint
Graphs.

Technical Report CMU-CS-88-193,
Computer Science Department,
Carnegie Mellon University,
Pittsburgh, PA 15213, 1988.

Also appears as Robotics Institute
technical report CMU-RI-TR-89-2.

[Sadeh 89] N. Sadeh and M.S. Fox.
Focus of Attention in an Activity-based

Scheduler.
In Proceedings of the NASA Conference

on Space Telerobotics, 1989.

[Sadeh 90] N. Sadeh, and M.S. Fox.
Variable and Value Ordering Heuristics

for Activity-based Job-shop
Scheduling.

In Proceedings of the Fourth
International Conference on Expert
Systems in Production and
Operations Management, Hilton
Head Island, S.C., 1990.

[Smith 85] Stephen F. Smith and Peng Si Ow.
The Use of Multiple Problem

Decompositions in Time Constrained
Planning Tasks.

In Proceedings of the Ninth
International Conference on
Artificial Intelligence, Pages
1013-1015.1985.

[Smith&Hynynen 87]
Smith, S.F. and J.E. Hynynen.
Integrated Decentralization of

Production Management: An
Approach for Factory Scheduling.

In Proceedings ASME Annual Winter
Conference: Symposium on
Integrated and Intelligent
Manufacturing, Boston, MA,
December, 1987.

250

Anytime Rescheduling

Monte Zweben
NASA Ames Research Center

M.S. 244-17
Moffett Field, California 94035

zweben@pluto.arc.nasa.gov

Michael Deale and Robert Gargan
Lockheed AI Center

Palo Alto, California 94305
deale@laic.lockheed. com

Abstract

This paper discusses an anytime rescheduling
algorithm based upon constraint-based simu-
lated annealing. Rescheduling is the process of
resolving conflicts in a modified schedule. The
algorithm has been implemented and tested
upon a NASA scheduling problem and has per-
formed well. We describe the algorithm in
terms of its speed, its optimization criteria, and
its disruption to the original schedule. Finally,
we step through a simple example of the algo-
rithm.

1 Introduction

This paper describes an anytime [Dea88] rescheduling al-
gorithm based upon constraint-based simulated anneal-
ing [Zwe90a]. In an anytime algorithm, the search pro-
cess can be halted at virtually any point and return a
useful solution. Our rescheduling algorithm iteratively
improves a complete but flawed schedule until a satisfac-
tory schedule is found, an arbitrary bound on the num-
ber of search iterations is reached, or the user terminates
the search. The algorithm is heuristic and not complete,
but it converges quickly to a solution when tested on the
NASA Kennedy Space Center (KSC) space shuttle pro-
cessing problem and is expected to be used operationally
at KSC. For more information on the application of the
system please refer to [Zwe90b].

In this paper, we first formulate the general schedul-
ing problem and present our iterative improvement al-
gorithm used for rescheduling. Then, we step through
a small example of the algorithm. Finally, we describe
various perturbations to our approach in order to handle
real-time and over-constrained problems.

2 Problem Formulation

Scheduling systems typically model temporal precedence
between relations and the resource requirements between
tasks. In contrast, planning systems typically reason
about more general forms of information, but usually
with respect to partial orderings of tasks, ignoring metric
times. Few systems have been developed that can reason
about arbitrary information with respect to metric time.
Some notable exceptions include [Dru90, Dea85, Mil88].

In addition to modeling resource availability, our
scheduling system has been extended to model state vari-
ables. State variables represent attributes of domain ob-
jects that change state over time. Examples from the
domain include the position of switches, doors, landing
gear, elevons, or flaps, the configuration of a system such
as whether it is hazardous or clear and finally the loca-
tion of an object. Tasks can be constrained by these
state variables (i.e., they may require certain state vari-
ables to have certain values, ranges, or properties during
some time interval) and tasks can also change state vari-
ables (i.e, once scheduled, they can force some state vari-
ables to take on certain values with a given persistence).
These constraints and effects are analogous to the action
schemata of traditional planning systems [Fik72]. Con-
straints on resources combined with constraints on state-
variables, allow us to represent goals of maintenance and
goals of achievement.

We formulate scheduling as a constraint satisfaction
problem. Variables represent the assignments required
to complete a schedule as well as any a priori fixed in-
formation affecting the schedule. Constraints are used
to represent the desired relationships between these vari-
ables and scheduling is the process of instantiating the
unassigned variable subject to the constraints. Variables
represent the attributes of tasks, the attributes of re-
sources, and the attributes of domain objects such as
the Space Shuttle. The attributes of tasks include start
times, end times and durations, calendars of legal times
that account for work schedules, and resource require-
ments. The calendar indicates whether the task can be
active during the first, second, and third shift of the day,
as well as, whether the task is active on weekends and
on holidays. Resource requirements are specified by a
resource type, a quantity, and a particular pool 1. For
example, an inspection task could require six technicians
that can be drawn from one of ten different technician
pools. The attributes of resources include their type,
their users, and their availability over time. The at-
tributes of domain objects are largely dependent upon
the type of objects. For example, a space shuttle has
elevons (left and right), landing gear (nose and main),
flaps, power, hydraulics and numerous other parts.

1A pool is an indistinguishable collection of resources. A
resource requirement also indicates whether the resource is
replenishable.

251

Variables are either static or functions of time. The
domain of possible values for each static variable is ei-
ther a time2, a real number, an integer, or a discrete
set of values. Some variables, such as the availability
of resources and attributes of domain objects, are prop-
erly viewed as functions over time. These variables are
represented as histories [Wil86] or time lines, which are
lists of tuples. The first element of the tuple represents
a time interval and the second represents a value. For
example,

(([0 100] open) ([200 :pos-infinity] closed))

represents the value of a door status. From time 0 to 100,
the door is open and in the absence of any other infor-
mation it persists until time 200 when it is permanently
shut. Other variables such as a task's time variables and
resource requirement variables are static and do not re-
quire a timeline representation.

The following constraints relate variables to each
other:

1. less-than(?x ?y): The value of variable ?x must be
less than the value of variable ?y.

2. less-than-or-equals(?x ?y): The value of variable ?x
must be less than or equal to the value of variable

?y-
3. equals(?x ?y): The value of variable ?x must equal

the value of variable ?y.

4. not-equals(?x ?y): The value of variable ?x must
not equal the value of variable ?y.

5. plus(?x ?y ?z): The sum of the value of variable ?x
and the value of variable ?y must equal the value of
variable ?z.

6. capacity(?start ?end ?resource): The values of vari-
ables ?start and ?end are times. The value of vari-
able ?resource is a resource pool. In the time in-
terval spanning from ?start to ?end, ?resource must
not exceed its maximum capacity..

7. temporal-equals(?tl ?t2 ?a ?v): ?a must equal ?v
during the interval ranging from ?tl to ?t2.

8. temporal-less-than(?tl ?t2 ?a ?v): ?a must be less
than ?v during the interval ranging from ?tl to ?t2.

9. calendar-point(?st ?et ?calendar): The ?st and ?et
must be legal with respect to the ?calendar.

10. calendar-extend(?st ?et ?workduration ?calendar)
There must be at least ?workduration amount of
active time with respect to ?calendar during the in-
terval ?st through ?et

Other constraints can be added easily to the default
set above.

As stated previously, tasks consist of variables (denot-
ing resource and temporal information), and constraints
that relate this information to other tasks and other do-
main objects. Additionally, tasks have effects which rep-
resent the changes made to domain objects. In particu-
lar, tasks can set or increment a state-variable, and can

initiate these changes either at the start or end of the
task.3 These task effects can persist indefinitely, only
for the duration of the task, or until they are clipped by
some other effect [Dea85].

The input to a CSP scheduling problem is a set of tasks
and objects that are related by constraints. A solution
to the problem is an assignment to all unassigned vari-
ables such that after all tasks have their resource usages
and changes to state variables asserted, all constraints
are satisfied. The input to a rescheduling problem is a
complete legal schedule and a schedule modification. We
define a schedule modification as any combination of the
following changes:

1. The shift of a task (the start and end times of a task
are displaced by some positive or negative constant).

2. A change in duration (either an extension or a re-
striction)

3. A change in some resource capacity.

4. A change in the value of some attribute of a domain
object.

5. A temporary delay and projected resumption of a
task.

6. The addition/removal of a task.

7. The addition/removal of a constraint.

A solution to a rescheduling problem is a reassignment
of variable values, such that after all modifications are
made, and all tasks have their resource usages and
changes to state variables asserted, all constraints are
satisfied.

3 Rescheduling

Our approach to rescheduling is based upon the general
iterative improvement algorithm described in [Zwe90a].
We now describe the algorithm used to respond to task
changes, which is similar to that used to respond to re-
source and object state changes. The basic algorithm
consists of a two phase process. The first phase is a
systematic repair of all violated temporal constraints.
This results in a temporally consistent schedule, but with
outstanding resource and state-variable constraint viola-
tions. This schedule is then input to the second phase -
constraint-based simulated annealing. Here the schedule
is incrementally improved by repairing violated resource
and state-variable constraints. It is important to note
that whenever the annealing process must shift a task,
it employs the temporal shift algorithm used for the first
phase of the rescheduling process. We now describe each
phase in detail.

3.1 Phase One: Temporal Shift

The temporal shift is a heuristic procedure that takes
as input a desired change in the start and end of a
task and creates a temporally consistent schedule as out-
put. It achieves this by systematically shifting tasks

2Time is represented as the number of minutes since some
anchor point.

3 Our implementation will be extended to allow arbitrary
functional changes. We will also allow these effects to be
anchored with some delay.

252

Solve(T){
Old = Cost(T);
Repeat until Old <= -»THRESHOLD* {

Next = Find_New_Solution(T);
New = Cost(Next);
If New < Old

Then { Old = New;
T = Next;

}
Else { With probability P

do
{ Old = New;

T = Next;
>

}
SaveBestSolutionlfNecessary;

Figure 1: Constraint-based Simulated Annealing.

that are involved in temporal constraint violations, in
a fashion similar to the techniques used in OPIS [Ow
88]. The algorithm begins by rescheduling the changed
task; that is, it shifts it by some displacement that is
sufficient to resolve all temporal constraints. This pro-
cess is equivalent to achieving arc-consistency using the
Waltz algorithm on temporal constraints [Fre82, Wal75,
Dav87].4 Following the achievement of arc-consistency,
the system assigns the earliest legal start time for each
activity (or the latest if the initial task was moved ear-
lier). The advantage of this approach is that it rapidly
synthesizes viable schedules with minimal changes to the
original schedule; only those tasks with constraint vio-
lations are shifted. More radical changes to the original
schedule are unrealistic and unacceptable in many real-
world scheduling domains, including shuttle processing.

Before a task is shifted, its resources are deallocated,
and state effects are removed. After the task is shifted,
the resources are reallocated and effects reasserted with
new start and end times. Remaining resource violations
are removed in phase two.

It is important to note that the requested move is not
guaranteed to be carried out. If the temporal shift at-
tempts to move a task that is marked as permanent (such
as a natural event like the sunrise) then the the move
is deemed implausible. The algorithm then reverts all
changed variables back to their original state

3.2 Phase Two: Constraint-based Simulated
Annealing

The second phase is based on simulated annealing
[Kir83]. It begins with the scheduling assignment that
results from phase one of rescheduling and then evaluates
a "cost" of the assignment. The cost function for our ex-
periments is a weighted sum of violated constraints for

4 Our algorithm also considers calendar constraints but
only in a limited manner. It applies these constraints only to
the extrema of the intervals found by propagating temporal
constraints.

the given assignment. The system then suggests a new
solution by repairing constraints. If the new cost is an
improvement, it adopts the new assignment and contin-
ues. If the new solution is more costly, the algorithm will
adopt it according to a probabilistic measure described
later. This last step allows the algorithm to escape lo-
cal minima. We have customized this general approach
to constraint satisfaction problems which is described in
more detail elsewhere [Zwe90a]. Figure 1 illustrates the
basic algorithm (where T is a set of tasks with assign-
ments made in phase one).

In over-constrained problems, when it is impossible
to converge to a solution below the desired threshold,
the system terminates after some bound on the number
of iterations. The threshold used for our rescheduling
experiments was zero - all constraints must be satisfied.
If the algorithm is interrupted, the best solution found
prior to the interruption is returned.

3.2.1 Systematic Repairs: Finding a New
Schedule

The system synthesizes a new schedule by repairing
a subset of the violated constraints. In our KSC do-
main, we require fast rescheduling with a heuristic bias
against schedules with excessive work-in-process (WIP)
time, and against schedules that require radical pertur-
bations to the original schedule. This bias is enforced by
the repair strategies. For example, tasks are not moved
drastically and are only moved if they are involved in
constraint violations.

Our repair strategy exploits the knowledge that any
task move is likely to violate temporal constraints. As a
result, after any constraint repair causes a task to move,
the temporal constraint violations are resolved first by
executing the temporal shift algorithm given above.

Figure 2 illustrates the repair strategy for the capacity
constraint. The constant c is a small, fixed time unit (an
8 hour shift in the KSC processing domain) and d is a
direction (1 or —1) that is set randomly. The strategy
attempts to substitute a new resource pool, but if this
is impossible, it moves a task back or forward in time.
After the task is moved, the temporal shift algorithm of
phase one is executed - this systematically propagates
the change caused by the repair to all temporal depen-
dents.

The computational overhead of the repair is propor-
tional to the complexity of the choice of what task to
move. One can simply move the task associated with
the constraint or move another task that is also using the
resource during the interval specified by the constraint.
Any heuristic used for this choice can draw upon the
following criteria:

Fitness: Move the task that is using an amount closest
to the amount that is overallocated. A task using a
smaller amount is not likely to have a large enough
impact and a task using a far greater amount is
likely to be in violation wherever it is moved.

Temporal Slack: Any task that is highly constrained
temporally is likely to cause temporal constraint vi-
olations and therefore could result in large pertur-
bations to the schedule.

253

Temporal Dependents: Similar to temporal slack, a
task with many dependents is likely to cause tem-
poral constraint violations, if moved.

Severity of Bottleneck: Prefer tasks that do not need
to be moved drastically to avoid conflict.

Priority: The system should avoid delaying important
tasks, conversely it should prefer moving them ear-
lier.

In-Process: A task that has already begun should be
completed as soon as possible, rather than tem-
porarily stopping it, and then continuing later.

Chronological Proximity: It is better to move activ-
ities that start later in the schedule than those that
are about to begin.

Cycles: It is better to avoid moving tasks that have
been moved frequently in previous iterations be-
cause the iterative improvement algorithm can po-
tentially cycle.

In our initial implementation of this repair strategy,
the system moves the task associated with the con-
straint, but our expectation is that an informed choice is
likely to be more effective without introducing substan-
tial overhead. We are currently performing experiments
that address this hypothesis.

Figure 3 illustrates the repair strategy for the
temporal-equals constraint that maintains arbitrary tem-
poral conditions on state variables. This repair is anal-
ogous to the modal truth criterion of non-linear plan-
ning [Cha87] but without the flexibility of adding ac-
tions. The preferred repair is to move a task that sets the
state-variable appropriately to a time interval preceding
the task with the requirement. If this is impossible, the
task with the requirement is moved to a point in time
when the state variable is set appropriately.

In either case, to perform a move, the temporal shift
of phase one is employed, which results in a temporally
consistent schedule.

It should be noted that schedule modifications may
require planning, that is, the addition of new tasks into
the schedule may be required. For example, if a task
opens a door in support of a later task, and then the door
is mysteriously closed, it could be impossible to find a
new door open task to shift back in time. In this case, a
new door open task must be added to the schedule. We
intend to augment our scheduler with repair strategies
similar to those in the GEMPLAN planner [Lan88] that
enables new tasks to be added to the schedule. Whenever
a repair is impossible because of the need to add a task,
the repair is rejected.

During each iteration, a subset of the outstanding vi-
olations is retrieved and then repaired. Currently, we
repair ten availability constraints and all the violated
state-variable constraints. A more informed strategy is
also possible and is discussed below.

3.2.2 Noise: Escaping Local Minima
In the algorithm presented above, we accept "worse"

solutions with some probability P. This allows the al-
gorithm to jump out of local minimum in its search.

Additionally, allowing the system to temporarily follow
paths that extend into the space of poor solutions ap-
pears to help the search converge to a solution quicker.
The probability P is defined as follows: P — e_A/T;
A = NewCost — OldCost] T is a temperature parame-
ter 5 that controls the likelihood that poor solutions will
be accepted; higher temperatures are more aggressive.

We have adopted a schedule of temperature reductions
that begins with a relatively high temperature which is
later reduced. As a result, it commences by jumping
around the search space frequently but then makes more
careful repairs. Currently, we begin with a temperature
of 100 and reduce it after several iterations to 75. When
the cost is low, we then reduce the temperature to 25.

As stated previously, we introduce noise in the search
process to escape local minima. One explanation for this
is that the cost function does not accurately reflect how
"close" a candidate solution is to the actual solution; it
is only a measure of the number of flaws in a candidate
solution. For example, a logical assumption is that if
only one availability constraint is violated, the algorithm
is quite close to a solution, however this is incorrect.
It may take over 20 repairs to achieve the overall goal
of zero constraint violations, because 20 tasks must be
moved back in time. Thus we allow the algorithm to
jump out of local minimum in a conservative manner.
It should be noted that this is the distinguishing factor
between simulated annealing and classical hill-climbing
search.

4 Anytime Characteristics
When searching for a solution, the annealing algorithm
saves its best solution to date and returns it when the
algorithm is interrupted. This approach meets the cri-
teria put forth in [Dea88] to be classified as an anytime
algorithm. Their criteria classifies anytime algorithms
as those that:

1. lend themselves to preemptive scheduling (i.e. can
be stopped and restarted)

2. can be terminated at any time and will output an
answer

3. return answers that improve in a well-behaved man-
ner over time.

An additional consideration is that the solution output
must be useful to the user. It makes no sense to be
anytime if the solution can not be utilized effectively.

Our algorithm is interruptible, restartable, and out-
puts a solution when terminated. The solution qual-
ity increases as a step-function of time. These solu-
tions are useful in our domains because human sched-
ulers can manually resolve conflicts in the schedule, es-
pecially when there are few conflicts that tend to be
over-allocations of resources. Typically, the humans will
multiplex or share resources between two tasks that are
physically proximate. The system does not handle this
sharing capability and we believe this would be very diffi-
cult to model. A system that can quickly converge to an

5 The name of this parameter is reminiscent of the algo-
rithm's chemistry origin.

254

capacity(?start ?end ?resource):

1. Deallocate this current resource.
2. Try to find a pool that is available from ?start to ?end.
3. If one exists, change ?resource to be that pool and reallocate.
4. Otherwise task = ChooseTaskToHove(constraint);

new-start = ?start + random(l .. 10) * c * d;
new-end = new-start + duration(task);
TemporalShift(task, new-start, new-end);

Figure 2: The repair strategy for the capacity constraint.

tempofal-equals(?tl ?t2 ?a ?v):

First strategy:

1. supporter = the first task
after ?tl that sets ?a = ?v;

2. task = the task associated with this constraint;
3. new-end = start(task) - c;
4. new-start = new-end - duration(supporter);
5. TemporalShift(supporter, new-start, new-end);

If unsuccessful:

1. task = the task associated with this constraint;
2. new-start = the first time of a state transition, t,

(away from ?tl in the direction of d) where ?a is set to ?v;
3. new-end = new-start + duration(task);
4. TemporalShift(task, new-start, new-end);

Figure 3: The repair strategy for the temporal-equals constraint.

255

acceptable schedule with few resource problems is a very
useful tool for the human schedulers at Kennedy Space
Center (KSC). In fact, they rarely work with schedules
that do not have violated constraints.

5 Example

We now step through an example of rescheduling. The
initial schedule shown in Figure 4 contains 7 activities.
Task T\ has one effect which is to change the state of Si
to the "on" position. Tasks T2, T3, T4, T5, and T6 all
require Si to be in the on position. Task Tj changes the
state of S\ back to the off position. T~i is also tied to a
milestone meaning that it should end before this point
in time. The only temporal constraints in the example
are after constraints that exist between the end time of
T2 and the start time of T3 and between the end time
of T4 and the start time of T5. Tasks T2, T4, and T6

each request resources Ri and R2. Tasks T3 and T5 each
request resource R2. Finally, we will assume that both
resources (Ri and R2) have capacities of 2.

The top portion of Figure 4 displays the initial sched-
ule. Just below the timeline for the initial schedule are
two histograms depicting the allocation of Ri and R2.
Gray bars indicate the positions of activities before the
system rescheduled them.

The user reschedules task T2 one shift (i.e., 8 hours)
later, so that it is in parallel with task T4. The temporal
shift algorithm then shifts T3 eight hours also, resulting
in the second schedule in the diagram. As a result of
these moves, there are now three constraint violations in
the corresponding R2 histogram (based on requests by
T3, T5, and Te). The cost of this new solution is three
(assuming all constraint violations cost the same).

The last two portions of Figure 4 illustrate two iter-
ations of annealing. In the first iteration, the system
decides to move T^ earlier in time by one shift. After
checking for temporal constraint violations (there were
none) the first iteration completes having resolved the
three constraint violations. As shown in the third graph
in Figure 4, the first iteration actually results in more
constraints violations (6) then there were previously but
nevertheless, the annealing algorithm has chosen to take
this "worse" solution probabilistically. Now tasks T2,
T4, and TO all have resource constraint violations for re-
sources Ri and R2.

During the second annealing iteration, the system
again chooses to advance T6 by a shift. This change
causes all constraints to be satisfied completing the
rescheduling process. The final schedule is shown at the
bottom of Figure 4.

In our example, if the system initially moved T6 later
in time, then it would eventually discover violations in-
volving the state of Si; specifically T6 requires Si in the
on position while T7 changes it to the off position. In
repairing this constraint, the system could have tried to
delay the start time of T7, possibly missing the milestone.
Since milestone constraints have a large weight (we al-
ways want to achieve milestones on schedule), the system
would repair them, effectively "backtracking" through
its previous actions, returning the schedule back to the
state shown in the second graph in Figure 4.

5.1 Relevance to Real World Problems

While we simplified certain aspects of the example de-
scribed above, it corresponds to scenarios within the
Space Shuttle ground operations domain. In the main
processing facility, the rear of the orbiter is often sup-
ported by large hydraulic jacks and at other times it
rests upon its own main landing gear. Certain activities
require the jacks with the landing gear raised. These
requirements are typically represented as constraints on
state variables such as Si in the example. Given the state
of the landing gear and hydraulic jacks, many indepen-
dent sets of activities can be now be performed (our ex-
ample depicted 3 such independent processes). Changes
in the schedule occur frequently because: 1) many unan-
ticipated technical problems arise, 2) resources become
unavailable when they are broken, sick, or performing
unexpected duties, or finally 3) because of unpredicted
bad weather. When these changes occur, our system
will reschedule activities with respect to state variables,
resource availability, and temporal constraints.

6 Heuristic Bias

In [Ow 88], three criteria were stated for evaluating the
utility of various reactive revisions to a schedule:

• Attendance to scheduling objective: what is the
quality of the revision with respect to the desired
optimization criteria?

• Amount of disruption: how many changes to the
original schedule are made?

• Efficiency of reaction: how quick is the reaction pro-
cess?

These criteria must be balanced and are usually in-
versely related. In our domain, we sacrifice optimality of
the schedule to reduce response time and disruption. We
balance these criteria by biasing the initial solution, the
cost function, the temperature reduction strategy, and
the repair strategies. We bias the initial annealing solu-
tion to be temporally consistent with a one pass propaga-
tion of constraints and temporal shifts. To minimize the
disruption of the existing schedule, the algorithm only
modifies tasks that affect constraint violations. We min-
imize WIP by finding a proximate time for any constraint
repair. Unfortunately, the optimality of the schedule is
sacrificed because repairs could be more global and thus
more informed; they could suggest global changes in the
schedule that would reduce total WIP time. However,
such an approach is likely to be too expensive and overly
disruptive, but this remains to be proven.

In other domains, other criteria might be dominant,
requiring different biases. Below, we present two exam-
ples of such domains and discuss the strategies that our
system would adopt to address these criteria.

6.1 Over-constrained Problems

In many scientific domains, the problem is over-
constrained; there are more tasks than can be success-
fully scheduled given the domain constraints. Exam-
ples of these domains are telescope science observation

256

I Tl - 51*on I
Initial Schedule

3
Rl 2

I
0
3

R2 2
I
0

I T?-RI.R?~1
I T7-SI=ofTl

1 T3-R2
1 T4-R1 R?

T5-R? 1
T6-R1.R2 1

Constraint Violations = 0

m&mmm summmsmmf. rmmmmmm

Capacity = 2

Capacity = 2

I Tl - 51 »on I
After Temporal Shift

^Mi T2-RI.R2 I

I T4-R1„R2H

1 T7-5l-off I

T3 - R2 I

T's - R? I Constraint Violations = 3
I T6-R1.R?-"!

Capacity = 2

Capacity = 2

After First Pass of Annealing

I Tl-Sl=on | I T7-Si=off I
I T? -Rl, R?~~) A.

T3 - R? I

Rl

R2 2

I T4-Rl„R2l

I T6-R1.R2"
TS - R? ~1 Constraint Violations = 6

I
2

fcHÄÄ
0

Capacity = 2

Capacity = 2

After Second Pass of Annealing

I Tl -SI=on 1 I T7-Si=off1

I T^-RI.R?"! A
mZäHD

I T4-R1, R2
TS - R? I Constraint Violations = 0

Capacity = 2

Capacity = 2

Figure 4 An example of rescheduling

257

scheduling and Space Shuttle and Space Station Free-
dom crew activity scheduling. In these domains, low
priority tasks must often be dropped from the sched-
ule. We would address this is two main ways. First,
we would order repairs so that the higher priority tasks
are addressed first. Second, we would penalize schedules
(via the cost function) that have a large proportion of
high priority tasks with constraint violations. Using this
scheme, the execution time will rely heavily on the cost
threshold for an acceptable solution and the iteration
bound.

6.2 Real-Time Problems

In many real-time problems, priority must be given to
those tasks that are about to take place. We could use
the same strategy as given above, where the constraints
associated with imminent tasks are repaired first and the
cost function penalizes schedules with flawed tasks close
to the event horizon. We could also augment the repair
phase with a bound on its execution time. As soon as
this time bound expires, no new constraints would be
repaired until the next iteration.

7 Relation to Other Work
Our work was heavily influenced by the criteria put forth
in the OPIS scheduler [Ow 88]. We have introduced
a new simulated annealing search framework to these
criteria that compares favorably with systematic search
[Zwe90a] and corroborates with a parallel study [Min90].
The work is also related to that of Miller et. al. [Mil88] in
that deadline and resource requirements are addressed,
but it differs in that our representations and search tech-
niques are quite different. They represent time-changing
information as propositions maintained by the TMM -
Time Map Manager [Dea85] and use traditional graph
search algorithms to maintain consistency among these
propositions. We also have similar goals as Drummond
and Bresina [Dru90]. They are developing an anytime
agent architecture based upon beam search that explic-
itly represents uncertainty. They are also developing
more complex criteria to judge the anytime character-
istics of an algorithm.

8 Summary
This paper reports a rescheduling algorithm based upon
Constraint-based Simulated Annealing. The system can
respond to schedule modifications and can quickly re-
solve problems with temporally dependent conditions. It
meets the criteria put forth by Dean et. al. to be classi-
fied as anytime; in addition, we have addressed the qual-
ity of the rescheduling according to the criteria presented
by Ow et. al. in [Ow 88]. We plan to experiment further
with the technique concentrating on overconstrained and
real-time problems. The system we have developed will
be evaluated by the Kennedy Space Center as an opera-
tional tool for streamlining Space Shuttle Processing.

Acknowledgements
Thanks to Nils Nilsson for advising much of this work.
Thanks to Amy Lansky, Peter Friedland, Bill Mark, and

Jeanne Cunicelli for their careful review of this paper.
We also thank Steve Smith, Steve Minton, Andy Phillips,
Mark Drummond, John Bresina, and Mark Ringer for all
the useful suggestions they have contributed.

References

[Cha87] Chapman, D. Planning for Conjunctive Goals.
Artificial Intelligence, 32(4), 1987.

[Dav87] Davis, E. Constraint Propagation with Inter-
val Labels. Artificial Intelligence, 32(3), 1987.

[Dea85] Dean, T. Temporal Imagery: An Approach to
Reasoning about Time for Planning and Prob-
lem Solving. PhD thesis, Yale University, Jan-
uary 1985.

[Dea88] Dean, T., and Boddy, M. An Analysis of Time-
Dependent Planning. In Proceedings of AAAI-
88, 1988.

[Dru90] Drummond, M. and Bresina J. An Anytime
Temporal Projection Algorithm for Maximiz-
ing Expected Situation Coverage . In Proceed-
ings of AAAI-90, 1990.

[Fik72] Fikes, R.E., Hart, P.E., and Nilsson, N.J.
Learning and Executing Generalized Robot
Plans. Artificial Intelligence, 3, 1972.

[Fre82] Freuder, E. C. A Sufficient Condition for
Backtrack-Free Search. J. ACM, 29(1), 1982.

[Kir83] Kirkpatrick, S., Gelatt, CD., Vecchi, M.P.
Optimization by Simulated Annealing. Sci-
ence, 220(4598), 1983.

[Lan88] Lansky, A. Localized Event-based Reasoning
for Multiagent Domains. Computational Intel-
ligence, 4(4), 1988.

[MÜ88] Miller, D., Firby, R. J., Dean, T. Deadlines,
Travel Time, and Robot Problem Solving. In
Proceedings of AAAI-88, St. Paul, Minnesota,
1988.

[Min90] Minton, S., Phillips, A., Johnston, M., Laird.,
P. Solving Large Scale CSP and Scheduling
Problems with a Heuristic Repair Method. In
Proceedings of AAAI-90, 1990.

[Ow 88] Ow, P., Smith S., Thiriez, A. Reactive Plan
Revision. In Proceedings AAAI-88, 1988.

[Wal75] Waltz, D. Understanding Line Drawings of
Scenes with Shadows. In P. Winston, editor,
The Psychology of Computer Vision, McGraw-
Hill, 1975.

[WÜ86] Williams, B.C. Doing Time: Putting Qualita-
tive Reasoning on Firmer Ground. In Proceed-
ings of AAAI-86, 1986.

[Zwe90a] Zweben, M. A Framework for Iterative Im-
provement Search Algorithms Suited for Con-
straint Satisfaction Problems. In Proceedings
of AAAI-90 Workshop on Constraint-Directed
Reasoning, 1990.

258

[Zwe90b] Zweben, M., and Gargan, R. The Ames-
Lockheed Orbiter Processing Scheduling Sys-
tem. In Proceedings of the Space Operations,
Applications and Research Symposium, 1990.

259

CONTROL

Real-Time Control of Reasoning:
Experiments with Two Control Models

Anne Collinot and Barbara Hayes-Roth
Knowledge Systems Laboratory

Stanford University
701 Welch Road

Palo Alto, California 94304

Abstract

An intelligent agent must identify and perform logically
correct actions in response to external events, and it must
perform them at appropriate times. The top-level objective
of such an agent would be to maximize (or ensure a lower
bound on) the value of some global utility function that
integrates the values of its responses to events, weighted
by the importance of those events, over time. In this
paper, we focus on four properties that might facilitate an
agent's achievement of its global utility objective:
selectivity, responsiveness, robustness, and scalability.
We assume a very general agent architecture, and we focus
on its reasoning component. As opposed to a best-next
control model we propose a satisficing control model for
the reasoning process. We have conducted preliminary
experiments to test the following hypotheses: the
satisficing model provides good selectivity,
responsiveness, robustness, and scalability (both when
measured against the best-next model and when measured
in absolute terms); therefore, the satisficing model
provides a high global utility for the agent's performance.
The results of our experiments confirm our hypotheses.

1. The problem

In many situations, an intelligent agent must coordinate its
actions with the behavior of other agents or processes over
which it has no direct control. The agent must identify and
perform logically correct actions in response to external
events, and it must perform them at appropriate times.

Given limited computational resources and a complex
environment, an agent generally cannot identify and perform
optimal actions in response to all environmental events in a
timely fashion. Instead, to guarantee satisfactory responses
to important events, it must compromise its responses to
other events. It might reduce the value of its response

This research was supported by DARPA grant #NAG 2-581
through NASA and Boeing contract #W-289988. Anne Collinot
was supported by a fellowship from INRIA (France). We
gratefully acknowledge contributions by the Guardian project
members. Rich Washington provided helpful comments on
various drafts of this paper. We thank Edward Feigenbaum for
sponsoring the work at the Knowledge Systems Laboratory.

(precision, completeness, correctness, certainty, or
timeliness) to some events. It might not respond to some
unimportant events at all. The top-level objective of such
an agent would be to maximize (or ensure a lower bound
on) the value of some global utility function that integrates
the values of its responses to events, weighted by the
importance of those events, over time. The exact form of
this function might vary among agents or circumstances and
need not concern us here.

There are many behavioral properties that might be
hypothesized to facilitate an agent's achievement of its
global utility objective [Dodhiawala, 1989, Hayes-Roth
1990]. In this paper, we focus on four properties:
selectivity, responsiveness, robustness, and scalability.
Selectivity refers to differential responses to events based on
importance. Other things being equal, the agent should
respond more reliably and more quickly to more important
events than to less important events. Responsiveness refers
to modulation of response latency based on urgency. Other
things being equal, the agent should respond more quickly
to more urgent events than to less urgent events. The agent
should maintain selectivity and responsiveness under a
variety of conditions. Robustness refers to the maintenance
of these properties despite increases in environmental
complexity. Other things being equal, the agent's behavior
should degrade gradually, if at all, with increases in the rate
or variability of environmental events. Scalability refers to
the maintenance of these properties despite increases in
knowledge. Other things being equal, the agent's behavior
should degrade gradually, if at all, with increases in its own
knowledge. In fact, in many situations, the agent's behavior
should improve with increases in knowledge.

We assume a very general agent architecture with
component processes for perception, to obtain information
about environmental events, reasoning, to interpret
perceived events, solve problems, and plan actions, and
action, to influence the environment [Hayes-Roth, 1987,
Hayes-Roth, 1990]. Because reasoning mediates perception
and action, the reasoning process must have the properties
of selectivity, responsiveness, robustness, and scalability—if
the agent's overall behavior is to have those properties.

Thus, we have two questions. First, what kind of control
model will give an agent's reasoning the properties of
selectivity, responsiveness, robustness, and scalability?
Second, will a control model that provides these properties

263

facilitate the agent's achievement of its global utility
objective?

2. Alternative Control models

We assume an agent architecture in which independent
perception, reasoning, and action processes communicate
via globally accessible I/O buffers. Perception processes
deliver continuous streams of perceived events, with each
event labeled by its type, value, importance, and deadline
[Washington and Hayes-Roth, 1989, Washington et al.,
1990], to input buffers in the reasoning process. Action
processes retrieve and execute intended actions from output
buffers in the reasoning process. The scope of our
investigation into alternative control models for the
reasoning process will be bounded by the entry of perceptual
events into input buffers and their exit from output buffers.

We assume a cyclic reasoning process in which the agent
repeatedly: (1) identifies and rates potential reasoning
operations given the current state and recent "triggering"
events (both perceptual and cognitive events), (2) chooses
one identified operation based on the ratings, and (3)
executes the chosen operation. This view of reasoning is
quite general and is instantiated in a range of specific AI
system models. Many of these more specific models
emphasize the need for intelligence in the cycle, so that the
agent chooses to execute a "good" or "correct" operation on
each cycle. Such models are variously called "conflict
resolution" [Newell, 1973, McDermott and Forgy, 1978,
Forgy, 1982], "intelligent control" [Hayes-Roth and Hayes-
Roth, 1979, Hayes-Roth, 1985], "meta-reasoning"
[Genesereth and Smith, 1982, Russell and Wefald, 1989] or
"deliberation scheduling" [Dean and Boddy, 1988]. In our
model, scheduling criteria are, themselves, dynamically
established and modified through base-level reasoning
operations [Hayes-Roth et al, 1986, Johnson and Hayes-
Roth, 1987].

By definition, intelligent control of reasoning allows an
agent to reason about and control its own reasoning
behavior. For example, the agent can achieve a degree of
selectivity by choosing operations based on the importance
of their triggering events. It can achieve a degree of
responsiveness by choosing operations whose
computational demands are compatible with current
deadlines. It can achieve a degree of robustness in the face of
increasing event rates by choosing operations that respond
to a smaller percentage of more important events and make
smaller computational demands. It can achieve a degree of
scalability over a growing knowledge base by choosing
only operations that apply the most appropriate knowledge,
given task demands and real-time constraints.

However, these claims are limited by the fact that the
basic reasoning cycle, including the use of intelligent
control, entails a computational overhead. Most formal
analyses assume that the time spent on the cycle itself is
insignificant, but this assumption probably is not valid in
general [Dean, 1989]. Experimental evaluations [Durfee and
Lesser, 1986, Garvey et al, 1987] typically conclude that
time spent on the cycle is more than balanced by the time
saved in reasoning. Again, these observations probably are
not valid in general.

In fact, the computations underlying the basic reasoning
cycle are inherently complex. Let us illustrate this point
with an informal complexity analysis of step (1) of the
basic control cycle: the identification and rating of potential
reasoning operations. An instantiation of an operation
results from triggering a particular type of operation for a
particular event. A particular event can trigger different
types of operations and a particular operation can be
triggered by many different events. We consider three
complexity parameters: n is the number of events (both
perceptual and cognitive events) the agent processes during
step (1); k is the number of possible types of operations the
agent knows; r is the number of scheduling criteria used in
the rating process. In the worst case, the time spent
identifying potential reasoning operations is O(nk). If m is
the number of identified operations, then the time spent
rating these operations is 0(mr). In addition, the pattern-
matching process involved in triggering an operation for a
given event, as well as in rating an instantiated operation
against a scheduling criterion, is itself a complex process.
Although the details of this complexity factor need not
concern us here, it is important to emphasize that this factor
increases the complexity of both terms O(nk) and O(mr).
Therefore, if an agent is to achieve selectivity,
responsiveness, robustness, and scalability in its reasoning
behavior, it must control the reasoning cycle, as well as its
reasoning operations. In this paper, we compare two models
for controlling the reasoning cycle, a best-next model and a
satisficing model.

First consider the best-next control model. In step (1) of
the reasoning cycle, the agent identifies all possible
reasoning operations and rates each one against the current
scheduling criteria. Scheduling criteria are determined
dynamically by reasoning. Step (1) terminates when all
operations triggered by all recent events have been
identified. Therefore, given real-time constraints on
performance, the algorithm for this process must be highly
efficient. Our best-next algorithm appears in Figure 1. It
assumes unlimited-capacity buffers for perceptual and
cognitive events and for possible reasoning operations. In
step (2), the agent chooses the highest-rated identified
operation. In step (3), the agent executes the chosen
operation. Thus, on each cycle, the agent invariably
executes the best possible operation, but it may do so
following an unbounded delay since the occurrence of the
associated triggering events.

For each event present in the Event Buffer at the time
the agent enters step (1),

For each possible type of reasoning operation O,
If all the triggering conditions of O are true,

Then record a potential reasoning operation
in the Agenda (operation buffer).

For each potential operation P recorded in the Agenda,
Compute and record the ratings of P against the
current scheduling criteria.

Figure 1. Algorithm for the Best-Next Control Model

264

Now consider the satisficing control model. In step (1) of
the reasoning cycle, the agent identifies and rates a
promising subset of possible operations, based on the
current scheduling criteria. Again, scheduling criteria are
determined dynamically by reasoning. Step (1) terminates
when either: (a) an operation with a criterial rating has been
identified; (b) a deadline has occurred; or (c) all possible
operations have been identified. Both criterial ratings and
deadlines are determined dynamically through reasoning.
Given real-time constraints on performance and the
possibility of an interrupt, the step (1) algorithm should
identify possible operations in descending order of ratings,
to the extent that is possible. Our satisficing algorithm
appears in Figure 2. It assumes limited-capacity buffers for
perceptual and cognitive events and for possible reasoning
operations. In our experiments, event buffers had capacities
of 7 items each and the operation buffer (agenda) had a
capacity of 10 items. In step (2), the agent chooses the
highest-rated identified operation. In step (3), it executes the
chosen operation. Thus, on a given cycle, the agent may
execute the first satisfactory operation, the best available
operation within the given deadline, or the best possible
operation-depending upon the interrupt condition.

Until
- either an operation with a criterial rating has been
identified,

-or a deadline has occurred,
- or there are no more events to process

Select the best available event in the limited-
capacity Event Buffers,
Until

- either an operation with a criterial rating has
been identified,

- or a deadline has occurred,
- or there are no more possible types of
operations to consider

Select the best possible type of reasoning
operation O,
If all the triggering conditions of O are true,

Then
Compute and record the ratings of P
against the current scheduling criteria,
Record and order P in descending order
of ratings in the limited-capacity

Agenda.

Figure 2. Algorithm for the Satisficing Control Model

Let us summarize the strengths and weaknesses of the
best-next and satisficing control models. The best-next
model guarantees execution of the best possible operation
on each cycle and provides a very efficient algorithm for
identifying that operation. On the other hand, it entails
unbounded cycle times. The satisficing model conserves
cycle time by executing satisfactory operations as soon as
possible and guaranteeing execution of some operation by
deadline. On the other hand, it explicitly allows the
possibility of executing sub-optimal—costly or ineffective
or even undesirable-operations. Moreover, in the worst

case, where there is no deadline and no criterial operation is
identified, the satisficing model must identify all possible
operations, but with an algorithm that is not optimized for
that purpose.

The remainder of this paper presents the results of initial
experiments we conducted to compare the performance of
the best-next and satisficing models with respect to the
behavioral properties discussed above. In fact, the two
models are not simply equal contenders in this evaluation.
We have been working with the best-next cycle for several
years in the BB1 architecture and used it for static problem-
solving applications, where its performance has been largely
satisfactory [Hayes-Roth et al., 1986, Tommelein et al.,
1987, Darwiche et al., 1988]. Its main weakness has been
speed. However, for static applications, speed is only a
pragmatic issue and we assume that the best-next algorithm
could be optimized to provide satisfactory speed for
particular applications. However, we believe that more
radical changes are required to meet the requirements of the
real-time problem-solving applications that we have been
studying more recently. The satisficing cycle was designed
in an effort to meet those requirements [Hayes-Roth, 1987].
Thus, in the conventional terms of experimental science, it
is appropriate to view the best-next cycle as the "control
condition" against which we will measure the effects of the
"experimental treatment", which is the satisficing cycle.
Accordingly, we conducted the experiments described below
to test the following hypotheses:
(a) The satisficing model provides good selectivity,
responsiveness, robustness, and scalability-both when
measured against the best-next model and when measured in
absolute terms;
(b) Therefore, the satisficing model provides a high global
utility for the agent's performance-again, both when
measured against the best-next model and when measured in
absolute terms.

3. Overview of the Experiments

We tested our hypotheses in the context of the Guardian
system for intensive care monitoring [Hayes-Roth et al.,
1989]. Guardian originally was implemented on top of the
BB1 architecture [Hayes-Roth, 1985], with the best-next
control cycle. For these experiments, we made a new
version of Guardian in which the satisficing cycle replaces
the best-next cycle. Thus, the two versions of Guardian
differ only in whether they use the best-next cycle or the
satisficing cycle. As Figures 1 and 2 show, the two
algorithms share many of the same component functions.
We tried to make distinctive elements of both algorithms
reasonably efficient. However, because we have been
working with the best-next algorithm for several years, it is
reasonable to assume that any efficiency advantage due to
the implementation per se would favor it over the
satisficing algorithm.

To test our hypotheses, we measured the performance of
each version of Guardian on a set of monitoring scenarios
that require the targeted behavioral properties and compared
the results. The following sections describe the Guardian
system and the experimental scenarios, manipulations, and
measurements.

265

3.1 The Guardian System

Functioning in a simulated intensive-care environment,
Guardian monitors ventilator-supported patients and
consults with physicians and nurses. The current version of
Guardian monitors about sixteen automatically sensed
variables (e.g., pressures, temperature) and a few irregularly
sensed variables (e.g., lab results). It performs several tasks,
such as interpreting sensed data, noticing and diagnosing
exceptional events, predicting future states and events,
planning therapy actions, explaining its reasoning, and
carrying out actions in closed-loop control of the simulated
patient. To perform these tasks, Guardian uses several kinds
of knowledge: heuristic knowledge related to common
respiratory problems; structure/function knowledge of the
respiratory, circulatory, metabolic, and mechanical
ventilator systems; and structure/function knowledge of
generic flow, diffusion, and metabolic systems. In some
cases, Guardian is capable of performing a given task in
alternative ways. For example, given an exceptional event,
it can diagnose the cause of that event relatively quickly,
using probabilistic associations between disease conditions
and observable signs and symptoms. Alternatively, it can
take more time to identify plausible diagnoses based on a
model of the relevant organ systems and the underlying
physical principles. In such situations, Guardian makes
smart choices in order to meet real-time (or other)
constraints on its reasoning.

3.2 The Monitoring Scenario

In our experiments, the simulated patient has just returned
from the operating room. Ventilator settings (i.e., the
number of breaths delivered to the patient per minute and
the volume of air blown into the patient's lungs on each
breath) plus a set of sixteen parameters (e.g. temperature,
heart rate, inspiratory peak pressure) are continually and
automatically sensed. In addition, Guardian perceives
irregularly reported lab results and asynchronous user
requests. Several display drivers manage Guardian's
communication with human users. These communications
include dynamic graphical displays of: the patient's history;
ongoing reasoning and results related to Guardian's
reasoning tasks; and structure/function explanations of the
patient's conditions. Each of these displays is interactive,
permitting the user to pose particular kinds of questions.
Therapeutic actions include changing the ventilator settings
(e.g. decrease the number of breaths delivered to the patient
per minute), adjusting the ventilator tube, and other sorts of
interventions.

We distinguish key events and context events in the
scenario. A key event requires a response. A context event
could produce a response, but does not require one.

Four key events occur in the experimental scenario. The
first key event occurs at the beginning of the scenario, when
the patient has a low body temperature. Although this
condition is not life-threatening, it can have undesirable
consequences for the patient and requires a response.
Guardian should predict the undesirable consequences (low
arterial C02, a condition called hypocapnia) and that the
temperature will naturally return to normal over a period of
hours. The prediction of hypocapnia is the second key event

requiring a response. Guardian should adjust the patient's
breathing rate in accordance with the low temperature to
correct the hypocapnia and maintain the arterial C02 within
normal ranges as the patient's temperature rises. The third
key event requiring a response is a user request for
explanation of hypocapnia and the associated breathing rate
adjustments. Guardian should give an appropriate
explanation. The fourth key event, which occurs during
Guardian's explanation, is an observation that the patient's
peak inspiratory pressure (PIP) is very high, a potentially
life-threatening situation. Guardian should diagnose the
problem as a pneumothorax (hole in the lung) and
immediately (within eight minutes) take an appropriate
action, inserting a chest tube to release accumulated air in
the chest cavity and reduce the PIP, thereby permitting
normal ventilation.

There are also many context events in the scenario, which
permit a response but do not require one. For example, there
are many minor deviations of observed patient data from
expected patient data. For any of these deviations, Guardian
could predict present and future consequences. However,
these events are much less important than the key events
mentioned above and Guardian ordinarily would not have
time to attend to them.

3.3 Manipulations

Variables manipulated in the experiments are summarized in
Table 1. Criticality of events is defined by the importance
and urgency of sensed data. In our scenario, the high PIP is
both very important and very urgent and, therefore, of high
criticality. The other three key events are moderately
important and not very urgent and, therefore, of low
criticality. Environmental complexity is defined by the
number of sensed parameters and the resulting range of
global event rates. High environmental complexity involves
16 parameters and 4-83 events every ten minutes, while low
environmental complexity involves 8 parameters and 4-42
events every ten minutes. Amount of knowledge is defined
by the number of different types of reasoning operations
known to Guardian. High knowledge involves reasoning
operations for diagnosis, reaction, prediction, explanation,
planning, and global control, while low knowledge involves
all of these except planning. Table 2 shows how four
versions of the experimental scenario are defined in terms of
these variables.

In all scenarios, Guardian used the same control decisions
to guide its scheduling of possible reasoning operations and,
in the case of the satisficing cycle, to guide its identification
of possible reasoning operations. Several of these decisions
were active throughout the scenario: (dl) favor operations
depending on their type of reasoning (by default, global
control is preferred to planning, which is preferred to
prediction and explanation, which are preferred to diagnosis
and reaction); (d2) favor operations that respond to a user
request; (d3) favor operations that respond to important or
abnormal signs. The decisions dl, d2 and d3 were weighted
100, 50 and 1, respectively. The following decision was
active only during the critical period of high PIP: (d4) favor
operations that respond quickly to high PIP. This decision
resulted from the execution of a global control operation
triggered by the critical event, high PIP, and remained active

266

until there are no more executable operations responding to
this critical event. The weight of decision d4 was 1000.

Criticality
of Events

Patient
Condition

Yes
No

High PIP
No High PIP

Amount
of Knowledge

of Types
of Operations

High
Low

39
28

Environmental
Complexity

of Sensed
Parameters

Global
Event Rate

High
Low

16
8

[4, 83]
[4,42]

Table 1. Manipulations of Scenario Variables

Experimental
Conditions

Criticality
of Events

Environmental
Complexity

Amount
of Knowledge

Base Scenario
Non Critical
Low Complexity
Low Knowledge

Yes
No
Yes
Yes

High
High
Low
High

High
High
High
Low

Table 2. Definition of Experimental Conditions

3.4 Measurements

To make the appropriate measurements, we instrumented
BB1 for the following variables. Response value is the
value of a response given by Guardian to a key event. Speed
of response to the critical event, high PIP, is a difference
measure: the deadline for responding to the critical event
minus the total time Guardian took to respond to it.
Number of critical cycles is the number of reasoning cycles
Guardian executed in order to respond to the critical event.
Average agenda time per critical cycle is the average time
used for agenda management during critical cycles. For the
non-critical scenario, we measured agenda management time
during cycles at a corresponding time during the run.
Average priority of executed operations is the average
priority for executed operations across all reasoning cycles.
Average cycle time is similarly computed across all
reasoning cycles, and average agenda time is that part of the
cycle used in agenda management. Average number of new
operations per cycle is the average number of possible
reasoning operations identified on each reasoning cycle. All
times are given in seconds.

4. Results

The results are summarized in Table 3. In the following
sections, we evaluate each of our four hypotheses by
comparing numbers from particular cells of the table.

4.1 Selectivity

We measure selectivity as: (a) correct vs. incorrect (or no)
response to the critical event, high PIP; and (b) speed of the
correct response to the critical event. With the best-next
cycle, Guardian produced the correct response (insert chest
tube) in the low complexity and low knowledge scenarios,
but not in the base scenario. With the satisficing cycle, it
produced the correct response in all three scenarios.
Moreover, in the two scenarios where both cycles produced
the correct response, the satisficing cycle produced lower
response latencies than the best-next cycle. Thus, in this
experiment, the satisficing cycle produced better selectivity
than the best-next cycle, enabling Guardian to respond more
reliably and more quickly to critical events. As we shall see
later, the satisficing cycle achieved high selectivity of
critical events by allowing Guardian to miss some less
important events.

4.2 Responsiveness

We measure responsiveness as the difference in response
latency for critical and non-critical events. As shown in
Chart 1, with the best-next cycle, Guardian actually spends
more time on agenda management and, therefore, on the
entire cycle, during critical cycles than during non-critical
cycles. By contrast, with the satisficing cycle, Guardian
spends much less time on agenda management during
critical cycles than during non-critical cycles. Thus, in this
experiment, the satisficing cycle provides better
responsiveness, allowing Guardian to reason more quickly
when faced with a critical event than when faced with only
non-critical events.

Average
Agenda
Time

■ Yes

Criticality
of Events

B-N S

Chart 1. Responsiveness

Experimental Response Value Speed of # of Critical Average Agenda Time
Conditions to the Critical Event Resi jonse Cycles per Critical Cycle

Base Scenario
B-N S B-N S B-N S B-N S

Not Most Specific Most Specific -242 199 16 21 23 5.3
Non Critical Sc. — — — — 16 21 11.5 12.8

Low Complexity Sc. Most Specific Most Specific 165 221 21 21 7.4 5.2
Low Knowledge Sc. Most Specific Most Specific 15 165 21 21 15.3 6.4

Table 3. Results of the Experiments

267

4.3 Robustness

We measure robustness as the difference in response latency
for critical events in low and high complexity scenarios. As
shown in Chart 2, with the best-next cycle, Guardian spends
much more time on agenda management and, therefore, on
the entire cycle, in the high complexity scenario than in the
low complexity scenario. This result is consistent with
complexity analysis of Section 2, where the complexity of
agenda management increases with event rate. By contrast,
with the satisficing cycle, Guardian maintains stable agenda
management times in both complexity conditions.
Presumably, it does so by selectively responding to critical
events, ignoring non-critical events regardless of their
number. Thus, in this experiment, the satisficing cycle
provides better robustness, allowing Guardian to respond
quickly to critical events regardless of environmental
complexity.

Average
Agenda
Time

Environmental
Complexity

■ High

B-N S

Chart 2. Robustness

4.4 Scalability

We measure scalability as the difference in response latency
for critical events in low and high knowledge scenarios. As
shown in Chart 3, with the best-next cycle, Guardian spends
more time on agenda management and, therefore, on the
entire cycle, in the high knowledge scenario than in the low
knowledge scenario. This result is compatible with
complexity analysis of Section 2, where the complexity of
agenda management increases with the number of types of
operations. By contrast, with the satisficing cycle, Guardian
maintains stable agenda management times in both
scenarios. Presumably, it does so by selectively applying
the most important knowledge and ignoring irrelevant
knowledge regardless of quantity. Thus, in this experiment,
the satisficing cycle provides better scalability, allowing
Guardian to maintain stable response times despite increases
in knowledge.

Sa Low
■ High

Amount of
Knowledge

B-N S

Chart 3. Scalability

4.5 Global Utility

We propose two classes of global utility functions:

Ul = Sum of (Response Value * Event Importance) for
Key Events,

U2 = If Satisfactory Response to Critical Events,
Then Ul Else 0.

Table 4 gives additional information necessary to
characterize the global utility of Guardian's performance
under each control cycle, with respect to these two classes
of functions. Response correctness, 1 if correct and 0
otherwise, is given for the four key events for each scenario.
For the critical event, Table 4 also gives the speed of
response. We assume that at least for critical events,
response value is a function of correctness and speed. In the
experimental scenario, the critical event, high PIP, signals a
Pneumothorax, a life-threatening condition. Without
specifying a combining function, we can see that the
numbers in Table 4 clearly favor the satisficing cycle for the
critical event, where the response is always correct and the
latencies are always shorter (i.e., the speed of response is
always higher) than those for the best-next cycle. Therefore,
the U2 class of utility functions would generally favor the
satisficing cycle over the best-next cycle, and with a wide
range of combining functions, the Ul class of functions
would favor it as well.

On the other hand, the best-next cycle produces responses
to more non-critical key events than the satisficing cycle.
Especially in the non-critical scenario, where no high PIP
and pneumothorax occurred, the best-next cycle would
produce higher global utility values in this experiment.
However, we would not extend this conclusion to the
general class of scenarios involving no critical events. In
the present experiments, the control plans (i.e., the sets of
control decisions) used by the satisficing cycle referred only
to the critical events and provided no guidance at all in how
to reason about non-critical events. With more
comprehensive control plans, the satisficing cycle probably
would have performed better on those events as well.

5. Interpretation of Results

We can analyze the performance of the satisficing cycle in
terms of underlying variables. As shown in Table 5, the
average priority of executed operation is comparable for the
satisficing and best-next cycles, except in the base scenario,
where the priority is higher for the satisficing cycle. Except
in the non-critical scenario, the average cycle time and
agenda time are shorter for the satisficing cycle than for the
best-next cycle. The average number of newly identified
possible reasoning operations is always smaller for the
satisficing cycle. Because of this and the limited-capacity
agenda buffer, the satisficing cycle always has a shorter total
agenda than the best-next cycle. Thus, the satisficing cycle
provides the desired behavioral properties by identifying a
smaller number of high-priority reasoning operations in less
time than the best-next cycle can identify all reasoning
operations. Two factors allow it to do this: a good
satisficing algorithm and an effective control plan.

268

Experimental
Conditions

Best-Next Control Model Satisficing Control Model

Base Scenario
Non Critical Sc.
Low Complexity Sc.
Low Knowledge Sc.

Non Critical Events Critical Evt Non Critical Events Critical Evt
Low
Temp.

Hypocapnia
Prediction

User
Request

High PIP Low
Temp.

Hypocapnia
Prediction

User
Request

High PIP

1
1
1
1

1
1
1

1
1
1
1

f(0, -242)

f(l, 165)
f(l, 15)

0
0
0
0

1
1
1

0
1
0
0

f(l, 199)

f(l, 221)
f(l, 165)

Table 4. Response Values to Key Events

Experimental Average Priority Average Average Average # of
Conditions of Executed Cycle Agenda New Operations

Operations Time Time per Cycle

Base Scenario
B-N S B-N S B-N S B-N S
25 36.3 22.1 14 12.1 7.1 4.6 2.5

Non Critical Sc. 3.8 3.9 10.5 15.4 6.5 10 3.6 3.1
Low Complexity Sc. 27 27.3 10.4 9.7 5.3 4.6 2.4 1.9
Low Knowledge Sc. 29.1 33.2 13.8 13.3 8.6 7.2 3.4 2.3

Table 5. Results for Interpretation

6. Future Work

The experiments reported in this paper are the first of a
program of experiments we plan to conduct. We need to
replicate the present results in a variety of monitoring
scenarios and with a wider variation of experimental
variables (e.g., number of critical events, environmental
complexity, amount of knowledge). We are particularly
interested in further substantiating our findings regarding
robustness and scalability, key properties of a truly general
approach. In addition, we wish to evaluate other desirable
properties of real-time reasoning, such as coherence and
flexibility [Hayes-Roth, 1990].

We also wish to analyze the roles of different parts of the
satisficing cycle in allowing it to achieve the desired
behavioral properties, in particular, the limited-capacity
buffers and agenda, the knowledge-based heuristic search for
possible operations, and interruptability of the cycle. Some
other preliminary experiments show that limited-capacity
buffers and agenda greatly reduce agenda management time.
However, with only these design features in the cycle,
Guardian fails to respond to important events.

Finally, we believe that the quality of the control plan
plays a crucial role in the effectiveness of the satisficing
cycle. Very good control plans allow the agent to find the
best operations quickly. But what if the agent does not have
a good control plan? One possibility is for the agent to
recognize that its control plan will not help it identify good
reasoning operations. In that case, rather than exhaustively
identifying all reasoning operations in a vain search for a
good one, the agent can choose to execute an arbitrary
operation early. In an intermediate situation, with a
moderately good control plan, the satisficing cycle should
behave like an "anytime algorithm" [Dean and Boddy,
1988], trading the amount of time it spends identifying new
operations for the expected value of the "best-so-far"
operation identified. In sum, much of our future work will

be directed toward understanding the nature of good and bad
control plans and understanding how an agent can adapt its
performance to control plan quality in order to maintain a
satisfactorily high global utility.

References

[Darwiche et al, 1988] A. Darwiche, R. E. Levitt, and B.
Hayes-Roth. Oarplan: generating project plans by
reasoning about objects, actions and resources. AI
EDAM, 2(3):169-181, 1988.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An analysis
of time-dependent planning. In Proceedings of the
Seventh National Conference on Artificial Intelligence,
pages 49-54, Saint Paul, Minnesota, 1988.

[Dean, 1989] T. Dean. Decision-theoretic control of
inference for time-critical applications. Technical Report
CS-89-44, Brown University, 1989.

[Dodhiawala et al., 1989] R. Dodhiawala, N. S. Sridharan,
P. Raulefs, and C. Pickering. Real-time AI systems: a
definition and an architecture. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, pages 256-261, Detroit, Michigan, 1989.

[Durfee and Lesser, 1986] E. Durfee and V. R. Lesser.
Incremental planning to control a blackboard-based
problem-solver. In Proceedings of the Fifth National
Conference on Artificial Intelligence, pages 58-64,
Philadelphia, Pennsylvania, 1986.

[Forgy, 1982] C. L. Forgy. RETE: A fast algorithm for the
many pattern/many object pattern matching problem.
Artificial Intelligence, 19:17-32, 1982.

269

[Genesereth and Smith, 1982] M. R. Genesereth and D. E.
Smith. Meta-level architecture. Technical Report HPP-
81-6, Stanford University, 1982.

[Garvey et al, 1987] A. Garvey, C. Cornelius, and B.
Hayes-Roth. Computational costs versus benefits of
control reasoning. In Proceedings of the Sixth National
Conference on Artificial Intelligence, pages 110-115,
Seattle, Washington, 1987.

[Hayes-Roth and Hayes-Roth, 1979] B. Hayes-Roth and F.
Hayes-Roth. A cognitive model of planning. Cognitive
Science, 3:275-310, 1979.

[Hayes-Roth, 1985] B. Hayes-Roth. A Blackboard
architecture for control. Artificial Intelligence, 26(3):251-
321, 1985.

[Hayes-Roth et al, 1986] B. Hayes-Roth, B. G. Buchanan,
O. Lichtarge, M. Hewett, R. Altman, J. Brinkley, C.
Cornelius, B. Duncan, and O. Jardetzky. Protean:
Deriving protein structure from constraints. In
Proceedings of the Fifth National Conference on Artificial
Intelligence, pages 904-909, Philadelphia, Pennsylvania,
1986.

[Hayes-Roth, 1987] B. Hayes-Roth. A multi-processor
interrupt-driven architecture for adaptive intelligent
systems. Technical Report KSL-87-31, Stanford
University, 1987.

[Hayes-Roth et al, 1989] B. Hayes-Roth, R. Washington,
R. Hewett, M. Hewett, and A. Seiver. Intelligent real-
time monitoring and control. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, pages 243-249, Detroit, Michigan, 1989.

[Hayes-Roth, 1990] B. Hayes-Roth. Architectural
foundations for real-time performance in intelligent
agents. Real-Time Systems, pages 99-125, 1990.

[Johnson and Hayes-Roth, 1987] M. V. Johnson and B.
Hayes-Roth. Integrating diverse reasoning methods in the
BB1 blackboard control architecture. In Proceedings of the
Sixth National Conference on Artificial Intelligence,
pages 30-35, Seattle, Washington, 1987.

[McDermott and Forgy, 1978] J. McDermott and C. L.
Forgy. Production system conflict resolution strategies.
In Waterman, D.A., and Hayes-Roth, F. (eds), Pattern-
Directed Inference Systems, Academic Press, 1978.

[Newell, 1973] A. Newell. Production systems: models of
control structures. In Chase W.G. (ed), Visual
Information Processing, Academic Press, 1973.

[Rüssel and Wefald, 1989] S. J. Rüssel and E. H. Wefald.
Principles of Metareasoning. In Brachman et al. (eds),
Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning,
Morgan Kaufman, 1989.

[Tommelein et al, 1987] I. D. Tommelein, M. V.
Johnson, R. E. Levitt, and B. Hayes-Roth. SightPlan: a
blackboard expert system for the layout of temporary
facilities on construction site. In Proceedings of the IFIP
WG5.2 Working Conference on Expert Systems in
Computer-Aided Design, 1987.

[Washington and Hayes-Roth, 1989] R. Washington and B.
Hayes-Roth. Managing input data in real-time AI
systems. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, pages 250-
255, Detroit, Michigan, 1989.

[Washington et al., 1990] R. Washington, L. Boureau, and
B. Hayes-Roth. Using knowledge for real-time input data
management. Technical Report KSL-90-14, Stanford
University, 1990.

270

Planning and Active Perception

Thomas Dean* Kenneth Basye Moises Lejter
Department of Computer Science

Brown University, Box 1910, Providence, RI 02912

Abstract

We present an approach to building planning and con-
trol systems that integrates sensor fusion, prediction,
and sequential decision making. The approach is based
on Bayesian decision theory, and involves encoding the
underlying planning and control problem in terms of a
compact probabilistic model for which evaluation is well
understood. The computational cost of evaluating such
a probabilistic model can be accurately estimated by
inspecting the structure of the graph used to represent
the model. We illustrate our approach using a robotics
problem that requires spatial and temporal reasoning
under uncertainty and time pressure. We use the esti-
mated computational cost of evaluation to justify repre-
sentational tradeoffs required for practical application.

Introduction

In this paper, we view planning in terms of enumerating
a set of possible courses of action, evaluating the conse-
quences of those courses of action, and selecting a course
of action whose consequences maximize a particular
performance (or value) function. We adopt Bayesian
decision theory [Raiffa and Schlaifer, 1961] as the theo-
retical framework for our discussion, since it provides a
convenient basis for dealing with decision making under
uncertainty.1

One interesting thing about most planning problems
is that the results of actions can increase our knowl-
edge, potentially improving our ability to make deci-
sions. From a decision theoretic perspective, there is
no difference between actions that involve sensing or
movement to facilitate sensing and any other actions; a

'This work was supported in part by a National Sci-
ence Foundation Presidential Young Investigator Award
IRI-8957601 with matching funds from IBM, and by the
Advanced Research Projects Agency of the Department of
Defense and was monitored by the Air Force Office of Sci-
entific Research under Contract No. F49620-88-C-0132.

^ee Dean and Wellman [1989] for a discussion concern-
ing the use of goals in artificial intelligence and the use of
value functions in decision theory.

decision maker simply tries to choose actions that max-
imize expected value. In the approach described in this
paper, an agent engaged in a particular perceptual task
selects a set of sensor views by physically moving about
[Bajcsy, 1988, Ballard, 1989].

Having committed to a decision theoretic approach,
there are specific problems that we have to deal with.
The most difficult concern representing the problem and
obtaining the necessary statistics to quantify the under-
lying decision model. In the robotics problems we are
working on, the latter is relatively straightforward, and
so we will concern ourselves primarily with the former.

In building a decision model for control purposes, it
is not enough to write down all of your preferences and
expectations; this information might provide the basis
for constructing some decision model, but it will likely
be impractical from a computational standpoint. It is
frustrating when you know what you want to compute
but cannot afford the time to do so. Some researchers
respond by saying that eventually computing machin-
ery will be up to the task and ignore the computational
difficulties. It is our contention, however, that the com-
binatorics inherent in sequential decision making will
continue to outstrip computing technologies.

In the following, we describe a concrete problem to
ground our discussion, present the general sequential
decision making model and its application to the con-
crete problem, show how to estimate the computational
costs associated with using the model, and, finally, de-
scribe how to reduce those costs to manageable levels
by making various representational tradeoffs.

Mobile Target Localization
The application that we have chosen to illustrate our
approach involves a mobile robot navigating and track-
ing moving targets in a cluttered environment. The
robot is provided with sonar and rudimentary vision.
The moving target could be a person or another mobile
robot. The mobile base consists of a holonomic (turn-
in-place) synchro-drive robot equipped with a CCD
camera mounted on a pan-and-tilt head, and 8 fixed
Polaroid sonar sensors arranged in pairs directed for-

271

ward, backward, right, and left.
The robot's task is to detect and track moving ob-

jects, reporting their location in the coordinate system
of a global map. The environment consists of one floor
of an office building. The robot is supplied with a
floor plan of the office showing the position cf perma-
nent walls and major pieces of furniture such as desks
and tables. Smaller pieces of furniture, potted plants
and other assorted clutter constitute obstacles that the
robot has to detect and avoid.

We assume that there is error in the robot's move-
ment requiring it to continually estimate its position
with respect to the floor plan so as not to become lost.
Position estimation (localization) is performed by hav-
ing the robot track beacons corresponding to walls and
corners and then use these beacons to reduce error in
its position estimate.

Localization and tracking are frequently at odds with
one another. A particular localization strategy may
reduce position errors while making tracking difficult,
or improve tracking while losing registration with the
global map. The trick is to balance the demands of
localization against the demands of tracking. The mo-
bile target localization (MTL) problem is particularly
appropriate for planning research as it requires consid-
erable complexity in terms of temporal and spatial rep-
resentation, and involves time pressure and uncertainty
in sensing and action.

Model for Time and Action
In this section, we provide a decision model for the MTL
problem. To specify the model, we quantize the space
in which the robot and its target are embedded. A
natural quantization can be derived from the robot's
sensory capabilities.

The robot's sonar sensors enable it to recognize par-
ticular patterns of free space corresponding to various
configurations of walls and other permanent objects in
its environment (e.g., corridors, L junctions and T junc-
tions). We tessellate the area of the global map into
regions such that the same pattern is detectable any-
where within a given region. This tessellation provides
a set of locations C corresponding to the regions that
are used to encode the location of both the robot and
its target.

Our decision model includes two variables 5T and
SR, where ST represents the location of the target and
ranges over £, and SR represents the location and ori-
entation of the robot and ranges over an extension of £
including orientation information specific to each type
of location. For any particular instance of the MTL
problem, we assume that a geometric description of the
environment is provided in the form of a CAD model.
Given this geometric description and a model for the
robot's sensors, we generate C, SR, and ST.

We encode our decision models as a Bayesian net-
works [Pearl, 1988]. A Bayesian network is a directed

Figure 1: Probabilistic model for the MTL problem

graph G = (V, E). The vertices in V correspond to ran-
dom variables and are often called chance nodes. The
edges in E define the causal and informational depen-
dencies between the random variables. In the model
described in this paper, chance nodes are discrete val-
ued variables that encode states of knowledge about
the world. Let Qc denote the set of possible values
(state space) of the chance node C. There is a proba-
bility distribution Pr(C = u),w G Qc) for each node.
If the chance node has no predecessors then this is
its marginal probability distribution; otherwise, it is a
conditional probability distribution dependent on the
states of the immediate predecessors of C in G.

The model described here involves a specialisation of
Bayesian networks called temporal belief networks [Dean
and Kanazawa, 1989]. Given a set of discrete variables,
X, and a finite ordered set of time points, T, we con-
struct a set of chance nodes, C — X x T, where each
element of C corresponds to the value of some particular
x e X at some t g T. Let Ct correspond to the subset
of C restricted to t. The temporal belief networks dis-
cussed in this paper are distinguished by the following
Markov property:

Pr(Ct|Ct_llC(_3l...) = Pr(Ct|C«_1).

Let SR and ST be variables ranging over the possible
locations of the robot and the target respectively. Let
AR be a variable ranging over the actions available to
the robot. At any given point in time, the robot can
make observations regarding its position with respect
to nearby walls and corners and the target's position
with respect to the robot. Let OR and OT be variables
ranging these observations with respect to the robot's
surroundings and the target's relative location.

272

Figure 2: Evidence and action sequences

Figure 1 shows a temporal belief network for X —
{SR,ST,AR,0R,0T} and T = {TUT3,T7,T4}. To
quantify the model shown in Figure 1, we have to pro-
vide distributions for each of the variables in X x T.
We assume that the model does not depend on time,
and, hence, we need only provide one probability dis-
tribution for each x € X. For instance, the conditional
probability distribution for ST,

PT((ST,t)\(ST,t-l),(0T,t),(SR,t)),

is the same for any t ET. The numbers for the proba-
bility distributions can be obtained by experimentation
without regard to any particular global map.

In a practical model consisting of more than just the
four time points shown in Figure 1, some points will re-
fer to the past and some to the future. One particular
point is designated the current time or Now. Repre-
senting the past and present will allow us to incorpo-
rate evidence into the model. By convention, the nodes
corresponding to observations are meant to indicate ob-
servations completed at the associated time point, and
nodes corresponding to actions are meant to indicate
actions initiated at the associated time point. The ac-
tions of the robot at past time points and the observa-
tions of the robot at past and present time points serve
as evidence to provide conditioning events for comput-
ing a posterior distribution. For instance, having ob-
served a at T, denoted (OR=ZT,T), and initiated a at
T—l, denoted (AR^CC, T— 1), we will want to compute the
posterior distribution for SR at T given the evidence:

PT((SR^j,T),u1enSR\{0R=a,T),(AR=a,T-l)).
To update the model as time passes, all of the ev-

idence nodes are shifted into the past, discarding the
oldest evidence in the process. Figure 2 shows a net-
work with nine time points. The lighter shaded nodes
correspond to evidence. As new actions are initiated
and observations are made, the appropriate nodes are
instantiated as conditioning nodes, and all of the evi-
dence is shifted to the left by one time point.

The darker shaded nodes shown in Figure 2 indicate
nodes that are instantiated in the process of evaluating
possible sequences of actions. For evaluation purposes
we employ a simple time-separable value function. By

time separable, we mean that the total value is a (per-
haps weighted) sum of the value at the different time
points. If Vt is the value function at time t, then the
total value, V, is defined as

where 7 : T -* {zjO < 1 < 1} is a decreasing function
of time used to discount the impact of future conse-
quences. Since our model assumes a finite T, we al-
ready discount some future consequences by ignoring
them altogether; 7 just gives us a little more control
over the immediate future. For Vt, we use the following
function

V* = -EPr((5'^-t))Pr((5T=W;Ii})Dist(Wi)a»;-),

where Dist : QST X QST -* 3? determines the relative
Euclidean distance between pairs of locations. The Vt

function reflects how much uncertainty there is in the
expected location for the target. For instance, if the
distribution for (Sr,£) is strongly weighted toward one
possible location in tlsT, then Vt will be close to zero.
The more places the target could be and the further
their relative distance, the more negative Vt.

The actions in QAR consist of tracking and localiza-
tion routines (e.g., move along the wall on your left
until you reach a corner). Each action has its own ter-
mination criteria (e.g., reaching a corner). We assume
that the robot has a set of strategies, S, consisting of
sequences of such actions, where the length of sequences
in <S is limited by the number of present and future time
points. For the network shown in Figure 2, we have

S C VAR x VAR x QAR x QAR.

The size of S is rather important, since we propose to
evaluate the network \S\ times at every decision point.
The strategy with the highest expected value is that
strategy, <p — a0,ai, or2, a3, for which V is a maxi-
mum, conditioning on (Ar=a0, Now), {Ar=ai, NowH),
(Ar=a2,NovH-2), and (Ar=a3, JVowf3). The best strat-
egy to pursue is reevaluated every time that an action
terminates.

We use Jensen's [1989] variation on Lauritzen and
Spiegelhalter's [1988] algorithm to evaluate the deci-
sion network. Jensen's algorithm involves constructing
a hyper graph (called a clique tree) whose vertices cor-
respond to the (maximal) cliques of the chordal graph
formed by triangulating the undirected graph obtained
by first connecting the parents of each node in the net-
work and then eliminating the directions on all of the
edges. The cost of evaluating a Bayesian network using
this algorithm is largely determined by the sizes of the
state spaces formed by taking the cross product of the
state spaces of the nodes in each vertex (clique) of the
clique tree.

273

Following Kanazawa [Forthcoming], we can obtain an
accurate estimate of the cost of evaluating a Bayesian
network, G = (V,E), using Jensen's algorithm. Let
C = {Ct} be the set of (maximal) cliques in the chordal
graph described in the previous paragraph, where each
cl'.qn?. represents a subset of V. We define the function,
cam : C -+ {1,...,|C| - 1}, so that card(Q) is the
rank of the highest ranked node in d, where rank is
determined by the maximal cardinality ordering of V
(see [Pearl, 1988]). We define the function, adj : C —
2C, by:

adj(Ci) = {Cj\{Cj ± d) A (d O Cj ± 0)}.

The clique tree for G is constructed as follows. Each
clique C, € C is connected to the clique Cj in adj(C,)
that has lower rank by card(.) and has the highest num-
ber of nodes in common with d (ties are broken arbi-
trarily). Whenever we connect two cliques Q and C,
we create the separation set S,-;- = d n Cj. The set of
separation sets S is all the 5^'s. We define the function,
sep : C — 2s, by:

in.

sep(C{) = {Sjk\Sjk e S, (j = i)v(k = »)}.

Finally, we define the weight of d, Wi = Ylnec \i

where fin is the state space of node n. The cost of
computation is proportional to Ylc ec wi\seP{Ci)\- We
refer to this cost estimate as the clique-tree cost.

The approach described in this section allows us to
integrate prediction, observation, and control in a single
model. It also allows us to handle uncertainty in sens-
ing, movement, and modeling. Behavioral properties
emerge as a consequence of the probabilistic model and
the value function provided, not as a consequence of
explicitly programming specific behaviors. The main
drawback of the approach is that, while the model
is quite compact, the computational costs involved in
evaluating the model can easily get out of hand. For
instance, in our model for the MTL problem, the clique-
tree cost is bounded from below by the product of \T\.
QsTj2, and |nSR|

s. In the next section, we provide sev-
eral methods that, taken together, allow us to reduce
computational costs to practical levels.

Coping with Complexity
To reduce the cost of evaluating the MTL decision
model, we use the following three methods: (i) carefully
tailor the spatial representation to the robot's sensory
capabilities, reducing the size of the state space for the
spatial variables in the decision model, (ii) enable the
robot to dynamically narrow the range of the spatial
variables using heuristics to further reduce the size of
the state space for the spatial variables, and (iii) con-
sider only a few candidate action sequences from a fixed
library of tracking strategies by taking into account the
reduced state space of the spatial variables. In the rest
of this section, we consider each of these three methods.

Figure 3: Sonar data entering a T junction

The use of a high-resolution representation of space
has disadvantages in the model proposed here: increas-
ing the resolution of the representation of space results
in an increase in the sizes of fiSR and QsT, and thus
raises the cost of evaluating the network. Keeping the
sizes of ns„ and QST small makes the task of evaluating
the model we propose feasible.

A further consideration arises from the real-world
sensory and data processing systems available to our
robot. Finer-resolution representations of space place
larger demands on the robot's on-board system in terms
of both run-time processing time and sensor accuracy.
To allow our robot to achieve (near) real-time perfor-
mance, it seems appropriate to limit the representation
to that level of detail that can be obtained economically
from the hardware available.

In our current implementation, we have 8 sonar trans-
ducers positioned on a square platform, two to a side,
spaced about 25 cm. apart. We take distance readings
from each transducer, and threshold the values at about
1 meter. Anything above the threshold is "long," any-
thing below is "short." The readings along each side
are then combined by voting, with ties going to "long."
In this way, the data from the sonar is reduced to 4 bits.
Figure 3 shows the result of this scheme on entering a
T junction. In addition, we use the shaft encoders on
our platform to provide very rough metric information
for the decision model. Currently, 2 additional bits are
used for this purpose, but only when the robot is posi-
tioned in a hallway, which corresponds to only one sonar
configuration. So the total number of possible states for
OR is 19, 15 for various kinds of hallway junctions and
4 more for corridors.

This technique results in a tessellation of space like
that shown in Figure 4. Our experiments have shown
that this tessellation is quite robust in the sense that the
readings are consistent anywhere in a given tile. The ex-
ception to this occurs when the robot is not well-aligned
with the surrounding walls. In these cases, reflections
frequently make the data unreliable. One of the tasks
of the controllers that underlie the actions described in

274

i ' ■—*— i n i >■» r"*™~-^n»^—™«^»

Figure 4: Tessellation of office layout

the previous sections is to maintain good alignment, or
achieve it if it is lost.

In addition to reducing the size of the overall spatial
representation, we can restrict the range of particular
spatial variables on the basis of evidence not explicitly
accounted for in the decision model (e.g., odometry and
compass information). For instance, if we know that the
robot is in one of two locations at time 1 and the robot
can move at most a single location during a given time
step, then (SR, 1} ranges over the two locations, and,
for i > 1, (SR,i) need only range over the locations in
or adjacent to those in (SR,i-l). Similar restrictions
can be obtained for ST. For models with limited looka-
head (i.e., small |T|), these restrictions can result in
significant computational savings.

Consider a temporal Bayesian network of the form
shown in Figure 1 with n steps of lookahead. Let
(X, i) represent an element of {SR, ST,AR, OR, OT} x
{l,...,n}. The largest cliques in one possible2 clique
tree for this network consist of sets of variables of the
form:

{{SRli)t(SR,-H-l),{ST,i),(ST,*-l)}

for i = 1 to 7i— 1, and the size of the corresponding cross
product space is the product of |n(sR,i)|, l^(sR,ifi)|,

!^(ST,.)I. and |ft(sT,»fi)l- F°r fixed state spaces, this
product is just |n5„ j2|fi5T j2. However, if we restrict
the state spaces for the spatial variables on the basis of
some initial location estimate and some bounds on how
quickly the robot and the target can move about, we
can do considerably better.

Table 1 shows the clique-tree costs for three MTL
decision model networks of size n = 3, 5, and 8 time
points. For each size of model, we consider cases in
which n/sR,t) and fi(sT)t) are constant for all 1 > i > n,
and cases in which |f2(s«,i)| = l^(5T,i)| = 1 and the
sizes of the state spaces for subsequent spatial vari-
ables, n(sR,i) and ft(sTli), for 1 > i > n grow by

2 The triangulation algorithm attempts to minimize the
size of the largest clique in the resulting chordal graph.
There may be more than one way to triangulate a graph
so as to minimize the clique size.

State space size

Constant (6)

Constant (16)

Constant (30)

Linear (2f + 1)

Quadratic (t2 + 1)

Exponential (2')

Number of time points
3 5 8

40914
(0.58)

78066
(1.111

624944 1232176
(8.87) (17.49)

133794

(1-90)

3846330 7669530
(54.60) (108.86)

2143024
(30.42)

5844
(0.08)

3691
(0.05)

55088
(0.78)

13404330
(190.26)

2875
(0.05)

160701
(2.28)

433759
_[6J6J)

107515
(1.53)

3756559
(53.32)

4131611
(58.64)

Table 1: Clique-tree costs for sample networks

linear, quadratic, and exponential factors bounded by
|QsT| = \ttSR| = 30. For these evaluations, \£1AR\ = 6,
i^cvl = 32, and |fioR| = 19 in keeping with the sen-
sory and movement routines of our current robot. The
number in brackets underneath the clique tree cost is
the time in cpu seconds required for evaluation.

Our current idea for restricting the present location of
the robot and the target involves using a fixed threshold
and the most up-to-date estimates for these locations to
eliminate unlikely possibilities. Occasionally, the actual
locations will be mistakenly eliminated, and robot will
fail to track the target. There will have to be a recovery
strategy and a criterion for invoking it to deal with such
failures.

There are certain costs involved with evaluating
Bayesian networks that we have ignored so far. These
costs involve triangulating the graph, constructing the
clique tree, and performing the storage allocation for
building the necessary data structures. For our ap-
proach of dynamically restricting the range of spatial
variables, the state spaces for the random variables
change, but the sizes of these state spaces and the topol-
ogy of the Bayesian network remain constant. As a
consequence, these ignored costs are incurred once, and
the associated computational tasks can be carried out
at design time. Dynamically adjusting the state spaces
for the spatial variables is straightforward and compu-
tationally inexpensive.

The third method for reducing the cost of decision
making involves reducing the size of S, the set of se-
quences of actions corresponding to tracking and lo-
calization strategies. For an n step lookahead, the set
of useful strategies of length n or less is a very small
subset of ÜAR

n- Still, given that we have to evaluate
the network |5| times, even a relatively small S can
cause problems. To reduce S to an acceptable siie, we
only evaluate the network for strategies that are pos-
sible given the current restrictions on the spatial vari-

275

ables. For instance, if the robot knows that it is moving
down a corridor toward a left-pointing L junction, it can
eliminate from consideration any strategy that involves
it moving to the end of the corridor and turning right.
With appropriate preprocessing, it is computationally
simple to dynamically reduce S to just a few possible
strategies in most cases.

Related Work
Probabilistic decision models of the sort explored in
this paper are just beginning to see use in planning
and control. Agogino and Ramamurthi [1988] describe
the use of probabilistic models for controlling machine
tools. Dean et al [1990] show how to use Bayesian
networks for building maps and reasoning about the
costs and benefits of exploration. Kanazawa and Dean
[Kanazawa and Dean, 1989] extend temporal Bayesian
networks to handle sequential decision making tasks.
Levitt et al [1988] describe an approach to implement-
ing object recognition using Bayesian networks that ac-
counts for the cost of sensor movement and inference.
Wellman [1987] shows how to integrate qualitative
knowledge in probabilistic network models. For some
previous approaches to using decision and probability
theory in planning, see [Feldman and Sproull, 1977,
Langlotz et al., 1987]. For some recent work on
temporal reasoning under uncertainty, see [Cooper et
al., 1988, Dean and Kanazawa, 1988, Hanks, 1988,
Weber, 1989].

References
[Agogino and Ramamurthi, 1988] A. M. Agogino and

K. Ramamurthi. Real-time influence diagrams
for monitoring and controlling mechanical systems.
Technical report, Department of Mechanical Engi-
neering, University of California, Berkeley, 1988.

[Bajcsy, 1988] R. Bajcsy. Active perception. Proceed-
ings of the IEEE, 76(8):996-1005, 1988.

[Ballard, 1989] Dana H. Ballard. Reference frames for
animate vision. In Proceedings IJCAI11, pages 1635-
1641. IJCAI, 1989.

[Cooper et al., 1988] Gregory F. Cooper, Eric J.
Horvitz, and David E. Heckerman. A method for
temporal probabilistic reasoning. Technical Report
KSL-88-30, Stanford Knowledge Systems Labora-
tory, 1988.

[Dean and Kanazawa, 1988] Thomas Dean and Keiji
Kanazawa. Probabilistic temporal reasoning. In Pro-
ceedings AAAI-88, pages 524-528. AAAI, 1988.

[Dean and Kanazawa, 1989] Thomas Dean and Keiji
Kanazawa. A model for reasoning about persistence
and causation. Computational Intelligence, 5(3):142-
150, 1989.

[Dean and Wellman, 1989] Thomas Dean and Michael
Wellman. On the value of goals. In Josh Tenen-
berg, Jay Weber, and James Allen, editors, Proceed-
ings from the Rochester Planning Workshop: From

Formal Systems to Practical Systems, pages 129-140,
1989.

[Dean et a/., 1990] Thomas Dean, Kenneth Basye,
Robert Chekaluk, Seungseok Hyun, Moises Lejter,
end Margaret Randazza. Coping with uncertainty in
a control system for navigation and exploration. In
Proceedings AAAI-90. AAAI, 1990.

[Feldman and Sproull, 1977] Jerome
Feldman and Robert Sproull. Decision theory and
artificial intelligence ii: the hungry machine. Cogni-
tive Science, 1:158-192, 1977.

[Hanks, 1988] Steve Hanks. Representing and comput-
ing temporally scoped beliefs. In Proceedings AAAI-
88, pages 501-505. AAAI, 1988.

[Jensen, 1989] Finn V. Jensen. Bayesian updating in
recursive graphical models by local computations.
Technical Report R-89-15, Institute for Electronic
Systems, Department of Mathematics and Computer
Science, University of Aalborg, 1989.

[Kanazawa and Dean, 1989] Keiji Kanazawa and
Thomas Dean. A model for projection and action. In
Proceedings IJCAI 11, pages 985-990. IJCAI, 1989.

[Kanazawa, Forthcoming] Keiji Kanazawa. Probability,
Time, and Action. PhD thesis, Brown University,
Providence, RI, Forthcoming.

[Langlotz et al., 1987] Curtis P. Langlotz, Lawrence M.
Fagan, Samson W. Tu, Branimir I. Sikic, and Ed-
ward H. Shortliffe. A therapy planning architecture
that combines decision theory and artificial intelli-
gence techniques. Computers and Biomedical Re-
search, 20:279-303, 1987.

[Lauritzen and Spiegelhalter, 1988] Stephen L. Lau-
ritzen and David J. Spiegelhalter. Local computa-
tions with probabilities on graphical structures and
their application to expert systems. Journal of the
Royal Statistical Society, 50(2): 157-194, 1988.

[Levitt et al., 1988] Tod Levitt, Thomas Binford, Gil
Ettinger, and Patrice Gelband. Utility-based con-
trol for computer vision. In Proceedings of the 1988
Workshop on Uncertainty in Artificial Intelligence,
1988.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible Inference.
Morgan-Kaufmann, Los Altos, California, 1988.

[Raiffa and Schlaifer, 196l] Howard Raiffa
and R. Schlaifer. Applied Statistical Decision The-
ory. Harvard University Press, 1961.

[Weber, 1989] Jay C. Weber. A parallel algorithm for
statistical belief refinement and its use in causal rea-
soning. In Proceedings IJCAI 11. IJCAI, 1989.

[Wellman, 1987] Michael P. Wellman. Dominance and
sub8umption in constraint-posting planning. In Pro-
ceedings IJCAI 10. IJCAI, 1987.

276

A Cooperative Approach
to Planning for Real-Time Control

Edmund H. Durfee
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109

durfee@caen.engin.umich.edu

Abstract

Research into combining real-time control with
AI planning has typically involved attempt-
ing to embed "intelligence" in a real-time sys-
tem or "reactivity" in an AI system. We
argue in favor of an alternative approach in
which distinct real-time and AI systems per-
form the functions each is suitable for and
cooperate to achieve overall real-time intelli-
gent behavior. The real-time system guaran-
tees the performance of some schedulable sub-
set of important actions—a subset judiciously
chosen by the asynchronously running AI sys-
tem. We describe a preliminary implementa-
tion of our cooperative approach for planning
routes and controlling the behavior of a hall-
following robot. We conclude by outlining im-
portant open issues, including building faster
AI systems, real-time communication, and ties
between real-time AI and distributed problem
solving.

1 Introduction

In dynamically changing worlds, intelligent decision
making cannot be divorced from time. The best decision
can result in failure if the world has changed substan-
tially by the time the decision is enacted. For example,
if I see no cars coming, I might decide to cross the street.
Although this decision might be correct given the initial
situation, if I spend too much time making the decision
or putting it into action, I might still get hit. A fast
and simple rule such as "If you see no cars coming then
cross the street" can reduce decision-making time, but
it also might lead to disaster on a foggy day or near a
blind turn. Hence, an important challenge in building
autonomous systems for dynamic worlds is in combin-
ing mechanisms for making rapid "reactive" decisions in
time-critical situations with AI techniques for planning
and anticipating outcomes given more time to reason.

We have developed a new approach to real-time AI
that combines intelligent planning and real-time control.
Our approach is based on a premise that is fundamen-

°This research was sponsored, in part, by the University
of Michigan under a Rackham Faculty Research Grant.

tally different from previous work: We view AI and real-
time computing to be incompatible by nature, and hence
attempts to build an integrated, real-time AI system will
never fully succeed. Instead, we propose a cooperative
approach, where distinct real-time and AI systems co-
operatively solve problems requiring high-level planning
and reactive control.

In this paper, we briefly survey previous work on in-
telligent planning and real-time control to illustrate how
our perspective differs (Section 2). We then discuss our
approach in general terms (Section 3), and contrast it in
more depth with other approaches (Section 4). Then we
describe our prototype implementation for controlling a
robot in an uncertain and dynamic environment (Sec-
tion 5). Using our prototype as a starting point, we dis-
cuss the promises and pitfalls of our new approach (Sec-
tion 6). Finally, we conclude by summarizing the current
status of this work and our ongoing research (Section 7).

2 Intelligent Real-Time Systems

Intelligent real-time systems are critically important in
most real-world tasks where it is not enough for a system
to eventually respond to a situation; situations change
over time, so a timely response to the current situation
is useful while a late response is useless. By real-time,
therefore, we mean that a system must carry out its ac-
tions before the environment has a chance to change sub-
stantially. Put another way, a system must act on its
environment more quickly than its environment can un-
predictably act on it. If we can measure the expected (or
minimum) amount of time that the environment needs
to change substantially, then we can place hard real-time
deadlines on a system [Stankovic and Ramamritham,
1987].

2.1 Real-Time AI: A Contradiction?

Intelligent real-time systems are elusive for several rea-
sons. One reason stems from the fact that both AI
and real-time computing are relatively young disciplines
without established, broadly-based principles to act as a
foundation for developing intelligent real-time systems.
A second reason is that the philosophies of the two com-
munities are widely divergent. While the AI commu-
nity looks to continually blur the limits of what com-
puters can do, the real-time community attempts to set
clearly-defined limits on computing capabilities and re-

277

quirements in order to guarantee a desired level of per-
formance.

A third reason that building intelligent real-time sys-
tems is hard is the different, essentially incompatible,
objectives of researchers in the two communities. A long-
standing goal of AI research is to build systems that can
change based on new experiences and that thus could in
time develop better but possibly unexpected solutions
to problems. By gathering more knowledge, the system
becomes capable of new chains of inference and must re-
trieve appropriate knowledge from a growing knowledge
base. If its knowledge base could potentially grow with-
out any clearly defined bounds (especially if it has access
to effectively unlimited archival memory), then it is un-
likely that a system could guarantee a known, bounded
retrieval and response time. Meanwhile, a goal of real-
time computing research is to clearly define the system's
capabilities and resources in order to predictably guar-
antee that important deadlines and timing constraints
will be met. Thus, while intelligence appears to imply
inherent unpredictability, real-time computing demands
worst-case predictability.

These reasons are not proof that intelligent real-time
systems cannot be built; the reasons are purely intu-
itive and rife with underlying assumptions about what
it means for a system to be intelligent and real-time. In
addition, current AI systems are far from the creative
and adaptive intelligent systems that we might hope to
build in the future, so our current systems are probably
not as incompatible with real-time systems as they might
become. Our goal in this research, therefore, is not to
condemn attempts to combine real-time and AI concepts
into a single system, but instead to keep an open mind
and begin to consider alternatives approaches to build-
ing real-time intelligent systems. Before describing the
alternative approach that we have developed to date, we
first present an overview of approaches to building inte-
grated real-time AI systems.

2.2 Real-Time AI: Embedded Approaches

One approach to combining real-time and AI concepts
has been to engineer AI systems to meet real-time needs
[Laffey et al., 1988]. Typically, this means simplify-
ing a system's knowledge-base and inference mechanism
so that the system will respond to all expected inputs
within some maximum time. Unfortunately, while these
systems might retain some of the languages and algo-
rithms of AI, it could be argued that whatever intelli-
gence they began with has been engineered out in order
to guarantee predictable real-time responses.

Another approach has been to develop AI systems
that use iterative improvement algorithms, so that at
any given time the system can return some approxima-
tion of the desired response [Dean and Boddy, 1988;
Horvitz, 1987]. Systems that use this approach attain
goals within real-time, but this approach is limited to
applications that admit to successive-refinement algo-
rithms. In many applications, successfully meeting time
constraints might mean that the system generates a use-
ful but unexpected result, rather than an approximation
of the expected result. For example, when navigating a

vehicle through a congested area, an approximation such
as "turn 90 degrees, plus or minus 45 degrees" might lead
to disaster, while a completely different response such as
"honk your horn and slam on the brakes" might be bet-
ter.

Both of these approaches have combined AI and real-
time by embedding an AI system within a real-time sys-
tem. As part of the real-time processing, any AI reason-
ing must also return a response within a deadline. This
view can be contrasted with the view in which real-time
(reactive) capabilities are embedded within an AI sys-
tem. For example, Cohen [Cohen et al, 1989] describes
an AI architecture which includes a real-time component
that can be triggered by certain input and that rapidly
responds to time-critical situations by "short-circuiting"
the more general reasoning mechanisms. A more uni-
fied approach, such as Soar [Laird et al., 1987], encodes
reactive knowledge just like any other knowledge, with
the stipulation that, when it is applicable, the reactive
knowledge should take priority. To make real-time guar-
antees, these systems must ensure some upper bound on
the time it will take the AI system to invoke the reactive
component or to retrieve and execute a reactive "rule."
In a system with changing (especially growing) knowl-
edge but limited computing resources, establishing such
a bound could be problematic.

3 A Cooperative Approach

An alternative approach is to view the real-time and
AI components as being separate, concurrent, and asyn-
chronous systems. Because neither is embedded in the
other, we do not need to alter the basic behavior of ei-
ther. The AI system is free to change unpredictably and
need not satisfy any hard real-time guarantees, while the
real-time system can ensure rigid timing constraints on
its own well-defined behavior. The challenge, then, is to
enable the two individual systems, with their own goals
and restrictions, to cooperate so that real-time intelli-
gent behavior emerges.

In our cooperative approach, the real-time system
follows a schedule of tasks, where those tasks have
known effects, resource requirements, and worst-case
time needs. We view the purpose of the real-time system
as reacting and adapting to domain dynamics in prespec-
ified ways so as to ensure that some behavioral goals are
maintained. As a simple example, a mobile robot gener-
ally has a goal of avoiding collisions. This goal leads to
ongoing obstacle avoidance behavior. The purpose of the
real-time system is to guarantee that the periodic task
of detecting objects looming ahead and stopping when
they appear will be carried out with some worst-case fre-
quency. Because the detection actions (arithmetic com-
parisons using certain sonar readings) and reactions (set-
ting specific motor parameters to 0) are rigidly encoded,
the time needs of the periodic task can be bounded. The
real-time system takes a cyclic schedule of such periodic
tasks and guarantees its timely performance. This en-
sures that a set of reactions to particular changes in the
domain will occur quickly enough to maintain at least
some minimal level of performance, such as keeping a
mobile robot in a "safe" state until more reasoned re-

278

sponses can be developed.

But where does the well-defined set of tasks comes
from, and how can we ensure that it can be accom-
plished? The answer is the AI system. The AI system
has the knowledge and reasoning power to interpret the
current situation, to consider the overall system objec-
tives, to plan and anticipate for the future, and to thus
decide on the active and reactive behaviors that should
be maintained at any given time. Of course, given unlim-
ited resources, the AI system might prefer to maintain
all reactive behaviors, but this might not be feasible.
To determine whether a desired set of behaviors can be
guaranteed by the real-time system, the AI system uses
established real-time scheduling techniques to generate
the real-time system's schedule. If these techniques can-
not form a guaranteed schedule for the chosen behaviors,
then the AI system must use this feedback to modify its
expectations.

For example, let us say the AI system decides that
the most relevant behaviors for a robot's next activity
are (1) moving forward at speed s while (2) checking for
obstacles and stopping before collisions and (3) checking
for sensor readings indicating the arrival at a desired lo-
cation without overshooting the location by more than
distance d. Behaviors (2) and (3) must be repeated at
a frequency determined by the AI system based on the
desired parameters s and d. These behavioral tasks and
their periods are passed to the real-time scheduling al-
gorithms. If the algorithms can successfully schedule the
tasks, they return an executable schedule which the AI
system can then pass to the real-time system. If the
tasks cannot be scheduled, then it is up to the AI sys-
tem to relax expectations so that a satisfactory schedule
can be formed. For example, if it can afford to spend
more time traveling, then the AI system can reduce s,
which in turn reduces the frequency at which behaviors
(2) and (3) need to be repeated. On the other hand,
if arrival at the destination must proceed in haste, then
the AI system could choose to drop behavior (2) from
the schedule and just hope that no obstacles will get in
the way. Because time and other resources are limited,
sometimes the AI system must intentionally choose to
ignore some reactive behaviors in order to ensure more
important behaviors.

In essence, our cooperative approach trades away com-
plete flexibility in reactive behavior in favor of guaran-
teeing a subset of reactions. The AI system must choose
what to guarantee wisely. For example, if an action to
look out for cliffs was not included in the schedule, the
system might very well fall off a cliff before the AI sys-
tem recognizes its error and modifies the schedule. If the
probability of encountering a cliff and the costs of falling
off of it are high enough, however, the AI system should
have planned for it. Although the AI system is free to
revise the guaranteed subset of behaviors at any time,
we are not restricting the AI system to meet any hard
real-time requirements. This allows the AI system to ap-
ply any knowledge and inferences it chooses in deciding
how to act. If it has already downloaded an appropriate
schedule of behaviors that are guaranteed to keep the

overall system in a safe state,1 the AI system has the
time and flexibility to carefully craft the next schedule
of behaviors.

4 Comparison to Related Work

Our emphasis on using real-time scheduling algorithms
to guarantee a well-defined subset of reactions dif-
fers from more typical pattern-directed invocation ap-
proaches, exemplified in rule-based and blackboard-
based systems [Hayes-Roth et al, 1989b; Laird et al,
1987]. In pattern-directed invocation, changing state in-
formation is matched to the rules or knowledge sources to
trigger appropriate responses. An advantage of pattern-
directed invocation, therefore, is that unexpected events
can trigger any applicable knowledge. Our approach in-
stead forces the AI system to restrict the reactive knowl-
edge that will be considered to only the best subset that
can be considered within time constraints.

In pattern-directed invocation, the pattern-matching
overhead of using state information to trigger knowledge
can potentially be costly. Although faster algorithms
are continually being developed and the use of parallel
hardware can further speed this process, providing ab-
solute upper bounds for pattern-matching time in a sys-
tem with a changing knowledge base and fixed hardware
is problematic. The advantage of our approach is that
the real-time schedule explicitly targets specific reactive
knowledge and the criteria for applying that knowledge.
Thus, the real-time system knows exactly what patterns
it will attempt to match. It also knows what state in-
formation to collect, which can lead to more focussed
sensing than in the typical pattern-directed invocation
approaches where all changes to state information are
generally collected. Our approach is therefore more fo-
cussed and less opportunistic than pattern-directed in-
vocation approaches, but this allows it to also be more
predictable and to guarantee performance of limited be-
havior.

In other reactive approaches, overall system behav-
ior emerges from the collective responses of a number of
simple reactive components [Agre and Chapman, 1987;
Arkin, 1987; Brooks, 1986]. As in our approach, these
approaches delegate the responsibility for recognizing
specific issues of concern in the current situation to sepa-
rate behaviors. However, these approaches usually view
the separate reactive behaviors as running concurrently
on parallel processors, whereas we make no assumptions
about having enough processors to give each behavior its
own. Our approach is based on the expectation that, as
we continually extend the range of situations that our
systems will face, the amount of computing we would
like to do will exceed the available computing resources.
Thus, resource allocation and scheduling are critical in
uniprocessor and multiprocessor implementations, and
our approach using real-time scheduling algorithms guar-
antees performance given time and resource constraints.

Firby's RAP planner [Firby, 1987] is another exam-
ple of a reactive approach where overall system behavior

1 We also assume that the real-time system is bootstrapped
with a suitable schedule.

279

emerges from the responses of several reactive compo-
nents, but, like our approach, the RAP planner makes
no assumptions about parallel hardware. Instead, the
separate reactive behaviors, called RAPs, sit on an ex-
ecution queue and an interpreter decides at any given
time which will execute next. The RAP planner and
our approach thus differ in how and where the decisions
about real-time execution of reactive behaviors is accom-
plished. In the RAP planner, the interpreter must de-
cide which RAP to execute next, considering its time
constraints and relationships to other RAPs. While this
has considerable flexibility, making such decisions might
take considerable time as well. In our approach, the AI
system decides which reactive behaviors are needed and
uses real-time scheduling algorithms to develop a fixed
schedule for execution. Moreover, our approach incor-
porates strategic planning capabilities in the AI system,
allowing strategic and reactive planning to be combined
in a more natural manner.

Our cooperative approach concentrates on guarantee-
ing real-time control reactions that keep an overall sys-
tem in a safe state, and makes no assumptions about
the timing characteristics of the AI system. As such,
our approach concentrates on time constraints at the
reactive control level rather than at the task level. In
meeting task-level time constraints, issues in hastening
decision making and balancing time spent reasoning and
acting [Boddy and Dean, 1989] come to the fore. While
providing real-time guarantees about AI systems is not
possible in general, for some tasks and some AI algo-
rithms it is possible to strictly bound reasoning time. For
example, anytime algorithms [Dean and Boddy, 1988;
Horvitz, 1987] allow the formulation of some decision
within a deadline, with decisions improving as allotted
time is increased. The work on approximate process-
ing has similar goals [Lesser et al, 1988]. Meanwhile,
Hendler is developing an AI system on top of a real-time
operating system [Hendler, 1990]. The operating system
allocates time to reacting and reasoning in his system,
so that in highly dynamic environments the reasoning
tasks might get little or no time, while in more relaxed
domains less reaction might be needed. Like ours, his ap-
proach builds on real-time computing techniques, but he
uses an embedded rather than a cooperative approach.

Finally, research on using multiple systems, or "coop-
erating experts" has predominantly focussed on speeding
up overall system performance through parallelism and
filtering information [Durfee et al, 1989; Hayes-Roth et
al, 1989b; Smith and Broadwell, 1987]. For example,
the work of Hayes-Roth and her colleagues decomposes
a real-time intensive-care monitoring task into a number
of intelligent subsystems for interpreting sensory data,
evaluating trends, enacting changes in treatment, and
so on [Hayes-Roth et al, 1989a]. This decomposition
enables faster responses (through parallelism and infor-
mation reduction), but does not separate real-time and
AI capabilities as our approach does.

5 Preliminary Implementation
As a preliminary investigation of our approach, we have
been experimenting with planning and control for a mo-

map-bb control-bb

HERO

Figure 1: AI and Real-Time Systems

bile robot that must navigate through the halls of our
building using only sonar sensors and a floor plan. Our
experimental environment consists of a Heathkit HERO
robot connected by an RS232 cable to a TI Explorer II.
Using multitasking, the TI Explorer simulates concur-
rency in executing both cooperating processes, the AI
system and the real-time system (Figure 1).

5.1 AI System

The AI system is responsible for taking high-level task
specifications and planning routes and control behaviors
for the robot. The system is implemented in a black-
board architecture using the Generic Blackboard (GBB)
shell [Corkill et al, 1986], and has several blackboards
for control and data (Figure 1).

The map blackboard contains information about the
floor plan at different levels of detail. The map provides
abstract information about corridors and rooms, and
more detailed information about static features (doors,
partitions, etc.) and about mobile features (the robot,
objects to retrieve, etc.). Knowledge sources (KSs) can
access the map blackboard to plan routes, generate ex-
pectations about sonar readings, plot robot and object
locations, and so on.

The control blackboard contains information about

280

the current and pending behaviors of the robot. A be-
havior is represented along the dimensions of: who (cur-
rently the single robot, but we are working toward multi-
robot domains); what (the goals of the behavior); when
(the time interval over which the behavior will occur);
where (the spatial region in which the behavior will oc-
cur); how (the methods employed to achieve the goals);
and why (the source of the behavior and its importance).
The behavioral specification provides us with a common
representation for organizations, plans, and schedules
[Durfee and Montgomery, 1990]. The control blackboard
is thus divided into levels for:
organization: general responsibilities (such as deliver-

ies on the first floor);

long-term-plan: behaviors requiring substantial time
(such as pick up and deliver package x);

short-term-plan: subcomponents of long-term-plans
(such as follow halll to the intersection with hallS);

schedulable-action: behaviors to maintain during
short-term-plans (such as orient to wall or avoid
obstacles);

schedule: scheduled actions to meet real-time require-
ments.

The control KSs use information from the map and
control blackboards to generate new behaviors. Cur-
rently, we have only a few KSs, and these allow the top-
down elaboration of plans. Given a pickup-and-delivery
request, the long-term-planning KS builds a long-term-
plan behavior. The short-term-planning KS decomposes
it into temporal subplans (go to x, go to y, pick up object,
etc.). The schedulable-action KS generates behaviors to
activate for each subplan, and the schedule KS takes the
schedulable-actions associated with the current time and
builds a schedule. Currently, a schedule is constructed
as a lisp procedure where the functions associated with
active schedulable-actions are appended within a loop
construct. While frequencies and time-costs are associ-
ated with the schedulable-actions, our simplistic initial
scheduling algorithm simply includes all actions.

The execute-schedule KS causes the schedule to be
downloaded to the real-time system, which in our current
implementation means that the schedule is transferred
to the interface blackboard. This KS also adds in an
additional function call to periodically test to see if a new
schedule is downloaded. Thus, the AI system explicitly
tells the real-time process how often to periodically poll
their connecting stream to see whether a new schedule
is ready to supercede the current schedule.

Communication from the real-time process to the
AI system is accomplished through the interface black-
board. A control function associated with an action
can generate a message, which the AI system receives
through a stream and posts on the interface blackboard.
For example, the avoid-collision function takes two ac-
tions when it detects an object closer than 15 inches
away: it causes the robot's wheels to stop; and it gen-
erates a BLOCKED message that gets sent to the AI
system.

The appearance of a message such as BLOCKED on
the interface blackboard triggers additional KSs to re-

spond to the event. For example, when blocked, the
blocked KS suspends previously active behaviors and
builds a short-term-plan to swivel the robot back and
forth to detect the left and right boundaries of the ob-
struction. This leads to a new schedule that is down-
loaded to the real-time system. The function for sizing
up the new obstruction returns a message containing its
dimensions, which the AI system's update-map KS uses
to add the obstruction to the map blackboard.

Finally, the robot blackboard contains information
about the current state of the robot, as received from
the robot via the interface blackboard. Once again, to
receive such information the AI system must explicitly
include commands in the schedule telling the real-time
system to send messages containing the desired informa-
tion.

5.2 Real-Time System

The real-time system is a separate process running on the
TI Explorer. The process simply reads from the stream
connecting the processes and evaluates the s-expression
representing the schedule that it receives. Once the eval-
uation returns, it reads again from the stream, and so on.
As an example schedule, the schedule for hall following
has the form:

(loop (avoid-collisions)
(orient-to-wall)
(check-landmarks)

(when (new-sched-ready-p)
(return)))

The real-time process communicates via the RS232
link with the HERO robot by using predefined BASIC
command templates. For example, the avoid-collisions
function can generate a request for a forward sonar read-
ing, and once it receives the response, it compares the
value with some threshold to decide whether to stop the
motors because the path is obstructed. As described
previously, the detection of an obstruction causes the
real-time process to send a message to the AI system.
Fortunately for the HERO, the schedule supplied by the
AI system specified the immediate reaction to take if
blocked, which is simply to stop moving. If instead the
process had to wait for the blackboard system to trig-
ger and execute KSs and issue a command to stop, that
command would arrive well after the HERO would have
collided with the obstruction.

6 Discussion

Our experiments with the HERO robot have concen-
trated primarily on moving between locations in the
same or adjacent hallways (limited by the length of our
RS232 connection), and in adding an encountered ob-
stacle to the map. The experiences we have gained have
illustrated some of the advantages of our approach. Af-
ter the AI system develops a schedule of the current be-
haviors, the real-time process begins maneuvering the
robot down the hall. Concurrently, the AI system is
incrementally planning [Durfee and Lesser, 1986] the

281

next set of behaviors to pursue once the current sched-
ule has completed successfully. Thus, our blackboard
system's planning and prediction activities are not di-
rectly competing with the more time-critical robot con-
trol actions of avoiding walls and obstacles. More impor-
tantly, the time-critical control actions are not sched-
uled through the blackboard's opportunistic but time-
consuming agenda mechanisms.

The schedule of control actions clearly delineates what
sensor readings are needed at any given time, and this
improves reactivity. For example, the robot's head sonar
needs nearly two seconds to make a complete revolution
if it is to scan in all directions. The control actions of
the schedule, however, avoid the time-consuming collec-
tion of unnecessary information by directing the sonar
in only those directions where readings are desired. Al-
though it might remain ignorant of some phenomenon
in an area that it only would have checked had it been
scanning completely around, the robot using our system
more frequently performs the control activities that the
AI system chose.

Navigating a HERO robot down a hallway is made
difficult by the imprecision of the robot's sensors and ef-
fectors. The sonar readings are often errorful, and the
robot's wheels often slip. To compensate for this, the
functions for orienting the HERO and checking for land-
mark readings must integrate information about the cur-
rent sensor data, past readings, known wheel movements,
previous orientation, and features of the floor plan in or-
der to develop a reasonable estimation of the robot's cur-
rent position and orientation in the hall. While much of
this can be done by the AI system, we have incorporated
some of this into the real-time system's control functions
themselves. We need to study these issues further to dis-
cover how much of the reasoning about uncertainty and
data fusion can be included in the control code, and how
much must be done by the AI system.

On a related note, one important area that we have
not adequately addressed is the issue of responsiveness
of the AI system. Our approach emphasizes guarantees
about the control behavior, and our system can guaran-
tee that the robot will stop before a head on collision
with a stationary object and will reorient before collid-
ing with a wall. However, once the hard-coded reaction
is taken, the blackboard system might require a signifi-
cant amount of time to develop a reasoned response to
the situation. Thus, for example, on encountering an
obstacle the hero will stop and do nothing for a short
while before the AI system downloads the commands to
collect data about the obstacle's boundaries. While this
is acceptable behavior in our environment, we still need
to examine techniques such as deliberation scheduling
and approximate processing to speed up this reasoning
so that we can better address time constraints at the
task as well as the control level.

7 Summary and Current Directions
In summary, we are developing a cooperative approach
to combining techniques from the real-time computing
and AI fields in order to integrate high-level planning
with scheduling low-level control actions. To evaluate

this work, we have begun implementing our ideas in a
real, robot system. Our preliminary experiments have
shown that for our limited task domain, our coopera-
tive approach allows us to combine task planning and
reasoned responses to unexpected events with tight-loop
control and rapid, hard-coded reactivity. Important cur-
rent directions for this work include: enlarging the set
of KSs to expand the range of behaviors; incorporating
more complete timing knowledge and testing alternative
real-time scheduling algorithms; more completely ana-
lyzing the dividing line between the AI and real-time
components in information-rich, uncertain domains; and
using techniques such as approximate processing [Lesser
et a/., 1988] and cooperating intelligent systems [Hayes-
Roth et al, 1989b] for reducing AI system time needs to
address task-level time constraints.

We are also exploring related issues in controlling and
coordinating multiple robots. For example, multiple
robots typically need to communicate in order to syn-
chronize their actions. To make intelligent communi-
cation decisions, these robots need knowledge about the
underlying communication mechanisms, such as whether
messages will ever be lost and how long communication
takes in the worst (or average) case. To ensure timely
communication, we might need to adopt a port-based
communication architecture [Shin and Epstein, 1987], al-
lowing different priority channels. In dynamically chang-
ing environments, where agents come and go over time,
reasoning about messaging capabilities, needs, and pri-
orities will be a complex problem.

As a simple example of the types of tasks we are con-
cerned with, consider several mobile robots that are fol-
lowing each other in a line. If the robot in the front dis-
covers that it soon must stop unexpectedly, what should
it do? It could stop immediately and, at the same time,
send messages to the robot behind it to halt. But if the
message takes too long to arrive and process, the robot
behind might crash into the leader. The robot behind
also must ensure that the robot following it will not crash
into it. To avoid a chain reaction of rear-end collisions,
therefore, a robot that is being followed must decide how
quickly the following robot can stop, and a crucial aspect
of this decision is using knowledge about the communi-
cation channels. If we are to guarantee real-time respon-
siveness in dynamic domains, then the capabilities and
the use of communication channels must be appropriate.

The final direction that we are exploring is the role
that reasoning about coordination plays in real-time AI.
Although many deadlines an agent faces are based on as-
pects of the physical world that are beyond the agent's
control, other deadlines are based on coordination de-
cisions with other agents. For example, if two robots
have arranged to pass a part from one to the other at
a specific time and place, they have imposed deadlines
on themselves for this rendezvous. If one robot is slowed
by some unanticipated obstacles, it could try alterna-
tive means of meeting the deadline (such as increasing
its speed) but this might have drawbacks (such as in-
creasing the chances that it will be unable to avoid a
collision). The robot could instead attempt to modify
the deadline; it could ask for an extension.

282

We believe that reasoning about the timing of inter-
actions between intelligent systems is a key aspect of
intelligent behavior in dynamic domains. Our expecta-
tion is that real-time AI and distributed AI have many
connections between them, and that studying these con-
nections will lead to important insights and progress in
both fields.

7.1 Conclusion

7.1.1 Acknowledgements.
Many of the ideas in this paper arose out of discus-

sions with Kang Shin, Dave Musliner, and Tom Tsukada.
The low-level techniques for sonar-based navigation us-
ing the HERO robot were developed jointly with Terry
Weymouth and Yuval Roth-Tabak.

References
[Agre and Chapman, 1987] P. Agre and D. Chapman. Pengi:

An implementation of a theory of activity. In Proceedings
of the National Conference on Artificial Intelligence, pages
268-272, 1987.

[Arkin, 1987] Ronald C. Arkin. Towards Cosmopolitan
Robots: Intelligent Navigation in Extended Man-Made En-
vironments. PhD thesis, University of Massachusetts,
September 1987.

[Boddy and Dean, 1989] Mark Boddy and Thomas Dean.
Solving time-dependent planning problems. In Proceedings
of the Eleventh International Joint Conference on Artifi-
cial Intelligence, pages 979-984, Detroit, Michigan, August
1989.

[Brooks, 1986] Rodney A. Brooks. A robust layered control
system for a mobile robot. IEEE Journal on Robotics and
Automation, RA-2(l):14-22, March 1986.

[Cohen et al, 1989] Paul R. Cohen, Michael L. Greenberg,
David M. Hart, and Adele E. Howe. Trial by tire: Un-
derstanding the design requirements for agents in complex
environments. AI Magazine, 10(3):32-48, Fall 1989.

[Corkill et al, 1986] Daniel D. Corkill, Kevin Q. Gallagher,
and Kelly E. Murray. GBB: A generic blackboard devel-
opment system. In Proceedings of the National Conference
on Artificial Intelligence, pages 1008-1014, Philadelphia,
Pennsylvania, August 1986. (Also published in Blackboard
Systems, Robert S. Engelmore and Anthony Morgan, edi-
tors, pages 503-518, Addison-Wesley, 1988.).

[Dean and Boddy, 1988] Thomas Dean and Mark Boddy. An
analysis of time-dependent planning. In Proceedings of the
National Conference on Artificial Intelligence, pages 49-
54, St. Paul, Minnesota, August 1988.

[Durfee and Lesser, 1986] Edmund H. Durfee and Victor R.
Lesser. Incremental planning to control a blackboard-
based problem solver. In Proceedings of the National Con-
ference on Artificial Intelligence, pages 58-64, Philadel-
phia, Pennsylvania, August 1986.

[Durfee and Montgomery, 1990] Edmund H. Durfee and
Thomas A. Montgomery. A hierarchical protocol for coor-
dinating multiagent behaviors. In Proceedings of the Na-
tional Conference on Artificial Intelligence, July 1990.

[Durfee et al, 1989] Edmund H. Durfee, Victor R. Lesser,
and Daniel D. Corkill. Trends in cooperative distributed
problem solving. IEEE Transactions on Knowledge and
Data Engineering, l(l):63-83, March 1989.

[Firby, 1987] R. James Firby. An investigation into reactive
planning in complex domains. In Proceedings of the Na-
tional Conference on Artificial Intelligence, pages 202-206,
Seattle, Washington, August 1987.

[Hayes-Roth et al., 1989a] Barbara Hayes-Roth, Micheal
Hewett, Richard Washington, Rattikorn Hewett, and
Adam Seiver. Distributing intelligence within an individ-
ual. In Les Gasser and Michael N. Huhns, editors, Dis-
tributed Artificial Intelligence, volume 2 of Research Notes
in Artificial Intelligence, pages 385-412. Pitman, 1989.

[Hayes-Roth et al, 1989b] Barbara Hayes-Roth, Richard
Washington, Rattikorn Hewett, Micheal Hewett, and
Adam Seiver. Intelligent monitoring and control. In Pro-
ceedings of the Eleventh International Joint Conference on
Artificial Intelligence, pages 243-249, Detroit, Michigan,
August 1989.

[Hendler, 1990] James Hendler. Abstraction and reaction.
In Working Notes of the 1990 AAAI Spring Symposium
on Planning, pages 54-56, March 1990.

[Horvitz, 1987] Eric J. Horvitz. Reasoning about beliefs and
actions under computational resource constraints. In Pro-
ceedings of the 1987 Workshop on Uncertainty in Artificial
Intelligence, 1987.

[Laffey et al, 1988] Thomas J. Laffey, Preston A. Cox,
James L. Schmidt, Simon M. Kao, and Jackson Y.
Read. Real-time knowledge-based systems. AI Magazine,
9(l):27-45, Spring 1988.

[Laird et al, 1987] John E. Laird, Allen Newell, and Paul S.
Rosenbloom. SOAR: An architecture for general intelli-
gence. Artificial Intelligence, pages 1-64, 1987.

[Lesser et al., 1988] Victor R. Lesser, Jasmina Pavlin, and
Edmund H. Durfee. Approximate processing in real-time
problem solving. AI Magazine, 9(1):49-61, Spring 1988.

[Shin and Epstein, 1987] Kang G. Shin and Mark E. Ep-
stein. Intertask communications in an integrated multi-
robot system. IEEE Journal of Robotics and Automation,
RA3(2):90-100, April 1987.

[Smith and Broadwell, 1987] David Smith
and Martin Broadwell. Plan coordination in support of
expert systems. In Proceedings of the DARPA Knowledge-
based Planning Workshop, Austin, Texas, December 1987.

[Stankovic and Ramamritham, 1987] J. Stankovic and
K. Ramamritham. Tutorial on Hard Real-Time Systems.
IEEE Computer Society Press, 1987.

283

Managing Deliberation and Reasoning in Real-Time AI Systems

Frangois Felix Ingrand
Artificial Intelligence Center

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
E-mail: felix@ai.sri.com

Michael P. Georgeff
Australian AI Institute

1 Grattan Street
Carlton, Victoria 3053

. Australia
E-mail: georgefF@aaii.oz.au

Abstract

This paper describes some recent research1 on
architectures for situated (embedded) systems
that need to deliberate and reason in real time.
One of the most difficult problems in the design
of such architectures is how to manage the rea-
soning performed by such a system while still
meeting the real-time constraints of the prob-
lem domain. We present an architecture, based
on the Procedural Reasoning System (PRS),
that provides mechanisms for the management
and control of deliberation and reasoning in
real-time domains. In particular, we show how
deliberation and reasoning strategies can be
represented in the form of metalevel plans, and
describe an interpreter that selects and exe-
cutes these in a way that retains bounded reac-
tion time. In addition, this approach allows us
to represent different types of situated system
by varying the metalevel deliberation strate-
gies. Finally, we provide some statistical mea-
sures of performance for one such type of sit-
uated system applied to a complex real-time
application.

1 Introduction

The design of reasoning and planning systems that are
situated (embedded) in real-time, dynamic environments
has recently been the focus of expanded research efforts
in Artificial Intelligence. A critical issue is to identify the
architectural features that would enable such systems
to exhibit rational behavior in these domains. In this
paper, we describe a uniform architecture that we believe
addresses many of the difficult problems in this area.

Computer systems, like human beings, have resource
limitations: they have only partial knowledge of their
environment and bounded computational (or reasoning)
capabilities. When situated in dynamic environments,
these limitations become important, because the envi-
ronment may change in significant ways while the sys-
tem attempts to gather more information or to reason

This research is supported by the National Aeronautics
and Space Administration, Ames Research Center, under
Contract No. NAS2-12521.

about what actions to pursue, given the information it
already has. If the system (or agent) does not act in a
timely manner, it may not be able to recover from a de-
teriorating situation or may miss positive opportunities.

One way to cope with stringent time constraints is
to determine ahead of time how the system should act
in every possible situation [Kaelbling, 1987; Rosenschein
and Kaelbling, 1986]. However, in domains requiring
complex responses to different patterns of events, it is
unlikely that such precompilation of plans of action will
be practically possible. In such cases, the system must
be able to reason about what courses of action to pursue
as it observes the changing environment and performs
its various tasks.

In particular, at any given time, the system will have
to decide what tasks are important enough to initiate
or continue, choose among the various means for accom-
plishing each task, and determine how to order the cho-
sen tasks for execution. In some cases, these decisions
may be relatively simple and straightforward. But in
other cases they may involve consideration of the likeli-
hood of success of the task, the utility of performing the
task, the resources required, the task's expected execu-
tion time, the availability and reliability of information
upon which the performance of the task depends, the
task's dependence on other tasks that are also to be per-
formed, etc.

Moreover, these deliberative tasks themselves are sub-
ject to the same constraints on time and information as
any other task the system is performing. Thus, the agent
will need to decide when and how to seek more informa-
tion, when and how to deliberate, and when to simply
go ahead and act on the basis of whatever reasoning and
deliberation it has already performed using whatever in-
formation it has at the time. And these deliberations, in
turn, need to be reasoned and deliberated about.

An important question, then, is to determine how one
can design a situated system that provides for the exe-
cution and management of such deliberative processes,
yet meets the real-time demands and information con-
straints of its environment. In this paper, we describe
how one such architecture, the Procedural Reasoning
System (PRS), provides the mechanisms for handling
this problem.

284

An Architecture for Situated
Deliberation

The architecture of a PRS module or agent consists of
(1) a database containing the system's current beliefs
about the world; (2) a set of current goals; (3) a library
of plans, called Knowledge Areas (KAs), which describe
particular sequences of actions and tests that may be
performed to achieve given goals or to react to certain
situations; and (4) an intention structure, consisting of
a [partially] ordered set of all those plans chosen for ex-
ecution. An interpreter or inference mechanism manip-
ulates these components, selecting an appropriate plan
(KA) based on system beliefs and goals, placing those
selected KAs on the intention structure, and finally ex-
ecuting them.

PRS interacts with its environment both through its
database, which acquires new beliefs in response to
changes in the environment, and through the actions
that it performs as it carries out its intentions. Different
instances of PRS, running asynchronously, can be used
in an application that requires the cooperation of more
than one subsystem.

The PRS interpreter runs the entire system. From a
conceptual standpoint, it operates in a relatively simple
way. At any particular time, certain goals are established
and certain events occur that alter the beliefs held in the
system database. These changes in the system's goals
and beliefs trigger (invoke) various KAs. One or more
of these applicable KAs will then be chosen and placed
on the intention structure. Finally, PRS selects a task
(intention) from the root of the intention structure and
executes one step ofthat task. This will result either in
the performance of a primitive action, the establishment
of a new subgoal, or the conclusion of some new belief.

At this point the interpreter cycle begins again: the
newly established goals and beliefs trigger new KAs, one
or more of these are selected and placed on the intention
structure, and again an intention is selected from that
structure and partially executed.

PRS has several features that make it particularly
powerful as a situated reasoning system, including: (1)
The semantics of its plan (procedure) representation; (2)
Its ability to construct and act upon partial (rather than
complete) plans; (3) Its ability to pursue goal-directed
tasks while at the same time being responsive to chang-
ing patterns of events in bounded time; (4) Its facilities
for managing multiple tasks in real-time; (5) Its default
mechanisms for handling stringent real-time demands of
its environment; and (6) Its metalevel (or reflective) rea-
soning capabilities. Some of these features have been
discussed in earlier reports and papers [Georgeff and In-
grand, 1989; Georgeff and Ingrand, 1990a; Georgeff and
Ingrand, 1990b; Georgeff and Lansky, 1986; Rao and
Georgeff, 1990]. In this paper, we consider in more detail
the way the system architecture supports deliberative
reasoning and provide some statistics on the system's
real-time performance capabilities.

3 Making Decisions in Real Time

At each interpreter cycle, the changing beliefs and goals
of PRS trigger certain KAs (plans) which, upon execu-
tion, either perform certain primitive actions or modify
the internal state (the beliefs, goals, and intentions) of
the system. At this level of abstraction, PRS acts like a.
situated automaton [Rosenschein and Kaelbling, 1986].

However, one of the most critical aspects of the PRS
architecture is the way in which its beliefs, goals, and
intentions evolve and change over time. It is here that
a number of strong commitments in the design of PRS
have been made and these, we believe, are crucial to its
successful performance as a situated, real-time system.

Given that the system needs to be able to deliberate in
various ways and at various times, one of the most diffi-
cult problems to overcome is how to reduce the amount
of potential deliberation that need be undertaken. In
particular, how can we avoid deliberation on every ac-
tion (internal or external) taken by the system and, re-
cursively, how can one avoid or reduce deliberation on
those deliberation processes themselves?

Most existing situated reasoning systems use one or
a combination of the following approaches: (1) They do
not allow any form of deliberation—the considerations
important to such deliberation are compiled into the
triggering parts of the plans or knowledge sources them-
selves [Firby, 1989]; (2) The deliberation is performed at
one level only and is done at every cycle irrespective of
the constraints on time and information existing at that
moment in time [Hayes-Roth, 1989]; and (3) The deliber-
ation occurs at one level only and is performed by a sep-
arate module of the system, unconstrained by the real-
time demands of the application and thus not bounded
in reaction or response time [Dodhiawala et al., 1989;
Fehling and Wilber, 1989; Hayes-Roth, 1989].

PRS takes a quite different approach. We consider
that the first task of the system should be to keep the
number of options open to deliberation under control.
To achieve this, the PRS interpreter uses certain de-
fault decision-making mechanisms that are stringently
bounded in execution time. For example, once a cer-
tain means has been chosen for achieving a particular
goal, and as long as the system has not already failed
to achieve the goal using those means, that means will
not be reconsidered — despite possible changes in the
environment that may indicate the existence of better
options. These option-reducing decision mechanisms ex-
ecute in bounded time and, in most real-world situations,
substantially reduce the set of options available for de-
liberation. Some of the more important of these mech-
anisms are discussed elsewhere [Georgeff and Ingrand,
1989].

Of course, even after this filtering of options, some
options remain open to consideration. Furthermore, the
filtering may have removed some options that should re-
ally have been considered more carefully. Thus, it is
necessary to provide the system with a capability for
performing a possibly unbounded amount of delibera-
tion and for reconsidering some of the options that have
possibly been discarded by the default decision mecha-
nisms.

285

In PRS, both these tasks are achieved by the use of
so-called metalevel KAs. Metalevel KAs use exactly the
same knowledge representation as application-level KAs;
they differ only in that they operate on the system's in-
ternal state (i.e., its beliefs, goals, and intentions)2 rather
than the external world.

The way these metalevel KAs are brought to bear on
any particular problem is via their invocation criteria.
These criteria may depend both on conditions obtain-
ing in the external world and, more typically, on condi-
tions relating to the internal state of the system. Such
conditions might include, for example, the applicability
of multiple KAs in the current situation, the failure to
achieve a certain goal, or the awakening of some previ-
ously suspended intention.

The body of a metalevel KA can be used to represent
any kind of decision-making procedure and can be of ar-
bitrary complexity. However, because it is executed in
the same manner as any other KA, it will be interrupted
whenever any external events modify the system's be-
liefs or goals. The system can thus continue to react
in bounded time, irrespective of the complexity of the
decision procedure. This is unlike other existing situ-
ated reasoning systems, whose bound on reaction time
is determined by the complexity of the decision-making
procedures incorporated in the system.

Moreover, further metalevel KAs can be invoked to
make decisions about the decision-making procedures
themselves. Again, the representation of these higher
levels of metalevel procedures is as for any other proce-
dure, and the system's reaction time remains bounded.
Of course, one has to be careful in the design of such
metalevel procedures if one wants the system to respond
to events — rather than just notice them — in some
given time frame.

It is also important to note that the decision-making
behavior of PRS is strongly influenced by the choice of
the invocation conditions of metalevel KAs. For exam-
ple, if these conditions are such that the decision-making
metalevel KAs are frequently invoked, PRS will act in a
cautious manner, spending more time making decisions
than otherwise [Bratman et al., 1988]. If, on the other
hand, these metalevel KAs are rarely invoked, PRS will
act in a bold manner, rapidly choosing its actions in re-
sponse to the changing world in which it is embedded.
Thus, by varying the metalevel KAs, we can study dif-
ferent types of situated systems and determine which are
best suited for which problem domains.

The question remains as to how to invoke the met-
alevel KAs and how to ensure their execution as appro-
priate. We look at this problem in the next section.

4 Invoking MetaLevel Procedures

Our aim in designing PRS was to hardwire as little as
possible into the interpreter; i.e., to make it as simple as

It is important to note that these include beliefs goals,
and intentions toward various properties of the system state,
such as the number of applicable KAs at the current time
point, the success or otherwise of a particular KA instance,
the ordering of the intention structure, or the status of some
specific intention.

possible. This provides us with the potential to inves-
tigate many different types of agents simply by varying
the default decision procedures and the metalevel KAs.

The main loop of the system interpreter determines
which KAs are applicable and chooses which to place on
the intention structure. It can be viewed as the topmost
metalevel KA; it is the final arbiter of which KAs reach
the intention structure and thus which can be executed.

The major problem is how to allow KAs to be delib-
erated upon by other [metalevel] KAs and how to place
the chosen ones on the intention structure. The basis
of our approach is to allow the main interpreter loop to
place at most one KA on the intention structure and to
require it be placed at the root of that structure.

At first sight, this seems unduly restrictive—one often
wants to attend to more than one task, and one often
wants to order these tasks for later execution rather than
have them executed immediately (which placing at the
root of the intention structure entails). The way around
this problem lies in the metalevel KAs: these are the
means by which one can place multiple intentions on the
intention structure and order them, as one pleases.

The next problem is how to actually invoke metalevel
KAs. The difficulty is that, while some of the invocation
conditions of metalevel KAs will be known at the begin-
ning of each selection cycle, others (such as the number
of KAs applicable at a given moment) can only be de-
termined part way through this cycle. The way we solve
this problem is to allow the system to continue to reflect
on its changing beliefs about its own internal state within
a single cycle of the interpreter, breaking out of this self
reflection only when the process of KA activation ceases.

Figure 1 shows a simplified version of the main in-
terpreter loop. Its purpose is to select a KA, place it
on the intention structure, and invoke its execution (of
which we have more to say later). The basic idea of
the algorithm is that the system continuously reflects
on itself until no new KAs are applicable. When this
state is reached, a KA is chosen at random from those
applicable at the previous reflection cycle. If there are
no KAs to choose from (i.e., the set of applicable KAs
is empty), the execution phase is invoked and the outer
cycle repeated. Otherwise, the chosen KA is placed on
the intention structure, the execution phase invoked, and
the outer cycle repeated.

To enable this scheme to work, the system has to de-
termine which KAs are applicable on each self-reflection
cycle. This information becomes a new system belief. In
particular, on each cycle, the system concludes a belief
about the set of KAs applicable on that cycle, expressed
as (soak x), where x is the list of applicable KAs. It is
then determined whether or not the acquisition of this
new belief (i.e., (soak x)), and possibly other events,
triggers any new [metalevel] KAs. If it does, the system
acquires a new belief about the applicability of these
metalevel KAs. In fact, it does so simply by updating
the belief (soak x) so that the list x now contains ex-
actly those metalevel KAs that are now applicable. (The
previous belief about applicable object-level KAs is re-
moved from the database and so, in a sense, is forgotten.
However, if needed, it can be captured in the variable

286

(loop ;Loop continuously.
do (loop for soak = (set-of-applicable-ka) ;Set soak to the set of applicable KAs

when (or previous-soak soak)
do (conclude-f act '(soak ,soak)) ;Post the soak metalevel fact

if (null soak) ;No new KAs are applicable
then if (null previous-soak)

;Jf previous soak is empty then either no KAs were relevant
;or there is nothing to do (no new goals).
then ;Continue to execute the intentions in the Intention Structure

(activate-intention-structure)
return ;Exit the reflective loop.

else;Else, intend one of the KAs selected randomly,
(intend (select-randomly previous-soak))
;Go and execute something in the intention structure,
(activate-intention-structure)
;Set previous-soak to nil
(setq previous-soak nil)
return) ;Exit the reflective loop

else (setq previous-soak soak)) ;Swap previous-soak and soak
do (get-new-facts)) ;Get any new facts generated by metalevel matching

(get-new-f acts-goals-messages)) ;Get any new messages, goals or facts

Figure 1: KA and Intention Selection in PRS

bindings of the invoked metalevel KAs.)
As PRS places no restrictions upon the invocation con-

ditions of metalevel KAs, it is quite possible that more
than one metalevel KA will be invoked at this stage. If
this happens, we shall now be left with the problem of
deciding which of these metalevel KAs to invoke. There
are a number of possible solutions to this problem. One
would be simply to select one of the metalevel KAs at
random, on the assumption that all are equally good
at making the decision about which object-level KAs
should be invoked. Another alternative would be to pre-
assign priorities to the metalevel KAs and to invoke the
one with the highest priority. However, in keeping with
our aim of providing maximum flexibility, the solution
we chose to adopt is to allow further metalevel KAs to
operate on these lower-level metaKAs in the same way
that the lower-level metaKAs operated on the object-
level KAs.

The process of invoking metalevel KAs is thus contin-
ued until no further KAs are triggered. At that point,
there may still be a set of applicable KAs from which
to choose. It is then, and only then (i.e., only after fail-
ing to find any more applicable metalevel KAs), that we
select one of these KAs at random.

Thus it is seen that, when more than one KA is ap-
plicable, and in the absence of any information about
what is best to do, the system interpreter defaults to se-
lecting one of these KAs at random. With no metalevel
KAs, the system would thus randomly select one of the
applicable object-level KAs. However, one usually pro-
vides metalevel KAs to help make an informed choice
about the object level KAs. The applicable metalevel
KAs themselves are subject to the same default action
(i.e., one will be randomly selected) unless there are yet
other metalevel KAs available to make a choice among
them. In the end, at some level in the meta-hierarchy,
the default action will be taken.

Once selected, the chosen KAs must be inserted into

the intention structure. If a selected KA arose clue to an
external goal or a new belief, it will be inserted into the
intention structure as a new intention at the root of the
structure. For example, this will be the case for any met-
alevel KA that is invoked to decide among some set of
applicable lower-level KAs. Otherwise, the KA instance
must have arisen as a result of some subgoal of some
existing intention, and will be "grown" (i.e., attached)
as a subKA of that intention. Finally, we are left with
the execution phase. This is relatively straightforward.3

First, an intention at one of the (possibly multiple) roots
of the intention structure is selected for further execu-
tion. The next step ofthat intention will comprise either
a primitive action or one or more unelaborated subgoals.
If the former, the action is directly initiated; if the latter,
these subgoals are posted as new goals of the system.

While we have focussed above on metalevel KAs that
react to changes in the type or number of applicable KAs,
other beliefs about the environment or the internal sys-
tem state can trigger other kinds of metalevel KAs. For
example, beliefs about changing intentions could trigger
metalevel KAs to reorder the intention structure, or be-
liefs about failed goals could trigger a metalevel KA to
deliberate on the utility of reattempting the goal.

5 Measures of Performance

Definitions of real-time systems revolve around the no-
tion of response time. For example, Marsh and Green-
wood [Marsh and Greenwood, 1986] define a real-time
system as one that is "predictably fast enough for use by
the process being serviced" and O'Reilly and Cromarty
[O'Reilly and Cromarty, 1985] require that "there is a
strict time limit by which the system must have produced

3In fact, the execution algorithm is somewhat more com-
plicated than we indicate here. For example, it needs to han-
dle in different ways the failure and success of attempting to
accomplish its goals, what goals need to be reestablished, etc.

287

a response, regardless of the algorithm employed." This
measure is most important in real-time applications; if
events are not handled in a timely fashion, the operation
can go out of control.

Response time is the time the system takes to recog-
nize and respond to an external event. Thus, a bound on
reaction time (that is, the ability of a system to recognize
or notice changes in its environment) is a prerequisite
for providing a bound on response time. PRS has been
designed to operate under a well-defined measure of re-
activity. Because the interpreter continuously attempts
to match KAs with any newly acquired beliefs or goals,
the system is able to notice newly applicable KAs after
every primitive action it takes.

Some useful performance metrics for evaluating the
performance of real-time situated systems are provided
by Dodhiawala[Dodhiawala et al., 1989]. Not all of these
are of relevance in the applications to which PRS has so
far been applied, but the following five probes provide
important measures of performance:
1. sending-iime(e) is the time at which an event e is
signalled;
2. receiving-time'(e) is the time at which e is received by
the system;
3. begm-ack-lime(e) is the time at which e is noticed by
the system;
A. end-soak-time-cycle(e) is the time at which all the
events occurring in the same cycle as e have been noticed
and the corresponding set of applicable KAs determined;
5. event-execution-ttme(e) is the time at which the first
action following KA selection has terminated;
6. event-response-time(e) is the time at which the execu-
tion of all the procedures initiated by e have terminated.

Then we defined:
Rl = receiving-time(e) - sending-time(e),
R2 = begin-ack-time(e) - receivmg-time(e),
R3 = end-soak-time-cycle(e) - begin-ack-time(e)',
RA = event-execution-time(e) - end-soak-time-cycle(e),
Rx> = event-response-time(e) - sending-time(e),

Assuming a bounded number of events occurs in any
time interval, we can prove that Rl, R2, R3, and RA
are bounded. Rl is the time used to communicate the
event to the system and is bounded by definition of the
communication function (independently of PRS). The
operations performed in i?3 and RA form a cycle, so R2
is actually bounded by #3 + RA. So if we prove that R2>
and RA are bounded, we can conclude that R2 is also
bounded.

RA is bounded by the maximum time required to exe-
cute the longest primitive action in PRS or the time re-
quired to post a goal. The time to post a goal is bounded
by definition and is negligible. Therefore, the bound on
RA is determined by the choice of primitive actions and
thus by the user. As the user can choose any level of
granularity he or she desires, this bound can be made
arbitrarily small. (In the application described below, a
maximum action execution time of one second was found
to be quite satisfactory, though other applications may
well require finer granularity.)

A3 is the time used by the system to parse the invo-
cation part and the context part of relevant KAs. As we

have a bounded number of events and a bounded number
of KAs, we can guarantee that RZ is bounded4.

To estimate the bound on R2, let p be an upper bound
on the execution times of the primitive actions that the
system is capable of performing. Let's also assume that
n is an upper bound on the number of events that can
occur in unit time, and that the PRS interpreter takes
at most time t to select the set of KAs applicable to
each event occurrence. The maximum reactivity delay,
AR, is then given by: AR = p + y x t, where y is the
maximum number of events that can occur during the
reaction interval. We have y = AR X n and thus obtain
AR = p/(l - nt) where we assume that t < \/n. This
means that, provided the number of events that occur
in unit time is less than 1/t, PRS will notice every event
that occurs [that is capable of triggering some KA] and
is guaranteed to do so within a time interval AR.

Because metalevel procedures are treated just like any
other, they too are subject to being interrupted after ev-
ery primitive metalevel action. Thus, reactivity is guar-
anteed even when the system is choosing between alter-
native courses of action or performing deliberations of
arbitrary complexity.

R5 is the time one would like most to see bounded.
However, as the time taken to respond to an event can
be arbitrarily large, no such guarantee can be given in
general. Let's consider this in a little more detail.

Having reacted to some event, it is necessary for the
system to respond to this event by performing some ap-
propriate action. As the system can be performing other
tasks at the time the critical event is observed, a choice
has to be made concerning the possible termination or
suspension of those tasks while the critical event is han-
dled. Furthermore, if there are a number of different
ways in which the event can be handled, it might be
necessary to choose among those alternatives.

Such choices can be made by appropriate metalevel
KAs. However, in general, these decision procedures
may take an unbounded amount of time to reach a de-
cision. There are two possible ways to overcome this
problem. One is to require that all decision procedures
complete in a bounded time. In many domains, this pro-
vides adequate decision-making capability and yields a
bound on response time. As a particular case, it is not
difficult to construct metalevel KAs that yield the same
functionalities as Ladder Logic5.

Alternatively, one could construct a special metalevel
KA to act as a task scheduler. This KA would have
the capability to preempt all executing decision tasks
(and any other tasks for that matter) within a bounded
time and begin execution of an event handler. It could
utilize whatever information was available (such as any
incremental decisions made by anytime decision algo-
rithms [Dean and Boddy, 1988]) to select the most appro-
priate event handler and the manner in which to suspend
or terminate other tasks. It could also take into account

As selection of KAs does not involve any general deduc-
tion beyond unification and evaluation of a boolean expres-
sion, an upper bound does indeed exist.

Ladder Logic is one of the most widely used program
languages for real-time systems.

288

the different constraints on response time that may exist
in different situations. The only requirement is that this
KA have a guaranteed upper bound on execution time.

In summary, PRS is guaranteed to react to critical
events in a bounded time interval. With appropriate
metalevel and application-level KAs, it is also possible
to guarantee a bound on response time.

6 Experimentation
As mentioned earlier, one of the valuable features of this
design is the ability to realize different types of situated
system by varying the default decision rules and the met-
alevel procedures. In particular, one could then exam-
ine the behavioral properties of different types of agents
in different environments. We have begun this process
by creating one particular type of agent [Georgeff and
Ingrand, 1989] and applying it to various real-time ap-
plications. In this section, we briefly describe one such
application and provide statistics on the performance of
the system.

The application domain we choose for experimenta-
tion is the task of malfunction handling for the Reaction
Control System (RCS) of NASA's space shuttle. This
is a relatively complex propulsion system that is used to
control the attitude of the shuttle. A wide range of prob-
lems can occur in this system and, in a normal shuttle
mission, no less than four mission controllers are contin-
uously monitoring and controlling its operation.

Two PRS modules (agents) were used for the applica-
tion. The resulting system was able to detect and recover
from most of the possible malfunctions of the RCS, in-
cluding sensor faults, leaking components, and regulator
and jet failures. It is presently under testing at NASA's
Johnson Space Center.

The following performance measures have been made
on a SUN Sparestation, with 20 Mega Bytes of central
memory, running Sun Common Lisp, development Envi-
ronment 4.0.0 Beta-0, Sun4 Version for SunOS 4.0. The
code was not optimized by the compiler, and the probing
itself affects system performance (the probes defined in
section 5 are activated for every event and goal posted
by PRS).

For the series of tests given below, we ran the following
RCS scenarios: a pressure transducer failure, a regulator
failure with both regulators open, and a leaking mani-
fold. This set of scenarios exercises most of the major
features of PRS and is representative of the kind of prob-
lems occurring in the RCS system. The whole test set
took approximately six minutes to run.

Figure 2 shows some statistics on the run. The %
measurement indicates how busy the PRS agent were.
During the six minutes, RCS ran for 31 seconds, and
INTERFACE for 2 minutes 31 seconds. Clearly, each
PRS module has plenty of time to work on other prob-
lems. (On this machine, with this configuration, this
application can be run three times faster that real time
without any difficulty). The number of facts, metalevel
facts, goals and messages indicate the flow of input to
the two PRS modules. We have separated metalevel
facts, such as (soak . . .), and application facts. The
statistics on the goals and messages refer only to the

Name RCS INTERFACE
% 8.07 36.33
Facts 20 49
Met a-Facts 357 2364
Goals 202 1257
Messages 66 355
Relevant-KAs 923 8359
Applicable-KAs 105 1108
Intentions 6 14
Satisfied Goals in DB 28 164
Total Run Time 00:00:31 00:02:29

Figure 2: Performance Statistics in the RCS application

RCS
Number of facts Average Distribution Maximum

Rl
R2
R3

486
486
7

3.04
2.55

2222.37

6.34
4.38

2630.15

42.
36.

6863.
Number of goals Average Distribution Maximum

Rl
R2
RZ

202
202
186

0.57
2.16

341.21

2.03
3.77

783.54

21.
26.

5983.
INTERFACE

Number of facts Average Distribution Maximum

Rl
R2
A3

2982
2982
124

4.23
5.84

441.20

13.14
10.67

479.65

94.
52.

2355.
Number of goals Average Distribution Maximum

Rl
R2
R3

1257
1257
1165

0.42
1.88

33.11

1.05
2.23

115.06

21.
41.

1494.

Average= EL^i

Distribution EL^ -*)2 _EL. and

Maximum = max(ii,.. ., xn)

Figure 3: Rl, R2 and R3 for the RCS application

application level. Relevant-KAs represents the number
of relevant KAs (selected by the indexing mechanism as
being potentially applicable) and Applicable-KAs repre-
sents the number of KAs that were actually applicable.
Intentions indicates the number of intentions the PRS
agent has formed, and Satisfied Goals in DB represents
the number of goals that were directly satisfied in the
database (and thus did not require KA activation).

Figure 3 shows the values of Rl, R2 and A3 (see Sec-
tion 5). All the values are given in sixtieths of a second.
The average Rl are usually very low (a few sixtieths
of a second), and even the maximum values stay under
one second . R2 is also quite small and never exceeds
one second. The values of iJ3, which represents response
time, are very difficult to interpret. This is because many
of the procedures executed in the RCS application are
supposed to "wait" for certain external events to occur.

The high maximum value can be explained by the quan-
tum (300 ms) of the scheduler used under SUN lisp 4.0. That
means that if both PRS modules are runnable, one will have
to wait at least 300 ms before getting a chance to run.

289

For example, certain procedures require the system to
wait for the pressure to drop under 300 psi, or to wait
lor the astronauts to flip a switch.' Nevertheless, the
experience and the evaluation of the system by mission
controllers shows that PRS executes its procedures much
faster than either an astronaut or a mission controller
could. Moreover, in this application, metalevel KAs have
been written to ensure that the most important proce-
dures get executed first, thus guaranteeing that the re-
sponse time is shortest for the most urgent procedure
[Georgeff and Ingrand, 1990b].

7 Review of related works

Some researchers have sought to deal with resource
limitations in dynamic environments by considering all
contingencies at design time. This approach obviates
the need for explicit reasoning at execution time: all
such reasoning is effectively compiled into the struc-
ture of the executing program [Agre and Arge, 1987;
Brooks, 1986; Firby, 1989; Rosenschein and Kaelbling,
1986; Kaelbling, 1987]. It is very likely that these
techniques are optimal in certain applications. How-
ever, many researchers believe that, in complex do-
mains, the knowledge-compilation approach will lead to
brittle, inflexible systems if used without any real-time
deliberative processing [D'Ambrosio and Fehling, 1989;
Doyle, 1988; Pollock, 1989].

Blackboard architectures have been used in cer-
tain systems that are intended to perform real-time
behavior[Dodhia\vala et al, 1989; Hayes-Roth et al.,
1989]. They use a collection of knowledge sources (tasks)
sharing a common data structure. There are a number
of interesting features of these systems that could be im-
portant in providing fast response in real-time domains
that do not require significant amounts of deliberation.
However, in current blackboard systems, the actions car-
ried out by the system are not interruptible. This poses
serious problems for maintaining realistic bounds on re-
action time whenever complex or lengthy tasks need to
be performed [Georgeff and Lansky, 1986]. Keeping the
blackboard consistent when knowledge sources are asyn-
chronous is also a serious problem that has yet to be
addressed. In addition, most blackboard architectures
use an agenda of pending tasks that are run serially. The
problem is that the agenda manager (i.e., the component
that deliberates on what tasks to execute, how to exe-
cute them, and when to execute them) is invoked in each
cycle and for each task present on the agenda. Thus it
runs with considerable overhead, again seriously restrict-
ing the real-time capabilities of the system. Moreover,
it is difficult to include any lengthy deliberation proce-
dures and there are no mechanisms for reasoning about
the deliberation processes themselves.

Schemer-II [Fehling and Wilber, 1989] is in some way
similar to PRS, but utilizes specific managers and han-
dlers (deliberation processes) to control the system. As
with the blackboard approach, these task handlers can-
not reason a.bout themselves. Consequently, the archi-

' These waits are asynchronous and do not block system
execution.

tecture is not as general or flexible as PRS. However, it
is an interesting approach and may be optimal for some
real-time domains.

8 Conclusion and Future Developments

In this paper, we have attempted to show how the uni-
form knowledge representation for both application-level
knowdedge and metalevel knowledge, the default decision
rules, and the algorithm used for handling metalevel pro-
cedures provides a good framework for managing delib-
eration and reasoning in real-time environments. We
have presented some results regarding the real-time per-
formance of the system wdien used in a real application
(RCS), and briefly reviewed some related works.

Although we have presented an architecture that sup-
ports real-time deliberation and reasoning, we have so
far not investigated how different default decisions and
different metalevel strategies affect system behavior; nor
have we examined sufficient real-time domains to deter-
mine which kind of situated system best suits which kind
of domain. The current RCS application used a set of de-
fault decision rules and metalevel procedures that proved
to be particularly successful in that domain. While we
believe these to be of wide applicability, that conjecture
has yet to be tested.

Of particular interest would be to incorporate as met-
alevel procedures various algorithms that have recently
been proposed for deliberating in real-time environ-
ments. These include the work of Whitehair and Lesser
on approximate reasoning [Lesser et al., 1989], Dean
and Boddy's work in anytime algorithms [Dean and
Boddy, 1988], and the work of a number of researchers
[Agogino and Ramamurthi, 1989; Horvitz el al., 1988;
Russell and Wefald, 1989] in decision-analysis tech-
niques.

We intend to explore some of these issues in our fu-
ture research. In particular, by varying metalevel strate-
gies, we aim to experiment with different types of system
(such as the IRMA agent architecture [Bratman et al.,
1988]) in different kinds of environments, thus leading
to a better understanding of situated systems and agent
rationality.

References

[Agogino and Ramamurthi, 1989] A. M. Agogino and
K. Ramamurthi. Real time reasoning about time con-
straints and model precision in complex distributed
mechanical systems. In Proceedings of the AAAI Sym-
posium on Limited Rationality, pages 96-100, Stan-
ford, California, 1989.

[Agre and Arge, 1987] P. E. Agre and D. Arge. Pengi:
An implementation of a theory of activity. In Proceed-
ings of the National Conference on Artificial Intelli-
gence, pages 268-272, Seattle, Washington, 1987.

[Bratman et al, 1988] M. E. Bratman, D. J. Israel, and
M. E. Pollack. Plans and resource-bounded practical
reasoning. Computation Intelligence, 4(4), 1988.

290

[Brooks, 1986] R. A. Brooks. A robust, layered control
system for a mobile robot. IEEE Journal of Robotics
and Automation, pages 14-23, 1986.

[D'Ambrosio and Fehling, 1989]
B. D'Ambrosio and M. Fehling. Resource bounded-
agents in an uncertain world. In Proceedings of the
AAAI Symposium on Limited Rationality, pages 13-
17, Stanford, California, 1989.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An
analysis of time-dependent planning. In Proceedings
of the National Conference on Artificial Intelligence,
pages 49-54, Saint Paul, Minnesota, 1988.

[Dodhiawala ef al., 1989] R. Dodhiawala, N. S. Sridha-
ran, P. Raulefs, and C. Pickering. Real-time al sys-
tems: A definition and an architecture. In Proceedings
of the International Joint Conference on Artificial In-
telligence, pages 256-261, Detroit, Michigan, U.S.A,
August 1989. International Joint Conference on Arti-
ficial Intelligence.

[Doyle, 1988] J. Doyle. Artificial intelligence and ra-
tional self-government. Technical Report CS-88-124,
Carnegie Mellon University, Pittsburgh, Pa., 1988.

[Fehling and Wilber, 1989] M. R. Fehling and B. M.
Wilber. Schemer-II: An architecture for reflective,
resource-bounded problem solving. Technical Re-
port 837-89-30, Rockwell International Science Cen-
ter, Palo Alto Laboratory, Palo Alto, California, 1989.

[Firby, 1989] R. James Firby. Adaptative Execution in
Complex Dynamic Worlds. PhD thesis, Yale Univer-
sity, Department of Computer Science, Yale Univer-
sity, May 1989.

[Georgeff and Ingrand, 1989] M. P. Georgeff and F. F.
Ingrand. Decision-making in an embedded reasoning
system. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, Detroit,
Michigan, 1989.

[Georgeff and Ingrand, 1990a] M. P. Georgeff and F. F.
Ingrand. Real-time reasoning: The monitoring and
control of spacecraft systems. In Proceedings of the
Sixth IEEE Conference on Artificial Intelligence Ap-
plications, Santa Barbara, California, March 1990.

[Georgeff and Ingrand, 1990b] M. P. Georgeff and F. F.
Ingrand. Research, on procedural reasoning systems.
Final Report, Phase 2, for NASA Ames Research
Center, Moffet Field, California, Artificial Intelligence
Center, SRI International, Menlo Park, California,
March 1990.

[Georgeff and Lansky, 1986] M. P. Georgeff and A. L.
Lansky. Procedural knowledge. Proceedings of the
IEEE Special Issue on Knoiuledge Representation,
74:1383-1398, 1986.

[Hayes-Roth et al, 1989] B. Hayes-Roth, R. Washing-
ton, R. Hewett, M. Hewett, and A. Seiver. Intelli-
gent monitoring and control. In Proceedings of the
International Joint Conference on Artificial Intelli-
gence, pages 243-249, Detroit, Michigan, U.S.A, Au-
gust 1989. International Joint Conference on Artificial
Intelligence.

[Hayes-Roth, 1989] B. Hayes-Roth. Architectural fouda-
tions for real-time performance in intelligent agents.
Technical Report KSL 89-63, Knowledge Systems
Laboratory, Department of Computer Science, Stan-
ford University, Stanford, California 94305, December
1989.

[Horvitz et al., 1988] E. J. Horvitz, J. S. Breese, and
M. Henrion. Decision theory in expert systems and
artificial intelligence. Journal of Approximate Rea-
soning, 2:247-302, 1988.

[Kaelbling, 1987] L. P. Kaelbling. An architecture for
intelligent reactive systems. In Reasoning about Ac-
tions and Plans: Proceedings of the 1986 Workshop,
pages 395-410. Morgan Kaufmann, Los Altos, Cali-
fornia, 1987.

[Lesser et al, 1989] V. R. Lesser, D. D. Corkill, R. C.
Whitehall-, and J. A. Hernandez. Focus of control
through goal relationships. In Proceedings of the
International Joint Conference on Artificial Intelli-
gence, pa.ges 497-503, Detroit, Michigan, U.S.A. Au-
gust 1989. International Joint Conference on Artificial
Intelligence.

[Marsh and Greenwood, 1986] J. Marsh and J. Green-
wood. Real-time AI: Software architecture issues. In
Proceedings of the IEEE National Aerospace and Elec-
tronics Conference, pages 67-77, Washington, DC,
1986.

[O'Reilly and Cromarty, 1985] C. A. O'Reilly and A. S.
Cromarty. "Fast" is not "real-time" in designing effec-
tive real-time AI systems. In Applications of Artificial
Intelligence II, pages 249-257, Bellingham, Washing-
ton, 1985. Int. Soc. of Optical Engineering.

[Pollock, 1989] J. L. Pollock. Oscar: A general theory
of rationality. In Proceedings of the AAAI Symposium
on Limited Rationality, pages 96-100, Stanford, Cali-
fornia, 1989.

[Rao and Georgeff, 1990] A. S. Rao and M. P. Georgeff.
Intention and rational commitment. Technical Re-
port 8, Australian AI Institute, Carlton, Australia,
1990.

[Rosenschein and Kaelbling, 1986] S. J. Rosenschein
and L. P. Kaelbling. The synthesis of digital machines
with provable epistemic properties. In Proceedings of
the Conference on Theoretical Aspects of Reasoning
about Knowledge, pages 83-98, 1986.

[Russell and Wefald, 1989] S. Russell and E. Wefald.
Principles of metareasoning. In Proceedings of
the First International Conference on Principles of
Knowledge Representation and Reasoning, Toronto,
1989.

291

An Architecture for Coordinating Planning, Sensing, and Action

Reid Simmons
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
reids@cs.cmu.edu

Abstract

To handle multiple, complex tasks in dynamic,
uncertain environments, robot systems need to combine
planning and reactive behaviors. The Task Control
Architecture (TCA) provides facilities for extending the
classical planning framework to include capabilities for
interleaving planning and execution, monitoring, error
recovery, and handling multiple tasks. To date, TCA has
been used to coordinate three mobile robot systems at
CMU. The paper focuses on why these capabilities are
necessary and how they are realized using TCA. We also
describe future research goals for incrementally learning
the capabilities, based on the robot's experiences.

1. Introduction
There has been much discussion recently on the utility

of plans and planning for intelligent agents that interact
with the real world (e.g., [Agre 87, Chapman
90, Ginsberg 90, Kaelbling 86]). The "reactive" camp
contends that long-range plans are useless in dealing with
dynamic, uncertain domains. The "planning" camp
contends that complex tasks are difficult to perform
without reasoning about interactions between subtasks.

Both frameworks have advantages. Plans provide a
natural language (goal/subgoal hierarchies) for describing
complex tasks. In particular, they enable planners to
compensate for interactions between subtasks by
coordinating their execution. An advantage of the
reactive framework is its attentiveness to change, which is
clearly important in dynamic environments. This
capability, however, can also be achieved within a
planning framework. In particular, the framework must
be extended to allow plans to be executed before they are
wholly specified, and must facilitate monitoring for and
adapting to changes in the environment.

The Task Control Architecture (TCA) was developed
to explore combining reactivity within a planning
framework [Lin 89a, Simmons 90a]. TCA was designed
to facilitate building and controlling mobile robot systems
that have multiple, complex tasks, limited sensors relative
to their tasks, and that operate in dynamic, but relatively
benign, environments.

TCA consists of a task-independent central control
process and utilities for communicating between the
central control and task-specific processes. More
importantly, TCA provides facilities for maintaining,

scheduling and executing hierarchical plans, for
coordinating concurrent monitors and exception handling
strategies, and for managing physical and computational
resources. The facilities were designed by analyzing the
requirements of several mobile robot systems (e.g., [Lin
89b]). We noted several important capabilities needed to
extend the planning framework to achieve the necessary
reactivity. These capabilities include:

• Interleaving Planning and Execution: While the
world is in general too complex and uncertain to
plan down to primitive actions, there are often
times when advance planning is desirable, or even
necessary. Robot systems need flexibility in
specifying when to plan and when to act. This
flexibility can be achieved in a hierarchical
planning framework by placing temporal
constraints on the planning and execution of tasks.

• Detecting Changes: Reacting to change is basic to
survival. In rich environments, however, it is often
difficult to continually check all relevant features.
To manage with limited sensors, systems must
selectively choose which features to monitor, based
on their current tasks and environment

• Error Recovery: Purely reactive systems do not do
error recovery, since they treat each situation
afresh. Planning systems, however, must notice
when plans are going astray and modify them
accordingly. In addition, reflexive behaviors
should be provided to safeguard the robots.

• Coordinating Multiple Tasks: Unexpected
opportunities and contingencies may give rise to
multiple tasks. Robot systems must decide if tasks
can occur concurrendy and, if not, in which
contexts one task has priority over another. In
addition, they should be able to interrupt lower-
priority tasks and smoothly transition to new ones.

The above capabilities have all been implemented
using the facilities provided by TCA. An important
design feature of TCA is that the capabilities can be added
incrementally. The idea is to build basic behaviors first,
and then add concurrency, monitors, error recovery
procedures, etc. For example, our methodology is to first
develop systems having sequential sense-plan-act cycles,
then use the TCA facilities to add concurrency. Similarly,
we first implement behaviors that handle "normal"
situations, then add monitors and error recovery
procedures for handling the exceptions. Although these
extensions are currently encoded manually, our research

292

1
program is geared towards automatically learning
strategies that increase the performance and competence
of the robots [Mitchell 90, Tan 90].

To date, we have used TCA in three mobile robot
systems: the CMU Planetary Rover [Bares 89], a single
leg of the rover [Krotkov 90], and an indoor mobile
manipulator [Lin 89a]. The Planetary Rover project is
developing the Ambler, a novel six-legged robot, to be
used for navigation, exploration, and sample acquisition
in rugged environments. To demonstrate competence in
rough-terrain walking, we built a prototype leg of the
Ambler (Figure 1) and a software system for
autonomously walking the leg over rough terrain.

Carriagi Bail Screw Actuator-

<±s

Figure 1: The Single-Leg Testbed

The mobile manipulator testbed is based on a
Heathkit/Zenith Hero 2000. The robot operates in a
peopled, unstructured laboratory and nearby corridors.
The system is currently able to perform a variety of
navigation and manipulation tasks. Its main tasks are to
identify and collect cups from the floor, retrieve printer
output, fetch and deliver objects from workstations, avoid
collisions with static and dynamic obstacles, and recharge
when necessary. Within the lab, navigation is performed
by following a path planned using a 2D map obtained
from an overhead camera. To traverse the corridors, the
system uses local sonar navigation techniques.

2. The Task Control Architecture
A robot system built using TCA consists of task-

specific processes, called modules, and a general-purpose
central control module. Our testbeds all use the same
central control module, but have different, robot-specific
modules for controlling the robot, acquiring and
processing images, and planning and error recovery
(Figure 2). The modules communicate with one another
by passing messages through the central control, which

routes them to be handled by the appropriate modules.
Routing information is determined dynamically when
modules connect with the central control: modules
register with TCA message names, descriptions of the
data formats associated with the messages, and the names
of procedures for handling the messages.

AMBLER LEG

Controller

Gait
Planner

Leg Recovery
Planner

Central
Control

Rotting
Tab!«

Local
Terrain Map

Manager

Image Sensing
Manager

'■

LASER
SCANNER Human

Figure 2: Modules for the Single-Leg Walking System

The facilities of TCA are built around the framework of
hierarchical task trees. A task tree encodes parent/child
relationships between messages: for each message sent,
TCA records which message handler issued it. The non-
leaf nodes in the task tree represent subgoals and
monitors; the leaf nodes are sensor queries and executable
commands (Figure 3).

Tasks are coordinated by specifying temporal
constraints between nodes in the tree. For example, a
module can constrain one subtask to follow another
sequentially. For non-leaf nodes (goals and monitors),
this sequential-achievement constraint implies that all the
leaf nodes of the first task must be executed before the
second task can begin. In Figure 3, for instance, the
sequential-achievement constraint between goals B and C
implies that commands E and F must be completed before
command G can be scheduled for execution. Note,
however, that the lack of constraint between E and F
implies that they can be executed concurrently.

The delay-planning constraint indicates that the
subsequent goal should not be handled until the previous
task has been completely achieved. Without this
constraint, TCA is free to create a plan (by expanding the
goal into subgoals), although the plan will not, of course,
be executed until the previous task is completed. For
example, the delay-planning constraint between goals C
and D indicates that D should not be expanded until
commands G, I, and J are all executed.

TCA also provides facilities for examining the structure
of the task trees and modifying them by killing subtrees,
changing temporal constraints, and adding new nodes to
the tree. These facilities are useful for error recovery,

293

egend:
M3uoryj / Monitor \

UWwjjflfV Sequential- Achievement
Constraint

»"■■<Ss». Delay-Planning Constraint

Figure 3: A TCA Task Tree

since they enable robot systems to patch plans.
Facilities are provided for specifying and scheduling

monitors. The start time of a monitor can be constrained
in relationship to another task (e.g., in Figure 3, the
monitor PM begins after D is achieved), and it can be set
to run for a specified duration (e.g., 3 minutes), or until a
specified task is completed.

TCA supports polling and interrupt-driven monitors,
both of which are specified by a condition query and an
action message (Figure 3). For polling monitors, the
central control module issues the condition query at a
fixed frequency. If the condition holds, the action
message is sent. The action message typically is used to
replan by modifying the task tree. For example, we use a
polling monitor that checks the Hero's battery every 20
seconds and inserts a "recharge" task if the battery level is
low.

For interrupt-driven monitors, TCA informs modules
when to set up new monitors and when to cancel them.
The modules have responsibility for informing TCA
whenever the monitor's condition holds, at which point
TCA will issue the associated action message. For
example, whenever an image is acquired, the Hero's
perception module scans the image and informs TCA if
new cups are detected.

Context-dependent exception handling is supported by
TCA. Modules can associate exception handlers with
nodes in the task tree. When an exception message is
issued, TCA searches up the tree to find a handler for that
exception. If the handler cannot deal with the situation, it
reissues the exception and the search continues up the
tree. If the root node is reached, TCA simply terminates
the task.

Facilities are also provided for defining and managing
resources. A TCA resource is a collection of message
handlers, together with a capacity. TCA ensures that the
resource capacity is never exceeded, queuing messages if
necessary until the resource becomes available. The
resource facility can also be used for synchronization. A
module can lock a resource, which prevents the resource
from handling messages until it is unlocked. For

example, a concurrent vision module might want to
ensure that images are acquired while the robot is
stationary. This can be accomplished by locking the
resource for the robot's actuators before acquiring an
image.

3. Capabilities
To cope with dynamic and uncertain worlds, the

classical planning framework must be extended to include
several new capabilities. These capabilities include 1)
interleaving planning and execution, to enable partially
specified plans to be executed, 2) using monitors to detect
environmental changes, 3) recovering from execution
errors (plan failures), and 4) dealing with multiple tasks
when unexpected opportunities or contingencies arise.

The following sections describe these capabilities and
why they are needed to achieve reactivity within a
planning framework. Each section indicates how the
TCA facilities can be used to implement the capabilities.
We also present some research goals that are directed
towards having robot systems incrementally produce the
capabilities themselves, based on their experiences.

Interleaving Planning and Execution
In dynamic, uncertain domains, it is unreasonable to

have a planner specify plans down to the minutest detail
[Agre 87, Chapman 90]. Instead, it is often advocated to

use the environment to dictate actions [Brooks
86, Kaelbling 86]. The optimal strategy is probably some
combination of both: the system should plan to the limits
of its knowledge of the environment, but no further.

Rather than being antithetical to planning, this strategy
is actually well-suited to a framework based on
hierarchical decomposition and temporal constraints. The
idea is to treat the decomposition of a goal into subgoals
as an action in its own right Thus, planning can be
tightly controlled by adding temporal constraints between
planning and execution actions.

In TCA, for instance, the delay-planning constraint (see
Figure 3) can be used to coordinate planning and
execution. A purely reactive system can be implemented
by adding delay-planning constraints between every
subgoal. With more judicious application, one can
specify fairly arbitrary strategies for interleaving planning
and execution. For example, the Hero's cup-collection
task is expanded into four sequentially executed subtasks:
navigate to the cup; pick it up; navigate to the trashbin;
deposit the cup. A delay-planning constraint is added
between the first two subtasks, since the system cannot
plan how to grasp the cup until it gets near enough to
make measurements with its wrist sonar. In addition, a
constraint is added that the second navigation task cannot
be planned until after the first. With these constraints, the
Hero uses its overhead vision map to plan a path from the
cup to the trashbin concurrently with picking up the cup.
The plan is cached by TCA until the cup is grasped, at
which point it is executed.

294

We also explored concurrency in the single-leg walking
system. After developing and debugging the system
using sequential planning and execution, several of the
delay-planning constraints were removed to enable the
system to execute one step while planning the next. In
addition, we added a constraint to prevent the planning
from getting too far ahead of execution, and used resource
locking to prevent the robot from moving during image
acquisition. The addition of concurrency increased
performance by over 30%, with only minor modifications
to the existing walking system [Simmons 90b].

Detecting Changes
The capability to detect changes in the environment is

obviously central to being reactive. While a simple
scheme is to continually monitor all relevant features
(e.g., [Brooks 86, Kaelbling 86]), this is not feasible for
robots with many tasks and limited sensors. In such
cases, monitors must be carefully selected and scheduled
(cf. [Firby 89, Noreils 89]).

TCA facilitates selective monitoring by providing
mechanisms for creating polling and interrupt-driven
monitors, and for synchronizing them with respect to
other tasks in the task tree. In addition, since the TCA
monitors run concurrently, a wide range of conditions can
be monitored without impeding the robot's main tasks.
For example, after the Hero system spots a new cup (and
until the cup is grasped) it monitors whether the cup
remains visible; after the cup is grasped, it periodically
checks whether the cup remains in its gripper.

Given the monitor facilities, the problem remains to
decide what to monitor, and how frequently. By
monitoring only selected conditions, the robot could miss
important changes. The challenge is to minimize that
possibility. One idea we are exploring is the use of
coarse-to-fine sensing strategies. For example, the Hero
system uses its coarse 2D vision map to find cup-like
regions. It then navigates near the object, and uses
multiple sonar readings to determine if the object is
actually the size and shape of a cup. In related work, this
strategy is being generalized by using inductive methods
to learn information-sensitive and cost-sensitive strategies
for classifying objects [Tan 90].

We are also developing methods for automatically
deriving the parameters of sensing strategies, such as the
polling frequency or sensor resolution. The idea is to
construct a causal explanation for why a sensing strategy
works, and then reason about the uncertainties in that
strategy. In monitoring the robot's battery, for example,
we must determine how often to poll the battery level and
the threshold for heading back to the charger. We can
construct an explanation (an equation) that relates the
polling frequency, monitor threshold, expected distance to
the charger, speed of the robot, and expected rate of
discharge. Since some of the terms are random variables,
we end up with an equation that enables us to trade off
probability of success (risk), polling frequency (sensor

utilization), and monitor threshold (urgency).

Error Recovery
Monitors can detect when the assumptions underlying a

plan are no longer valid (either the world changed, or the
plan was based on inaccurate information). Error
recovery strategies can then be employed to change the
plan to reflect reality. In general, they are quite
dependent on the current task and environment The TCA
exception handling facilities support context-dependent
error recovery by enabling different error handlers to be
associated with different nodes of the task tree.
Typically, errors are handled in a TCA-based system by
collecting information about the current environment,
analyzing the task tree, and then manipulating the task
tree by killing subtrees, adding nodes and temporal
constraints, and resending messages.

For example, Figure 4 illustrates part of the task tree
and associated exception handlers for the Hero's cup-
collection task. An "object in path" exception message is
first handled by EH1, which tries to plan a detour. If a
detour is found, a new Path Segment node is added
between Path Segmentl and Path Segmentl; this node
will then be expanded and executed, as usual. Otherwise,
EH2 tries to replace the current plan with a new path to
Cupl. If this fails, EH3 is invoked to terminate the task
by killing the subtree rooted at Collect Cupl.

EH3: (object in path) f£ollect Cupl
Terminate task v ^

EH2: (object in path) fGoNear Cupl
Replan path V.

EH1: (object in path)
Add detour

C Path
I Segmentl

z
Figure 4: Context-Dependent Error Recovery Strategies

TCA's use of centralized communication places an
upper limit on its reaction time. For more reflexive
behaviors, we implement routines within the controller
module that act to stabilize the robot if the sensors detect
anomalies, and then report the error via TCA (cf. [Miller
89]). In the single-leg testbed, for instance, the controller
monitors the force on the leg and stops the mechanism
immediately if slippage is detected. Similarly, on-board
routines check the Hero's wheel encoders and sonars
while it is moving. If a collision, or imminent collision, is
detected the robot reflexively stops and an exception
message is issued, which invokes the error recovery
strategies described above.

An alternative method is to use a debugging algorithm

295

to determine how to patch plans (e.g., [Hammond
89, Simmons 88]). While the debugging methodology
tends to be fairly general, the TCA method is more
efficient in finding applicable strategies. We are currently
working to combine the methods: the algorithms of
[Simmons 88] would be used to debug plans, which

would then be generalized and "compiled" into error
recovery strategies usable by TCA (cf. [Mitchell 90]).

Multiple Tasks
In addition to reacting to plan failures, robot systems

must handle changes in the environment that signal new
opportunities or contingencies, such as a new cup
appearing on the floor, or the battery getting low. These
new tasks should be coordinated with the current task(s)
in an intelligent manner.

A straightforward approach is to temporally order all
tasks based on their priorities. As with error recovery,
prioritization is often context dependent. For example,
we can prioritize two cup-collection tasks based on which
task ordering yields the shortest overall path length
(Figure 5). If we approximate path length by the straight-
line distance between objects, we can infer that the robot
should collect Cupl if:

^«Robot ~ ^Cupxl + lLoCCuP2
ILoo. Robot ^«cupal + ILoc, Cupl

Figure 5: Ordering Two Cup-Collection Tasks

A generalization of this strategy is to prioritize tasks by
estimating their relative costs and benefits (including
opportunity costs). We have begun developing specific
prioritization strategies for the Hero's tasks, and hope that
the effort will help us discover a general, yet efficient,
algorithm for context-dependent prioritization of tasks.

It is not always necessary to prioritize tasks, since tasks
can occur concurrently if the resources they use are
disjoint. For example, the Planetary Rover could
conceivably navigate and communicate with Earth
simultaneously. The TCA resource mechanism provides
an efficient method for detecting conflicting tasks:
contention occurs when the capacity of a resource is
exceeded. While our Hero system currently orders all
top-level tasks, we intend to explore alternative strategies

that prioritize tasks only if TCA detects resource
contention between their subtasks. Again, some
combination of strategies might be best: if the system
knows from prior experience that two tasks utilize
common resources, it can prioritize them immediately;
otherwise, it can wait until TCA detects contention.

4. Conclusions
This paper describes the Task Control Architecture, a

general-purpose framework plus set of utilities for
coordinating the planning, sensing, and action of mobile
robot systems. Hierarchical plans are central to TCA,
providing a natural and flexible foundation for handling
multiple, complex tasks. TCA provides facilities for 1)
creating and manipulating hierarchical plans (task trees
and temporal constraints), 2) specifying polling and
interrupt-driven monitors, 3) resource management, and
4) context-dependent exception handling.

We present several capabilities that must be added to
the classical planning framework in order to handle
uncertain and dynamic environments: interleaving
planning and execution, detecting changes, error
recovery, and coordinating multiple tasks. The first
capability enables robot systems to act on partially
specified plans, allowing them to plan in advance in spite
of uncertainty. The other three capabilities enable
systems to detect and intelligently handle plan failures,
unexpected opportunities and contingencies. The paper
focuses on how TCA supports the implementation and
coordination of the four capabilities.

TCA was designed to provide a framework for
combining deliberative and reactive behaviors. Its
demonstratable success with the Planetary Rover and
Mobile Manipulator projects is an encouraging indication
of its utility in coordinating complex behaviors. Our next
step is to automate the incremental addition of monitors,
error recovery strategies, and task prioritization, along the
directions outlined in the paper.

Acknowledgements

We thank the members of the Planetary Rover and
Mobile Manipulator projects for their efforts in designing
and implementing the robot systems, and their patience at
accepting frequent changes in TCA. This research is
supported by NASA under contract NAGW-1175.

References
[Agre 87] Agre, P.E., Chapman, D.

Pengi: An Implementation of a Theory
of Activity.

In Proc. ofAAAI-87, Pages 268-272.
Seattle, WA, 1987.

296

[Bares 89] Bares, J., et al.
Ambler: An Autonomous Rover for

Planetary Exploration.
In IEEE Computer, Vol. 22, No. 6,

1989.

[Brooks 86] Brooks, R.A.
A Robust Layered Control System for

a Mobile Robot.
In IEEE Journal of Robots and

Automation, vol. RA-2, no. 1,1986.

[Chapman 90] Chapman, D.
Penguins Can Make Cake.
In AI Magazine, Vol. 10, No. 4, Pages

45-50. Winter, 1990.

[Firby 89] Firby, RJ.
Adaptive Execution in Complex

Dynamic Worlds.
Technical Report YALEU/CSD/RR

#672, Yale University,
1989.

[Ginsberg 90] Ginsberg, M.
Universal Planning: An (Almost)

Universally Bad Idea.
In AI Magazine, Vol. 10, No. 4, Pages

45-50. Winter, 1990.

[Hammond 89] Hammond, K.
Case-Based Planning: Viewing

Planning as a Memory Task.
Academic Press, 1989.

[Kaelbling 86] Kaelbling, L.P.
An Architecture for Intelligent Reactive

Systems.
Technical Note 400, AI Center, SRI

International,
1986.

[Krotkov 90] Krotkov E., Simmons, R., Thorpe, C.
Single-Leg Walking with Integrated

Perception, Planning, and Control.
In Proc. of IEEE International

Workshop on Intelligent Robots
and Systems, Tsuchiura, Japan,
July, 1990.

[Lin 89a] Lin, L.J., Simmons, R., and Fedor, C.
Experience with a Task Control

Architecture for Mobile Robots.
Technical Report CMU-RI-89-29,

Robotics Institute, Carnegie Mellon
University,

1989.

[Lin 89b] Lin, L.J., Mitchell, T.M., Phillips, A,
and Simmons, R.
A Case Study in Autonomous Robot

Behavior.
Technical Report CMU-RI-89-1,

Robotics Institute, Carnegie Mellon
University,

1989.

[Miller 89] Miller, D.
Execution Monitoring for a Mobile

Robot System.
In Proc. ofSPIE Conference on

Intelligent Control, Society of
Photo-Optical Instrumentation
Engineers, Cambridge,
Massachusetts, 1989.

[Mitchell 90] Mitchell, T.M.
Becoming Increasingly Reactive.
In Proc. AAAI1990, Morgan-

Kaufmann, Cambridge, MA,
August, 1990.

[Noreils 89] Noreils, F. and Chatila, R.
Control of Mobile Robot Actions.
In Proc. IEEE Robotics and

Automation, Pages 701-712. 1989.

[Simmons 88] Simmons, R.
A Theory of Debugging Plans and

Interpretations.
In Proc. ofAAAI-88, St. Paul, MN,

1988.

[Simmons 90a] Simmons, R., Lin, L J., Fedor, C.
Autonomous Task Control for Mobile

Robots.
In Proc. of IEEE Symposium on

Intelligent Control, Philadelphia,
PA, September, 1990.

[Simmons 90b] Simmons, R.
Concurrent Planning and Execution

for a Walking Robot.
Technical Report CMU-RI-90-16,

Robotics Institute, Carnegie Mellon
University,

July, 1990.

[Tan 90] Tan, M.
CSL: A Cost-Sensitive Learning

System for Sensing and Grasping
Objects.

In Proc. 1990 IEEE International
Conference on Robotics and
Automation, IEEE, Cincinatti,
Ohio, May, 1990.

297

PLANNING & LEARNING

Integrating Memory and Search in Planning

John A. Allen* and Pat Langley
AI Research Branch, Mail Stop: 244-17

NASA Ames Research Center
Moffett Field, CA 94035

Abstract

In this paper we describe D/EDALUS, a case-
based planner that learns from successful
plans. The system uses a means-ends engine
to generate plans, treats the retrieval of opera-
tors from memory as a classification task, and
treats the update and organization of memory
as a conceptual clustering task. This combina-
tion of methods lets DAEDALUS use abstractions
to guide its planning when they are available,
fall back on specific cases when they are not,
and resort to traditional means-ends search on
completely novel problems.

1 Introduction

In general, planning is intractable in that no algorithm
can find solutions to all planning problems in all do-
mains (Chapman, 1987). Nevertheless, one can still aim
for general methods that can solve realistic planning
problems in many situations. Researchers have explored
several techniques, such as hierarchical planning (Sacer-
doti, 1974), in an attempt to reduce the combinatorial
search that plagues planning problems. Although these
methods constrain search, they also require the imple-
menter to introduce domain-dependent knowledge, and
acquiring and coding such knowledge is difficult. This
suggests that automated methods for acquiring domain
knowledge for planning tasks would be very useful.

Much of the recent research in machine learning has
directly addressed this issue, attempting to acquire
domain-specific plan knowledge from experience. This
research falls into two basic paradigms. One approach
involves learning abstract knowledge, either in the form
of search-control rules that reduce the effective branch-
ing factor or in the form of macro-operators that de-
crease the effective length of solution paths. Much of the
work on explanation-based learning falls into this camp,
but inductive variants also exist. Researchers who study
learning abstract knowledge directly address problems of

*Also affiliated with the University of California, Irvine,
and Sterling Federal Systems.

constraining search, but they often assume a simplistic
rule-based representation of knowledge whose conditions
require an exact match, thus ignoring issues of memory
organization and retrieval.

An alternative approach involves storing specific plan-
ning experiences in memory and then using these
"cases" in solving novel but related planning problems.
Researchers in this case-based framework focus directly
on the organization of memory, on the retrieval of knowl-
edge from this memory, and on adapting the retrieved
cases to new situations. This work is closely related to
research on analogy, but it is often applied to specific
performance tasks such as planning. Despite its advan-
tages, research on case-based planning often emphasizes
the importance of memory to the exclusion of the search
issues that arise in domains where one lacks experience.

In this paper we describe DAEDALUS, a planning sys-
tem that begins to bridge the gap between these two
approaches to the representation, use, and acquisition
of plan knowledge. As we describe in the following sec-
tion, the system begins with knowledge of legal opera-
tors as its only domain expertise, so that it must search
to find successful plans. However, DAEDALUS stores cases
based on these plans in memory, and it uses them to con-
strain its future planning behavior. Eventually, the sys-
tem moves beyond specific cases to store abstract plan
knowledge, but it retains the ability to fall back on case
knowledge or even search when necessary. After describ-
ing the basic system, we present some experimental evi-
dence that DAEDALUS' planning skills improve with prac-
tice. We also compare the system's approach to learning
and planning with alternatives from the literature, and
propose some directions for future research.

2 The Daedalus System

DAEDALUS is a case-based planner that starts with a
small number of simple cases, and builds a library that
allows it to plan by indexing cases, rather than by
search. The system accepts an initial state and a set of
goal conditions as input and returns a sequence of op-
erators that will transform the initial state into a state
that satisfies the goal conditions. The planner is given
an initial case library consisting solely of operators ap-

301

plicable in the domain. The operators are organized hi-
erarchically in a memory structure, and are indexed by
the changes or differences they effect. DTEDALUS uses a
variant of means-ends analysis that calculates the dif-
ferences (the changes to be made) between the current
state and the goal conditions, and uses these differences
along with the features of the current state to retrieve
operators (cases) from memory. The system uses the
operators it retrieves to search for a plan in the domain
space, much as Fikes, Hart, and Nilsson's (1971) STRIPS.

Learning in DAEDALUS consists of incorporating the
generated plans into memory in a way that allows them
to be retrieved when applicable. Upon encountering a
previously unseen problem, the system retrieves a rele-
vant part of a plan and uses it to select operators for
the new task. The process of creating the indices for a
new case leads DAEDALUS to generalize its stored plans,
giving rise to useful abstractions while still retaining
the ability to search if necessary. Below we describe
DiEDALUS' representation and organization of plans, its
performance and learning components, and its overall
behavior.

2.1 Representing States, Problems, Operators,
and Plans

DTEDALUS acts on data structures of four types: states,
problems, operators, and plans. In general, a state con-
sists of some description of the world, possibly including
features internal to the agent. We use a simple STRIPs-
like state representation (Fikes et al., 1971), with each
state described as a set of objects and symbolic relations
that hold among them.

A problem consists of an initial state and a set of
goal conditions that the agent wants to achieve. Each
state may be a partial description of the world. For
instance, Figure 1 (A) presents a graphical description of
a rocket world problem (Veloso, 1989)1. The initial state
consists of three objects: an autonomous rover, a rover
support satellite, and a one-way transport rocket. Each
of the three objects are located on Earth; the rocket is
on its launch pad, the satellite loaded inside, and the
rover waiting nearby. The final state shows the rover
exploring Mars, the satellite transmitting data back to
Earth, and the rocket cracked and bent for lack of a
landing procedure.

The box in Figure 1 (B) labeled "initial state", shows
the STRiPS-like state representation of the pictorial de-
piction of the initial state in (A). The box labeled "goal
conditions" is a partial description of Figure 1 (A)'s fi-
nal state. Although the initial and final states are the
formal definition of a problem, DiEDALUS uses the initial
state and the differences between the initial state and
the goal conditions as an internal representation of a
problem, and uses the goal conditions to test for success-
ful termination. The notion of representing problems as

The examples in this paper make use of a domain slightly
different from that presented by Veloso.

differences is central to our approach.
An operator in DJEDALUS has a set of preconditions,

an add list, and a delete list, giving them a strong re-
semblance to the STRIPS operators (see Table 1). From
this information one can derive a set of differences that
exist between states before and after application, result-
ing in a description similar to that used for problems,
and allowing them to be stored in the same memory
structure.

The system represents a plan for solving a particu-
lar problem in terms of a derivational trace (Carbonell,
1986) that states the reasons for each step in the opera-
tor sequence. A trace consists of a binary tree of prob-
lems and subproblems, with the original task as the root
node and with trivial (one-step) subproblems as the ter-
minal nodes. Each node in the derivational trace has
two recursively defined children. One child represents
the subproblem of transforming the parent problem's
current state into the preconditions of the parent prob-
lem's operator. The other child represents the problem
of transforming the state that results from applying the
parent problem's operator into the goal state of the par-
ent. As well as having pointers to subproblems, each
problem in the binary tree has pointers to its current
state, its operator, and the state resulting from apply-
ing the operator.

The derivational trace in Figure 2 shows a plan that
solves the problem presented in Figure 1. Here, ellipses
represent problems, rectangles represent operators, and
squares represent states. The root node, representing
the problem, has links to both the starting state and the
final state that satisfied the goal conditions. The root
node also records the operator instance, (unload-rover
roverl), which the system selected to transform the
top-level problem. Two children sprout sideways from
the root node. The upper child denotes the problem of
transforming the initial state into a state that satisfies
the preconditions of the operator at the root node. Since
this node, demarcated (load-rover roverl), does not
have an upper child, one can infer that all the precon-
ditions of (load-rover roverl) were satisfied and the
operator was directly applicable. The fact that it has
a lower child shows that the application was insuffi-
cient for satisfying the preconditions of (unload-rover
roverl). In summary, upper children represent the
problem of changing the current initial state into a state
that satisfies the preconditions of the operator at the
current node, and lower children represent the problem
of transforming the state resulting from applying the
operator at the current node into a state that satisfies
the current goal conditions.

Although the derivation trace in Figure 2 shows how
DJEDALUS found the successful plan, it does not show all
the problem-solving activity. In fact, when DTEDALUS

was first presented this problem, the first operator it
selected was (unload-satellite satellitel). How-
ever, once this operator was applied, D^DALUS could
find no way of resolving the difference (at roverl

302

(A)

Initial State Final State

(B) (at rover 1 earth)
(at rocket earth)
(inside satellite 1 rocket)
(satellite satellitel)
(rover rover 1)

Problem

Initial State

(at roverl mars)
(at satellitel mars)

(at roverl mars)
(at satellitel mars)

Goal Conditions

Differences

Figure 1. A simple problem in the rocket world.

Mars). It was forced to backtrack over the application of
(unload-satellite satellitel) and retrieve another
operator from its memory, (unload-rover roverl).
Thus, problem solving can be viewed as and/or search
with the derivational trace constituting the and tree re-
sulting from that search.

2.2 The Organization of Plan Memory

DTEDALUS' memory is used to assist a means-ends style
planning engine, so both the plans created by DJEDALUS

and the plans given by the user need to be "index-
able" by the information available to means-ends anal-
ysis. The derivational trace is designed to record the
necessary information; storing the sequences of domain
operators with their associated problem-solving state
(PSstates), which consists of the state current at the
time of selection, and the differences the operator was
selected to address.

An operator and its PSstate make up a case, and
DJEDALUS breaks up the derivational trace into its com-
ponent cases and stores each case separately into mem-
ory. The resulting memory structures are both usable

and flexible. As observed by Kolodner (1987), the infor-
mation stored with an entire plan may make the plan
difficult to work with, and much of that information may
not be relevant to the inference at hand. Also, storing
the cases separately, in addition to giving access to parts
of plans, lets one reconstruct the original plan, or con-
struct a new plan out of the pieces of several different
plans.

The cases are organized in a probabilistic concept hi-
erarchy similar to Fisher's COBWEB (1987). This mem-
ory takes the form of a tree in which each leaf describes
an individual case, and each internal node describes an
abstraction that covers the cases found at the leaves of
the node's subtree. Every node makes up a concept de-
scribing some set of cases that are similar to each other,
but different from those described by sibling nodes. The
concepts are probabilistic in that they describe the like-
lihood of occurrences of each statement in the PSstate,
as well as the likelihood of occurrence of the concept
itself.

The nodes consist of two parts: the PSstate and the
operator. The PSstate has a differences section and a

303

Table 1. The operators of the rocket world.

Name Preconditions Add-list Delete-list

(launch-rocket) (at rocket earth) (at rocket mars) (at rocket earth)
(load-satellite ?object) (at ?object ?place)

(at rocket ?place)
(satellite ?object)

(inside ?object rocket) (at ?object ?place)

(load-rover ?object) (at ?object ?place)
(at rocket ?place)
(rover ?object)

(inside ?object rocket) (at ?object ?place)

(unload-satellite ?object) (inside ?object rocket)
(at rocket ?place)
(satellite ?object)

(at ?object ?place) (inside ?object rocket)

(unload-rover ?object) (inside ?object rocket)
(at rocket ?place)
(rover ?object)

(at ?object ?place) (inside ?object rocket)

state section. Both sections contain a list of domain
features (either goal or state) with an associated con-
ditional probability of occurrence given membership in
the concept. The operator also has an associated con-
ditional probability. If the node is a leaf node, then all
the conditional probabilities equal one. If the node is
an internal node, the conditional probabilities are de-
termined by the cases covered by the node. For exam-
ple, if an internal node covers three cases, two of which
have the operator Eat-lunch. and one with the operator
Eat-dinner, then the internal node would list two op-
erators: one, Eat-lunch, with a conditional probability
of two-thirds, the other, Eat-dinner, with a probability
of one-third (another example is shown in Figure 3).

The hierarchical organization and the probabilistic in-
formation associated with the nodes are used as indices
for the case information. The memory structure defines
a polythetic decision tree that may be used to determine
the most similar case to the case at hand. This form
of indexing is used to store both cases and operators,
with only a slight difference between the two: cases are
indexed by PSstate (state and differences), whereas op-
erators are indexed by their differences. This distinction
turns out to be inconsequential to the retrieval process,
and both cases and operators are treated identically.

2.3 Planning and Retrieval in Daedalus

In this section, we discuss DTEDALUS' performance sys-
tem — its planning and memory components. We de-
scribe how a simple means-ends style planner, which
solves problems through the generation of subgoals, may
be guided and assisted by permitting access to a richly
indexed memory of planning experience. We also discuss
the mechanism of indexing plan memory and illustrate
the process by way of an example.

DJEDALUS uses a variant of means-ends analysis
(Newell et al., 1960; Fikes et al., 1971). In this frame-
work, solving a problem (transforming a current state

into a desired one) involves the recursive generation of
subproblems. The standard means-ends approach de-
termines all differences between the current and de-
sired state, selects the most important difference (using
some predefined criterion), and then retrieves an oper-
ator that reduces that difference. If the selected opera-
tor cannot be applied, a subproblem (called a transform
goat) is generated to change the current state into one
that satisfies the operator's preconditions, and is solved
by a recursive call to the algorithm. Applying the oper-
ator produces a new state, along with a new subproblem
(another transform goal) to transform this into the de-
sired state; the algorithm is then called recursively to
solve this task. The derivational trace in Figure 2 re-
flects the recursive nature of the means-ends engine and
displays all the goals generated in the problem-solving
process: upper and lower branches represent transform
goals, and the central branch represents the applied op-
erator.

DTEDALUS searches the domain space in a depth-first
manner. The system continues recursively generating
subproblems until it detects one of two conditions: ei-
ther the differences are removed or a loop is detected. If
the goals are satisfied, the system ends the recursion and
proceeds with the next subgoal; if there are no more sub-
goals, the plan is finished. However, if a loop is detected,
the planner halts its current path of enquiry, backs up,
and tries another path. DiEDALUS checks for loops in
transform goals, whose detection causes the system to
backtrack and pursue a different plan.

Our system differs from most means-ends planners in
the way it retrieves operators from memory, which is
significantly different that used by either GPS (Newell
et al., 1960), or STRIPS (Fikes et al., 1971). Initially,
DJGDALUS is given a memory containing a set of plans
that the user thinks will be useful. This may be as elab-
orate as the user desires, but since cases can be tedious
to construct, usually the initial memory consists of ab-

304

Initial State

(inside satellitel rocket)
(at roverl earth)
(at rocket earth)
(satellite satellitel)
(rover roverl)

Differences

(at satellitel mars)

(at roverl mars)
(launch-rocket)

Final State

(at satellitel mars)
(at roverl mars)
(at rocket mars)
(satellite satellitel)
(rover roverl)

(unload-satellite satellitel)

Figure 2. Derivational trace for a solution of the rocket-world example.

stract descriptions of the domain operators.
Figure 3 displays an example of the initial hierar-

chy for the rocket domain, which consists of five oper-
ators: load-rover, load-satellite, launch-rocket,
unload-rover, and unload-satellite. Each node
has an associated label N, a set of associated differ-
ences Di, and a set of one or more associated opera-
tors. For example, the box in the lower left-hand side
of Figure 3 shows node N7, with differences ~(inside
?object rocket) and (at ?object ?place), and op-
erator (unload-rover ?object). Each node has a base
probability of occurrence P(N), and each difference has
a conditional probability P(JF|7V) of occurrence given
the concept, as does each operator. Node N7 had a prob-
ability of | (because it covers one of the two instances of
node K4), its differences each have conditional probabil-
ities of 1, and its operator has a conditional probability
of 1 as well. Cases are kept at the leaves of the hierar-
chy, as indicated by the expansion of nodes N7 and N8.
Node 14, the parent of nodes N7 and N8, is more general
than either of its children.

As in most case-based systems, retrieval is central to

DJEDALUS' operation. Retrieval from memory is done
in the following manner. The means-ends engine passes
the memory system a PSstate, S, to request an opera-
tor. The memory system takes S and temporarily incor-
porates it into the root node of the concept hierarchy.
Incorporation first identifies which features in 5 corre-
spond to which features in the PSstate of the root node,
and then, temporarily updating the conditional proba-
bilities of the features in the node. Finding the corre-
spondence between features in S and PSstates in the
concept hierarchy is cast as a partial-matching problem
in which the domain constants of the features in S must
be consistently bound to the pattern matching variables
in the features of the node in the hierarchy. The second
part, modifying the conditional probabilities, consists of
increasing the probabilities of those features of the con-
cept's PSstate that were matched, and decreasing the
probabilities of those features that were not matched.

Once the S has been incorporated into the root node,
the memory system must decide which of the root's
children has the closest resemblance to the PSstate
S. This decision is done by way of an evaluation

305

load-
rover

P(N4) = 2/5 P(F|N4)

Present Differences

-(inside ?object rocket)

(at ?object ?place)

1

1

Operators P(o|N4)

(unload-satellite ?object)
(unload-rover ?object)

1/2

1/2

P(N7) = 1/2 P(F|N7)

Present Differences

~(inside ?object rocket)

(at ?object ?place)

1

1

Operators P(o|N7)

(unload-rover ?object) 1

P(N8) = 1/2 P(F|N8)
Present Differences

-(inside ?object rocket)

(at ?object ?place)

1

1

Operators P(o|N8)

(unload-satellite ?object) 1

Figure 3. Initial concept hierarchy containing rocket world operators.

function adapted from Gluck and Corter (1985). The
function, category utility = [EjfcP(Cjt)SiP(F,|Cfc)2 —
T,iP{Fi\C)2]/N, evaluates a partition — defined as a
parent node and its immediate children. P(Ck) refers
to the a priori likelihood that S is a member of the
child Cfc. P(F{\Ck)2 is a measure of within-class simi-
larity, that is, how closely to the cases summarized by Ct
resemble one another. P(Fi\C)2 is the within-class sim-
ilarity of the parent node; the subtraction of this term
lets category utility measure the information gained by
dividing the parent into a set of classes. Dividing by
Ar, the number of children in the partition, allows cate-
gory utility scores to be compared even if the described
partitions are of different size. Our modifications allow
category utility to be applied to a feature-based repre-
sentation rather than the attribute-value representation
of the original formulation.

In choosing the best child, the memory system tem-
porarily incorporates the PSstate, S, into each child in
turn and evaluates the resulting partition. The partition
resulting in the highest category utility score determines
the node that most closely resembles S. Once that node
is found, the PSstate is temporarily incorporated into
it and the process is repeated using the selected node
and its immediate children as the partition. This pro-
cess continues until a leaf node is selected or the system
determines that continuing down the hierarchy is inap-

propriate. Currently, the memory system stops at an
internal node if the cases below it have been tried and
did not lead to a successful plan.

Keeping track of unsuccessful cases allows the memory
system to suggest a "next best" operator instance. This
is a significant difference in that it places and ordering
on the operator instances, rather than separating them
into the relevant and irrelevant sets of more traditional
means-ends planners.

In summary, DTEDALUS augments simple means-ends
planning with a hierarchically organized plan memory.
The resulting merger is a planner whose behavior is
strongly determined by the experience encoded in the
plan memory. This domain knowledge influences the
planning process by controlling what operator instances
are retrieved for each step in a plan.

2.4 Learning in Daedalus

DJEDALUS integrates learning into its planning process
by storing the cases it obtains from derivational traces.
The concept hierarchy stores information about the
problems and subproblems DAEDALUS has encountered,
along with the operators that led to their successful solu-
tion. Whenever a plan is found that achieves a problem
or subproblem, the description of that problem is stored
in the concept hierarchy. This involves storing the case
(the PSstate and the selected operator) as a new termi-

306

rial node in the hierarchy. In addition, DTEDALUS up-
dates the summary descriptions of the nodes (indices)
by revising the probabilities on all nodes along the path
between the new node and the root. The system in-
vokes this process for each subproblem as it is solved,
effectively storing (and indexing) a probabilistic 'selec-
tion rule' (Minton, 1988) for deciding among operators.

This process is almost identical to the retrieval pre-
cess, with only a few exceptions. As the memory system
calculates the category utility of each partition, search-
ing for the best match between the children of the par-
tition and the PSstate, three other possibilities are con-
sidered: create a new sibling, merging two children, and
splitting a child. At each level, category utility is calcu-
lated to determine which child of the current partition
is the best candidate for the permanent incorporation
of the PSstate. The system also considers putting the
PSstate off by itself, creating a new class in the partition.
In merging two nodes, DJEDALUS takes the two most
promising nodes and checks to see if a new node, sum-
marizing the combined cases of the original two nodes,
would result in a partition with a higher category utility
score (i.e., yields a greater information gain). In split-
ting, the system takes the best candidate and replaces
it with its children, checking whether the resulting par-
tition has a higher category utility score. If any of these
exceptions have higher category utility scores than in-
corporating S into one of the children, the corresponding
modification will be made to the hierarchy.

These hierarchy-modifying operators allow the mem-
ory system to alleviate order effects by allowing it to
recover from a biased set of examples. If DAEDALUS
were trained on a set of blocks-world problems, where
every problem started with all the blocks on the table
and ended with a single tower, then when given a prob-
lem of disassembling a tower it might recommend the
stack operator, since it has always worked in the past.
The hierarchy modifying operators can help the memory
system recover from such over-commitment by splitting
classes that are overly general, or merging classes that
are overly specific.

The ability to merge, split, and create new siblings
is a distinction between learning and retrieval. When
the system is learning, the classification process makes
permanent changes to the concept hierarchy and is us-
ing the hierarchy modifying operators. However, during
retrieval, the classification process makes no permanent
changes, and splitting, merging and creating new sib-
lings are not considered. This distinction allows for hi-
erarchy maintenance during learning without worrying
about hierarchy maintenance during retrieval.

This storage process should give DAEDALUS more effi-
cient future behavior. Upon encountering a new prob-
lem, the system uses its memory of past successes to
select operators in a more discriminating fashion. Spe-
cific problems (described by PSstate-operators pair) are
stored in the same concept hierarchy as the original op-
erators, and the same sorting process is used to retrieve

them. If a stored case matches a new problem or sub-
problem more closely (according to an evaluation func-
tion) than one of the original operator descriptions (be-
cause it has more in common), DAEDALUS retrieves this
case and attempts to apply the associated operator.

Figure 4 displays DTEDALUS' memory after the deriva-
tional trace in Figure 2 has been incorporated. The
white nodes are those found in the initial hierarchy (see
Figure 3). The black nodes are those incorporated dur-
ing the planning process. Node N9 shows the resultant
form of the PSstate-operator pair for (unload-rover
roverl). The constants in the PSstate have been re-
placed by variables, allowing a certain amount of gen-
eralization. The structural dependencies between the
relations have been preserved by assigning the same
pattern matching variable to identical constants. For
instance, (rover roverl) and (at roverl Earth) be-
came (rover ?x) and (at ?x Earth). Note that the
argument of the operator falls under the same variabi-
lization process. The user can specify constants where
variabilization is not desired; rocket, Earth, and Mars
have been so declared. The node N12 is a generalization
of the two cases where (launch-rocket) proved bene-
ficial. The two cases were nearly identical, but in one
case, roverl was still on Earth, in the other, roverl
was inside the rocket.

The modification of the hierarchy affects the retrieval
process of future queries. After having solved a prob-
lem using extensive backtracking, the system will do no
backtracking while solving similar problems. At each
choice point where DAEDALUS had previously retrieved
an inappropriate operator (one that led to backtrack-
ing), it now has a concept describing the state and goals
that characterize that choice point, and the correct oper-
ator instance to be used. When DiEDALUS sees a similar
problem, it retrieves the correct operator. In this way,
the system builds up a hierarchy of classes describing the
problems and situations characteristic of the domain, as
well as the operator instance appropriate for each. The
result is a planner that does progressively less search,
planning more and more by retrieval.

3 Experimental Evaluation of Daedalus

Effectively evaluating a learning planning system is
an elusive and slippery task. Recent literature has
pointed out shortcomings in previous forms of evalu-
ation and proposed tentative solutions (Minton, 1988;
Segre, Elkan, & Russell, 1990). In the evaluation of
DJEDALUS, we have tried to avoid the pitfalls of evalu-
ation by using the suggestions proposed by the afore-
mentioned authors, by explaining the limitations of our
approach.

3.1 Experimental Method

Our experimental study focused on planning in the
blocks world domain. The domain involves a two-
dimensional world that contains a table and some num-

307

P(N9) = 1/11 P(F|N9)

Present Differences

(at ?x mars)

(at ?y mars)

1

1

1
1
1
1
1

State

(at ?x earth)
(at rocket earth)
(inside ?y rocket)
(satellite ?y)
(rover ?x)

Operators P(o|N9)

(unload-rover ?x) 1

P(N8) = 1/2 P(F|N8)

Present Differences

-(inside ?object rocket)

(at ?object ?place)

1

1

Operators P(o|N8)

(unload-satellite ?object) 1

P(N12) = 2/11 P(F|N12)

Present Differences

(at rocket mars) 1

1/2
1
1

1/2
1
1

State

(at ?x earth)
(at rocket earth)
(inside ?y rocket)
(inside ?x rocket)
(satellite ?y)
(rover ?x)

Operators P(o|N12)

(launch-rocket) 1

Figure 4. Concept hierarchy after incorporating the derivational trace in Figure 2.

ber of blocks. A block may be on another block, or upon
the table. There is no limit to the number of blocks in
a single stack or the number of blocks the table may
hold. The domain has four operators that change the
positions of the blocks: (stack ?x ?y), (unstack ?x
?y), (putdown ?x), and (pickup ?x).

The data was collected by averaging ten trials of forty
problems each. A problem is an initial state, made out
of a randomly (with some restrictions) chosen number
of blocks that are randomly placed on the table and
on other blocks, and a randomly generated set of goal
conditions, reflecting the desired final configuration of
the blocks in the initial state. Each problem was ran-
domly generated by a problem generator, and presented
to the system. If a figure compares two systems, each
system was run on the same set of problems. For each
run, the problems presented to the planners are ini-
tially limited to simple problems, those problems con-
taining a small number of blocks and goal conditions.
As more problems are encountered, the problem gen-
erator is permitted to produce problems having more
blocks and more goal conditions. The first 10 problems
consisted solely of two block problems with at most one

goal condition. The maximum number of blocks and
goal conditions was increased by one for every 10 prob-
lems presented. Hence, problems one through ten con-
sisted of two block/one goal condition problems, and
problems thirty-one through forty consisted of two to
five blocks/one to four goals problems.

In collecting statistics for DJEDALUS with learning, the
we presented the system with each problem twice. The
first time, with the learning component turned off, was
used to generate performance measures. The second
time was done with learning turned on, and was used
to train the system on the problem. This was done to
avoid the potential effects of within-trial learning.

Two limitations were placed on D^DALUS during
these runs. The first was a limit on the depth of pend-
ing transform goals during backward chaining, which
was set at four. This means that no path from the root
of the derivational trace to any leaf may traverse more
than four upper branches. This limitation was enforced
primarily for expedience, since it cut down on the explo-
sivness of the search space. Further code optimizations
may allow us to relax or remove this limitation, but
currently the search for a solution in the unbounded

308

space takes too long. The limitation is biased to favor
the non-learning system in two ways. First, it restricts
the amount of backtracking possible, thereby giving the
non-learning system the appearance of finding a solution
with little search. Second, in general, the selection rules
learned from backward chaining have more transfer than
those learned from forward chaining, thereby forcing the
learning system to assimilate more information in order
to get good performance.

The second limitation is a time limit. In these runs
we allowed the system a maximum of ten CPU minutes
to solve each problem. This limitation was also used for
expedience. There is a difference between the transform
goal limit and the time limit. The former limit will not
prevent the planner from finding solutions, whereas the
time limit can.

3.2 The Effect of Learning on Search

The primary goal of learning in a planner is to reduce
the amount of search needed to find a solution. Fig-
ure 5 shows the amount of search done by DAEDALUS
without learning (white boxes) verses that amount of
search done by D.EDALUS with learning (black boxes).
The metric for determining search is computed by divid-
ing the number of nodes expanded in the domain space
by the number of operators in the solution plan. This
gives an indication of the amount of backtracking done
by each system.

15°

32 36 40

Problem Number

Figure 5. DJGDALUS' search with and without learning.

The graph in Figure 5 shows how cumulative search
grows as the number and complexity of the examples
increases. The cumulative search is the total problem
solving search over all examples up to that point; thus,
the slopes of both curves are positive because the y-
axis represents cumulative search. The second derivative
of the curve representing DJGDALUS without learning is
positive because the relative difficulty of the problems
presented is increasing (the curve levels off at the end

because of the time limit). The second derivative of
the curve representing D^DALUS with learning is also
positive, but only slightly. This shows that the system
with learning is insensitive to problem difficulty, doing
very little search on any of the problems.

3.3 The Effect of Learning on Solution Length

Traditionally, learning researchers have been primarily
concerned with reducing the amount of search needed to
find a plan, but have neglected to study how the learn-
ing affects the length of the solution path. There seems
little benefit in reducing the effort of finding a plan if it
requires the execution system to traverse circuitous or
redundant routes. Ideally, a learning planner should at
least produce plans that are comparable to those pro-
duced by the performance system.

Is
&
<D O

CO

8

32 36 40

Problem Number

Figure 6. Solution path length with and without learning.

Figure 6 compares the solution paths produced by
DJEDALUS without learning and DAEDALUS with learn-
ing. The solution paths are averaged over the same
ten trials used to generate Figure 5; again, problems
were not included in the average. The graph is cumu-
lative, showing the sum of the lengths of all solution
paths to that point. From this graph, one can deter-
mine that D^DALUS with learning did not reduce the
average path length as compared to the system with-
out learning. However, it does not greatly increase the
length of the solution path either. This is due to the
nature of the learning mechanism, which builds its con-
cepts solely on the problem-solving behavior of the per-
formance system, and not on an in-depth analysis of the
produced plan.

3.4 Testing Other Dimensions

The utility problem, described by Minton (1988), was
based on the observation that learning systems, while
reducing the amount of search, may actually give rise

309

to an increase in solution time. In most planning sys-
tems, this is characterized by a trade-off that brings
about a reduction of search in the domain space but
increased operator retrieval time. In D/EDALUS on the
blocks world, the effect of this trade-off is an overall
reduction in the work done by the system, but the de-
crease is marginal. This is an important direction for
future work.

We have started preliminary testing using the tower
of hanoi, rocket world (as shown by our examples),
and scheduling domains. We chose the blocks world as
our initial testing domain because its explosive problem
space lets us study the effectiveness of operator selec-
tion. The tower of hanoi domain was chosen for the same
reason, but in our formulation there is only one operator,
which allows us to study the effectiveness of the selec-
tion of variable bindings. The rocket world was chosen
because it contains irreversible operators, and gives the
opportunity to demonstrate the power of means-ends
analysis in conjunction with learning (see section 4.1 for
further discussion). The scheduling domain was chosen
as a first step towards a real-world domain.

These domains have been coded and some preliminary
testing has been done with each. The simple runs have
shown a reduction in search without compromising the
solution path length. As of yet, we have not determined
DAEDALUS' overall performance with these domains, but
we hope to report on them as the testing and develop-
ment of DJEDALUS continues.

4 Discussion

4.1 Generality

Traditionally, means-ends systems required an explicitly
defined set of goal conditions that are used to generate
differences. They also assume that the generated differ-
ences are in the same language as the add and delete
lists of the operators. DAEDALUS is somewhat different
in this respect. As previously mentioned, DTEDALUS is
capable of retrieving operators that are not relevant to
the current differences, and can retrieve operators with-
out differences at all. This ability lets the system plan
under these conditions, and to learn relations between
the differences and the operators, or, if differences are
absent, to learn relations that occur between operators
and domain states.

For instance, suppose the task were to navigate a
maze using three operators: turn-left, turn-right,
and move-forward-one-step. If one were to spec-
ify (at mouse positionl), and (mouse-orientation
north) as the initial state, having a goal condition
(at mouse position43) would give no indication what
operator should be chosen. However, DJEDALUS will
choose an operators at random until it has found a
path from positionl to position43. When it learns,
it will store each operator with its associated PSstate
into the hierarchy, learning the relationship between the
goals, states and operators. With sufficient training,

DAEDALUS should be able to map out the maze, and be
able to navigate it with reasonably little search.

This property allows DJEDALUS to run in domains that
are not traditionally thought of as means-ends domains.
It also makes the system less dependent on the choices
of representation for any particular domain. Another
property stems from DJEDALUs' strategy of operator se-
lection, which differs from earlier methods it orders op-
erators, rather than dividing them into relevant and ir-
relevant sets. One result is that DTEDALUS prefers op-
erators that reduce multiple differences in the current
problem, which should make it more selective than tradi-
tional techniques. More important, although DTEDALUS

prefers operators that reduce problem differences, it is
not restricted to this set. If none of the 'relevant' opera-
tors are successful, it falls back on operators that match
none of the current differences. This gives it the poten-
tial to break out of impasses that can occur on 'trick
problems'.

This ability makes DAEDALUS less susceptible to some
of the criticisms made about linear planners. There are
two classes of 'trick problems' for such planners. The
first class, which includes the famous Sussman anomaly
(1973), consists of problems whose strong goal inter-
action prevent linear planners from finding an optimal
solution. DiEDALUS provides little for improving this
class of problems; if a solution can be found, the system
behaves like many other linear planners. The second
class of problems are those in which a combination of
irreversible domain operators and goal interaction pre-
vent any solution from being found by a linear planner.
This second class can be characterized in the following
way: if one expands a domain with irreversible opera-
tors into a graph, where the nodes represent each pos-
sible state and the links represent the operators that
transform one state into another, the resulting graph
can be partitioned into at least two subgraphs in which
the subgraph A has links into subgraph B, but subgraph
B has no links into subgraph A. A 'trick problem' in
such a domain has an initial state in subgraph A, and
two or more interacting goals whose satisfying states are
found in subgraph B. In solving the first goal, the plan-
ner must travel from subgraph A into subgraph B. As
the linear planner attempts to solve the second goal, it
will have to return to subgraph A in order to undo the
solution of the first goal; however, there is no way to
do this. To solve this problem a planner must recognize
that certain subproblems must be solved before it leaves
subgraph A. Non-linear planning is one way to achieve
this, DTEDALUS'S technique of learning the interactions
provides a different solution.

4.2 Related Work on Learning and Planning

DAEDALUS is a learning planner with several unique
properties, but it is only one of a set of planners pro-
duced by the machine learning field. With this in mind,
it seems beneficial to compare and contrast our system
with other planners that address similar issues.

310

Of the more traditional planners, DAEDALUS is most
similar to the PRODIGY/EBL (Minton, 1988) system.
Both systems rely on means-ends analysis for the gen-
eration of plans, and both systems learn information in
the form of preference rules (probabilistic in DJEDALUS'S

case). The most significant differences between the two
systems lie in what is learned, and how it is learned.
PRODIGY/EBL acquires several types of control rules:
node preference, node rejection, operator selection, op-
erator preference, operator rejection, goal preference,
goal rejection, binding preference, and binding rejection.
These rules are separately learned and stored, using an
explanation based learning technique with different do-
main knowledge for each type of rule. DAEDALUS only
learns a subset of those rules (goal select, operator se-
lect, and variable select), and is acquires them using an
incremental conceptual clustering technique.

The retrieval process returns an operator and its can-
didate set of bindings, an obvious mapping to selection
rules for operators and bindings. Less obvious is the goal
selection. As a PSstate is being sifted down the concept
hierarchy, it becomes associated with nodes that make
stronger and stronger claims about which goals are rel-
evant, that is, which goals have a high probability of
occurrence in the PSstate. Although this does not spec-
ify which goals are to be worked on, it does show which
goals are being considered.

The PLEXUS system of Alterman (1988) is another
planning system that makes extensive use of non-
episodic knowledge to eliminate search during plan re-
pair. One marked similarity of DiEDALUS and PLEXUS

is the storage and use of both general and specific plan
information. In both systems, the retrieval and use of
specific plans over general plans is preferred. However,
both systems may make use of general plans if neces-
sary. Another similarity is in plan repair. If a plan step
fails for PLEXUS, it assumes that the failed plan step is
"representative of the category of action" and will use
background knowledge to find a new plan step. The re-
pair process uses abstraction (moving up its categorical
hierarchy from the failed plan step), and specialization
(moving down its categorical hierarchy) to search for a
suitable replacement. DAEDALUS operates in much the
same way. If a plan step fails, DAEDALUS will query
its memory for an alternative solution, which is usually
taken from a sibling or an abstraction of the plan step
initially retrieved.

The planning/execution system PLOT (Yang &
Fisher, 1990) is based on the same observation as
DTEDALUS, that operator selection can be viewed as clas-
sification. As a consequence, both systems use means-
ends analysis to generate plans and probabilistic hierar-
chies to store plan knowledge. There are two significant
differences between the PLOT and DAEDALUS: what they
learn and their response to the utility problem.

DiEDALUS creates a plan in the form of a derivational
trace, then breaks up the trace into its PSstate-operator
pairs. PLOT also creates its plans in the form of a deriva-

tional trace, but then creates a macro-operator out of
the operator sequence and stores it. These macros are
indexed by the preconditions and the differences of the
macro itself; all PSstate information that made up the
derivational trace is discarded. As a result, PLOT bal-
ances between reactive behavior (by retrieving operators
whose preconditions are satisfied) and traditional plan-
ning, whereas DJEDALUS learns rules that reduce the
amount of search needed to plan.

In addressing the utility problem, PLOT borrows from
Minton (1988) in keeping statistics that measure the
utility of learned information. In Yang's system, a moni-
tor watches the base rate associated with the concepts of
PLOT'S plan memory. If a base rate drops too low the
concept is judged to be of low utility (since it is used
rarely), and is pruned from the tree. DAEDALUS does no
pruning, but relies on the speed of its heuristic partial-
matching function and tree-shaped memory to address
the utility problem.

4.3 Directions for Future Research

As it currently stands, DJEDALUS is much too simple
to plan effectively in a real-world setting, but future
research may remedy many of its limitations. For in-
stance, the system learns only from successful plans and
never from failures. No matter how many times the sys-
tem fails to solve a problem, it cannot use knowledge
of those failures to constrain future search. Consider
the following scenario: DAEDALUS is controlling an au-
tonomous robot, and it stands on the curb of the killer
street of the reactionary planners (Hendler & Sanborn,
1987), but suppose now that the robot is sufficiently ar-
mored to resist four or five collisions. As DJEDALUS is
currently implemented, it would step into the street, see
a car coming, start planning and get run over. Now, due
to its protective shell, it would have survived the colli-
sion, but since it did not successfully achieve its goal of
avoiding the car, it learned nothing. Having not learned
anything, DJEDäLUS would do exactly the same thing
every time a car came at it until it was finally obliter-
ated. However, if DTEDALUS could learn from failure, it
could learn bad operator choices as well as good oper-
ator choices, it might be able to avoid collisions after a
few tries.

The natural response is to store not only those
PSstate-operator pairs that led to a successful plan, but
also those that failed to produce a solution. The sim-
plest version of this approach would store both types
of cases, marking one desirable and the other undesir-
able. If the extended DAEDALUS retrieved only unde-
sirable operators, it would select some untried operator
first. However, this approach ignores the fact that some
failures are less undesirable than others, just as some
some successes are less desirable than others.

A more sophisticated approach would associate a de-
sirability score or affect, ranging from oo to — oo, with
each final state in a plan (such as being across the street
or being hit by a car). Using a technique similar to Sut-

311

ton's (1988) method of temporal differences, the system
would propagate affective scores back to the intermedi-
ate states (such as being halfway across the street) that
are stored in memory. States close to desirable states
would acquire some of the latter's positive affect, while
those close to undesirable states would acquire negative
affect. Upon encountering a new problem, the system
would retrieve a number of plausible operators, as in
Jones' (1989) EUREKA, and then select the one that is
expected to produce the state with the highest affective
score. Over time, the temporal-difference method might
produce cases and abstractions that accurately predict
the desirability of the states to which they lead, letting
one learn from varying degrees of success and failure.

5 Conclusion

This paper has described DAEDALUS, which we designed
in an attempt to bridge the gap between planners that
learn abstract knowledge and those that learn by creat-
ing indexes to specific cases. We evaluated the system
in terms of its ability to reduce the amount of search
without adversely affecting the solution path lengths in
the blocks world domain. Experiments in the rocket
world domain have shown that DTEDALUS' combination
of means-ends analysis with a memory in the form of
a probabilistic concept hierarchy allows the system to
successfully plan in domains not normally accessible to
linear planners.

Although the system has proved successful in captur-
ing planning knowledge in toy domains, further testing
is needed to examine the full generality and limitations
of the system. Future work will be needed to extend
DAEDALUS' capabilities before it can be applied to real-
world domains.

Acknowledgments

We would like to thank members of the ICARUS project
- John Gennari, Kevin Thompson, Wayne Iba, Kate
McKusick, and Deepak Kulkarni - as well as Mike Paz-
zani, Doug Fisher, Hua Yang, and Randy Jones for use-
ful discussions that led to many of the ideas in this pa-
per. We also thank Marilyn Bunzo, John Bresina and
Steve Minton for their comments on an earlier draft.

References

Alterman, R. (1988). An Adaptive Planner. Proceedings
of the DARPA Workshop on Case-based Reason-
ing (pp. 37-49). Morgan Kaufmann: Clearwater
Beach, FL.

Carbonell, J. G. (1986). Derivational analogy: A the-
ory of reconstructive problem solving and expertise
acquisition. In R. S. Michalski, J. G. Carbonell, k
T. M. Mitchell (Eds.), Machine learning: An artifi-
cial intelligence approach (Vol. 2). San Mateo, CA:
Morgan Kaufmann.

Chapman, D. (1987). Planning for conjunctive goals.
Artificial Intelligence, 32, 333-377.

Fikes, R. E., Hart, P. E., k Nilsson, N. J. (1971).
STRIPS: A new approach to the application of the-
orem proving to problem solving. Artificial Intelli-
gence, 2, 189-208.

Fisher, D. H. (1987). Knowledge acquisition via incre-
mental conceptual clustering. Machine Learning, 2,
139-172.

Gluck, M., k Corter, J. (1985). Information, uncer-
tainty and the utility of categories. Proceedings
of the Seventh Annual Conference of the Cogni-
tive Science Society (pp. 283-287). Irvine, CA:
Lawrence Erlbaum.

Rendler, J., k Sandborn, J. (1987). Planning and re-
action in dynamic domains. Proceedings of the
DARPA Workshop on Planning.

Jones, R. M. (1989). A model of retrieval in problem
solving. Doctoral dissertation, Department of In-
formation and Computer Science, University of Cal-
ifornia, Irvine.

Kolodner, J. L. (1987). Extending problem solving ca-
pabilities through case-based inference. Proceedings
of the Fourth International Workshop on Machine
Learning (pp. 167-178). Irvine, CA: Morgan Kauf-
mann.

Minton, S. (1988). Quantitative results concerning the
utility of explanation-based learning. Proceedings
of the Seventh National Conference on Artificial In-
telligence (pp. 564-569). Morgan Kaufmann: St.
Paul, MN.

Sacerdoti, E. D. (1974) Planning in a hierarchy of ab-
straction spaces. Artificial Intelligence, 5 115-135.

Segre, A., Elkan, C, k Russell, A. (1990). On valid
and invalid methodologies for experimental evalua-
tions of EBL (Technical Report 90-1126). Ithaca,
NY: Cornell University, Department of Computer
Science.

Sutton, R. S. (1988). Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3,
9-44.

Thompson, K., k Langley, P. (in press). Concept forma-
tion in structured domains. In D. Fisher k M. Paz-
zani (Eds.), Computational approaches to concept
formation.

Veloso, M. M. (1989). Nonlinear problem solving us-
ing intelligent casual-commitment (Technical Re-
port CMU-CS-89-210). Pittsburgh, PA: Carnegie
Mellon University, School of Computer Science.

Yang, H., k Fisher, D. (1990). Improving planning ef-
ficiency by conceptual clustering (Technical Report
CS-90-07). Nashville, TN: Vanderbilt University,
Department of Compute Science.

312

Planning to Address Uncertainty: An Incremental Approach
Employing Learning Through Experience

Scott Bennett
Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign
405 North Mathews Avenue, Urbana, IL 61801

bennett@cs.uiuc.edu

1. Introduction

No model, no matter how complex, can exactly mirror the real
world. Consequently, any planner with a static model will in-
evitably be handicapped in dealing with a complex real-world
domain, unable to deal with failures which are a result of an
inadequacy of the model. For example, suppose we are devel-
oping plans which employ a gantry-arm in a warehouse to lift
and place crates and boxes. In this complex environment,
shown in Figure 1, we don't have perfect knowledge about the

Real-world Complexity

effects of operators we might employ. The gantry-arm is not
perfectly accurate. It also is a complicated mechanism which
might fail for many reasons. The planner also cannot have a
perfect model of the world objects. B oxes are not perfect rect-
angular prisms. Even if a more complex model were used, it
is always possible that some detail, beyond the resolution of
the model, could lead to an unexpected failure. A small hole
in the side of one carton may catch on the sharp corner of the
gripping device causing the box to slip and fall as it is lifted.
In such a domain, no plan can be perfect. This is the qualifica-
tion problem. More qualifications can always be added as to
when a plan should not be attempted because it could fail.

One of the major differences between artificial domains and
complex real-world domains is the presence of uncertainty.
Most simplified models assume facts are known with certain-
ty while in the real world often they are not. Actions carried
outin the worldmay often have uncertain effects. Simplified
representations also introduce uncertainty because they trade
off accuracy for ease of use.

The primary approach to developing plans in the presence of
uncertainty has followed the theme: "If we can represent and
reason about uncertainty, we can develop plans that are guar-
anteed to succeed anyway." This theme has been pursued
strongly in the robotics community. In 1982, Brooks made use
of numeric error bounds which could be propagated back
through a plan to specify the conditions under which the plan
could achieve its goal [Brooks82]. This analysis also indi-
cated when additional operators should be added to the plan
to reduce the restrictions on uncertainty in the plan precondi-
tions. Many planners followed which employed explicit un-
certainty representations and built on these techniques includ-
ing the LMT Planner [Lozano-Perez84], EDR [Donald90],
and SPAR [Hutchinson90].

Generally, in these approaches, numeric error ranges are as-
signed to the sensors and effectors. During planning, possible
error ranges are continually re-calculated as new operators
are introduced into the plan. In several approaches, if the ac-
cumulated error exceeds some preset limit, operators are in-
troduced specifically for reducing the error. Guaranteed un-
certainty-tolerant plans are sought, so all possible modes of
potential failure (due to uncertainty) must be considered dur-
ing planning. Producing such guaranteed plans can be very
difficult. This shouldnotbe surprising considering that the al-
ready complex domain representation has been made more
complex through the addition of uncertainties. For instance,
in Donald's EDR [Donald90] approach, generating plans
when model error is possible involves generating and navigat-
ing through a large number of slices of configuration space,
each corresponding to a different constant model error. Each
point in a configuration space corresponds to one possible po-
sition and orientation of the piece being manipulated. Even
if we restrict ourselves to a planar object with position and
orientation, each slice of configuration space would be three-
dimensional. In general, another dimension is addedfor every

313

uncertainty which is to be considered. In fact, when model un-
certainties are introduced it is not always possible to find a
guaranteed solution. Donald recognized this and uses an error
detection and recovery (EDR) approach relaxing the guaran-
teed criteria to allow the system to try apian if it can be guaran-
teed that the possible resulting failure or success states can be
recognized. If a failure occurs, it continues planning to
achieve the goal from the recognized failure state. However,
recognizing when a guaranteed plan is not possible, in order
to apply EDR, still involves the same expensive techniques
used when finding a guaranteed plan.

Despite the fact that small uncertainties abound in many di-
mensions considered by these planning systems, the uncer-
tainties may not be equally likely to cause errors with a given
set of tasks. Furthermore, if a plan is modified to tolerate some
particular uncertainty, it may well be tolerate other uncertain-
ties as well. Consequently, reasoning about all the uncertain-
ties at planning time may involve a considerable waste of re-
sources in comparison to an approach which deals with
uncertainties if they cause difficulty during plan execution. If
the domain is one where failures can be tolerated during a
training phase, a system can be employed which learns from
its failures, introducing uncertainty-tolerance into plans in an
on-demand fashion.

In our system, explicit approximations can be declared as deal
with quantitative facts about the world. Rules employed by
the system in constructing plans include tunable parameters.
These parameters can be tuned in response to failures to im-
prove the uncertainty-tolerance of generated plans. When the
systems generates plans, no explicit reasoning about the ap-
proximations takes place. Only when recovering from execu-
tion failures does reasoning about the approximate nature of
the data take place and then only in a limited qualitative man-
ner. The planner can therefore quickly construct ungua-
ranteed plans which can be refined as necessary to deal with
uncertainties as they cause problems. Furthermore, plans
which are constructed are generalized using explanation-
based learning [DeJong86, Mitchell86]. These generalized
plans can be employed in a class of similar situations meeting
the same causal constraints as seen in the specific instance for
which planning took place. This eliminates the need for the
planner to generate separate plans for these similar situations.

First, we will discuss the types of approximations the system
employs for modelling world facts. Next, parameter-based
rules are discussed whose parameters can be tuned to add un-
certainty-tolerance to operations planned using them. An ar-
chitecture is then presented for generating and refining ap-
proximate uncertainty-tolerant plans. This includes a
discussion of the role of explanation-based learning, execu-
tion and monitoring, and plan refinement. A sample task do-
main of robotic grasping is then described along with an ex-
ample of system operation and some initial empirical results.
Lastly, we discuss the future directions for the work.

2. Data Approximations

Data approximations can be either external or internal. An ex-
ternal data approximation is used to represent the uncertainty
of data in the world. The system employs internal data ap-
proximations to simplify complex sets of data to make reason-
ing more tractable. First, let us consider external data approxi-
mations.

2.1. External Data Approximations
An external data approximations involves a set of quantities
for which the system is given approximate values. Let Q be
a vector {qi,q2,q3,...,qn} of quantity variables and Abe a vec-
tor of their corresponding approximate values
{ai,a2,a3,...,an}. A data approximation asserts
that:

n

V P(qi = x)<P(q; = y) iff |x-a;| > ly-aj
i=l

This gives a very simple qualitative view of uncertainty distri-
butions like that shown in Figure 2. It specifies that the proba-

probability distribution
for quantity variable q;

decreasing

Figure 2. Characterizing a Data Approximate Quantity

bility of one encountering the true value of the quantity dimi-
nishes as one moves away either above or below the
approximate value.

In the case of external data approximations, the value vector
A is the best information the systemhas aboutthe values of the
quantity variables Q. The only way to improve this informa-
tion is to interact with the world. For purposes of planning,
Q=A. The qualitative definition of a data approximation is
never employed during planning, only when analyzing fail-
ures so as to tune rule parameters.

In robotics, external data approximations can be used to repre-
sent values read from sensors, which are inherenüy uncertain.
For instance, the position of a block, as sensed by a visual sys-
tem, would be represented with an external data approxima-
tion.

2.2. Internal Data Approximations

With an internal data approximation, the system chooses the
values A of the quantity variables Q with a data approximation
procedure. This is often motivated by the need to simplify the
representation so reasoning can be performed more efficient-
ly. Internal data approximations can be adjusted through the
system's reasoning alone. The qualitative view of a data ap-

314

proximation applies to both external and internal data approx-
imations.

In robotics, geometric object models are examples of internal
data approximations. A simplified geometric representation
can be far more efficient to reason about than the complex raw
data returned by a vision system. However, in seeking a sim-
plified representation, accuracy is sacrificed. The system has
thus introduced uncertainty.

3. Parameter-Based Rules

Parameter-based rules are employed when the system plans
how a goal can be achieved. The parameters are tunable and
if tuned correctly can be used to improve the uncertainty-tol-
erance of generated plans. We make use of the following types
of parameter-based rules:

constraints

Suppose that a system, in achieving some goal, must
choose the best from a set of candidates. Each of the can-
didates differ along one ormore continuous dimensions.
A constraint rule is used for indicating a preference for
candidates based on their value along one of these di-
mensions. Each constraint rule functions as part of a
multi-constraint rating rule for evaluating a set of candi-
date choices. The parameter on which the constraint rule
is based, when tuned, has an effect on how the candidates
are rated by that rule. In the robotic grasping domain, pa-
rameter-based constraint rules are used in choosing the
bestfaces to use in achieving a grasp. Currently implem-
ented constraint rules include opening-width-con-
straint and contact-angle-constraint for constraining
the choice of faces to those with a realizable opening
width and a contact angle within the friction angle.

controls

These rules directly choose the value for some controlla-
ble quantity. The parameter to the rule directly effects
this choice. Controls can be either external and internal.
External controls are directly associated with some con-
trollable parameter in the outside world. Internal con-
trols affect the system's internal reasoning. For exam-
ple, in the robotic grasping domain, an external control
is chosen-opening-width which chooses the amount by
which the gripper should open for achieving the grasp.
Weights which are used in combining constraints are ex-
amples of internal controls. They affect the overall rat-
ing which some set of constraints give a candidate by de-
termining how constraints are weighted with respect to
each other. For example, opening-width-constrainthas
an associated weightopening-width-constraint-weight
used in evaluating it relative to contact-angle-con-
straint.

3.1. Control Parameters
Figure 3 gives a constraint diagram for the chosen-opening-

Chosen-Opening-Width (Initial)
1 | 1 ^- quality function

 I width of target objei •ct / I

min(distance to nearest object,
max-opening-width)

Figure 3. Initial Constraint Diagram for the Chosen-
Opening-Width Parameter

width parameter employed in the robotic grasping domain.
This continuous parameter, corresponding to opening-width
of the gripper for grasping the object, has an upper and lower
bound specified. These are specified by general expressions
which return the correct bounds for the current grasping situa-
tion. In this case, even in the most approximate model, the
gripper must be open at least as far as the width of the target
object at the current orientation and position. It also must not
exceed the maximum pos sible gripper opening limit of the ro-
bot and must not open so wide as to collide with a nearby ob-
ject. Of course, representations for the objects and their posi-
tions and orientations are known to be data approximations.
The initial belief of the system regarding opening width is that
anything lying between the bounds on the value of opening
width are acceptable values. The dashed line in Figure 3 is
called the quality function and gives the system's current eval-
uation of the various values which could be chosen for the
opening width parameter. The initially flat function indicates
no preference as long as the preconditions for the bounds are
met. However, in choosing an opening width, minimal motion
of the control from its current value is preferred, reducing
movement viewed as extraneous. Therefore, initially, the con-
straints on the chosen-opening-width parameter cause three
mles to be generated. In general, the number of rules depends
on the number of peaks and plateaus of the quality function.
One rule is generated which prefers that the control be set to
the lower bound when the current value is less than the lower
bound, one leaves the control at its current value if that value
is between the bounds, and one sets the control to the higher
bound if it is greater than the higher bound. One of these rules
is shown in Figure 4. A declarative specification for the con-
straint on the parameter is translated into a set of rules
employed in planning. When control parameters are tuned in
response to failures, their corresponding mles are revised and
will take on the new desired behavior in planning. Tuning of
control parameters amounts to posting preferences in the re-
gion between the bounds in Figure 3. These have generalized
conditions which calculate the numeric location of the prefer-
ence and have an effect on the quality function for the parame-
ter. For instance, after posting a preference for opening widths
greater than the lower bound, the new quality function appears
as in Figure 5. The new constraint on the parameter value

315

INTRA-RULE: R190-«— one of three rules defined by the initial constraints on the opening width parameter
FORM: (CHOSEN-OPENING-WIDTH 7GRIPPER ?X ?Y 7ANGLE 70BJECT 7RETURN)
ANTS: (GRIPPER-OPENING 7GRIPPER 7LOP187) find minimum required

(GRiPPER-PERP-wiDTH 7GRIPPER 7SPAN) opening so fingers don't
(MN-SPAN-FOR-OBJECT 70BJECT ?X ?Y 7ANGLE 7SPAN 7LEFT 7RIGHT) •*— rnmfo wjth nhippt in
(SUM 7LEFT 7RIGHT 7RETURN) C0UlCle wlto ot)Ject ln

(MAX-GRIPPER-OPENING 7GRIPPER 7MAX-OPEN) approximate moael
(<- 7RETURN 7MAX-OPEN) -*— can't realize it even in approximate model if too wide for gripper

(<?LOP187?RETURN)
APPROX: CHOSEN-OPENING-WIDTH ■ • indication that this rule is based on the opening width parameter

Figure 4. One of the Rules Generated from the Constraints on the Chosen-
Opening-Width Parameter

Chosen-Opening-Width (After Tuning)
 i quality function

I
■-• posted constraint:

prefer greater than
target object

/[__.
min(distance to nearest object,

max-opening-width)

Figure 5. Constraint Diagram for the Chosen-Ope-
ning-Width Parameter After First Tuning

causes the corresponding rules to prefer an opening width cor-
responding to the new peak of the quality function at the maxi-
mum opening width.

3.2. Constraint Parameters

Constraint parameters work similarly to the control parame-
ters except they don't choose a value directly but rather use
their quality function to give a value some rating. If a con-
straint rule were evaluating one particular dimension of a set
of candidate choices, the value of the quality function of the
constraint parameter would be consulted for each candidate's
value along that dimension. For that particular dimension,
preference would be given to the candidate with the best quali-
ty function value forthat dimension. Of course, candidates are
generally evaluated using several constraint rules which have
their resulting ratings combined using weights. These weights
were previously mentioned as examples of internal controls.
They can be tuned in response to failures to prefer certain con-
straint rules over others.

In the next section, we introduce the architecture whichmakes
use of these types of approximations in conjunction with para-
meter-based rules for performing learning and planning.

4. An Architecture for Learning and Planning
with Approximations

The system is organized as illustrated in Figure 6. There are
three modes of operation. Input to the system is through the
approximate explanation-based learning component shown
in Figure 7. In the simplest mode, a goal is presented to the
system which already corresponds to apian in the knowledge-
base whose preconditions are satisfied in the current state of
the world. In this case, that plan is passed directly to the execu-

Figure 6. Approximation Architecture

Figure 7. Approximate Explanation-based Learning

live to be carried out. Secondly, a goal could be presented to
the system which doesn't correspond to any known plans. In
this case, an explanation is generated for how the goal can be

316

achieved in the current state. The explanation is then general-
ized and packaged into a general plan which is then saved and
passed on for execution. Lastly, a goal and observed action se-
quence can be given to the approximate EBL component
which then generates the explanation from both the goal and
the observed actions. This is the preferred mode of operation
of explanation-based learning systems because it can make
explanation construction an easier task. In this last mode, the
explanation is then generalized, packaged into a plan, saved,
and the plan is passed on to the executive.

The executive instantiates the execution sequence associated
with the plan with the appropriate bindings obtained from
evaluation of the plan's preconditions in the current state.
Many of these actions will be monitored, having sensor expec-
tations associated with them that define success or failure.
Should a failure occur, as defined by the expectations, the plan
refinementmodule is called to perform tuning of rule parame-
ters so as to decrease the chance of future failures. If no errors
occur, the system is ready for the next goal or goal/observation
pair.

We will now consider the components performing approxi-
mate EBL, execution andmonitoring, and parameter tuning in
more detail.

4.1. Approximate Explanation-based Learn-
ing

The explanation-based learning component of the system is
largely the same as those in other EBL systems which require
perfect world models, although the data includes declared ap-
proximations. The explanation-based component operates on
these as if they were data from a perfect world model. The
planner thus constructs plans treating the approximate data
like they were certain, reducing planning cost in comparison
to techniques that reason explicitly about the uncertainty. Of
course, because of the use of tunable parameter-based rules,
uncertainty-tolerant plans may be created. If the systemis be-
ing used to learn from observation, an explanation is con-
structed (planning) from both the goal and the observed ac-
tions. Consequently, only aspects of the observed actions
which are supported by the rules and data approximations be-
come part of the resulting explanation for goal achievement.

For instance, in opening a robotic gripper to surround an ob-
ject, the human operator of the robot opens slighüy wider. The
systems starts with initial constraints on the parameter for
gripper opening width which require only that the gripper be
open just as wide as the object. This coupled with the bias for
minimal movement causes a preference for opening only as
wide as the target object if the gripper is initially open less
wide. Consequently, the increased opening of the gripper, be-
yond the minimal opening width required, is perceived as ex-
traneous and is not part of the explanation for goal achieve-
ment and hence does not appear in the resulting general plan.
This is the desired behavior of an approximate EBL system.
On one extreme, the action sequence could have been repeated
literally in the plan. This would be highly non-general. On
the other extreme, extensive reasoning could have been done
using the available domain knowledge to construct the perfect
general plan from the observed actions. This would be intrac-
table. Thepurpose of an approximate model and tunablepara-
meter-based rules is to reduce this sort of inference. Natural-
ly, this approach requires a means for improving the imperfect
plans should failures occur.

4.2. Execution and Monitoring

In order for the system to improve its plans when they don't
perform well in the world, the systemmust have a monitoring
capability. It is important that the system be able to represent
what actions are to be carried out, what the expected outcome
of those actions is, why that outcome is expected, and when
the specified actions should be terminated. Figure 8 illustrates
the syntax of monitors in the current implementation. The
monitor specifies one or more coordinated actions which are
performed simultaneously. Expectations are specified which
are evaluated continually during execution, in the case of sen-
sor expectations, and are also checked after termination of the
action, in the case of expected features of a full sensor trace.
Terminations specify under which conditions the set of ac-
tions should be halted. Any monitored set of actions
employed in a plan must have its expectations justified. The
support field of a monitor specifies a predicate which, if prov-
en, justifies that the expectations will hold throughout execu-
tion of the monitor. Figure 9 gives a concrete example of a
monitor employed for closing the robotic gripper on an object.
The single action specified is for the gripper to begin closing

(MONITOR <actions> <expectations> <terminations> <support>)
A
I

j A set of primitive actions to j
I be executed concurrently j

j A DNF expression referencing built-in system |
I predicates, sensor values, and sensor trace features I

-i r

A
I
I
I
I
I

A
I

r J. _,
jHead of explanation sup-1
I porting expectations I

I which defines successful execution I I

j A DNF expression referencing built-in system predicates j
land sensor values which defines the termination condition!

for the set of actions I

Figure 8. Syntax for Monitored Actions

317

— Close Gripper Until Termination Met
Final force should exceed 50 units and final

(MONITOR (MOVE-GRIPPER 7GRIPPER32878 CLOSE 20 64 20 POSITION)
(AND (FINAL-FORCE GRIPPER 7GFFORCE32731)

(>?GFFORCE32731 50)
(FINAL-POSITION GRIPPER 7GFPOS32732) position should be such that the gripper
(> 7GFPOS327321)) didn't close on itself (otherwise failure).

(OR (AND (POSITION GRIPPER 7GPOS32733)
(PRINT (LIST (QUOTE POSITION) 7GPOS32733))
(QUäL- 7GPOS32733 0)) Terminate action if the gripper closes on

(AND (FORCE GRIPPER 7GFORCE132734) itself or if the force exceeds 60 units
(PRINT (LIST (QUOTE FORCE) 7GFORCE132734))
(> 7GFORCE132734 60)))

(STABLE-GRASP 7GRIPPER32878 7OBJECT32870 ((RELATIVE-FACE 7NAME132744 7X132762
7Y132763 7REF-ANGLE32779 7LEN132748) (RELATIVE-FACE 7NAME232749 7X232764 7Y232765 7REF-ANGLE32824

" ~_^_ Justification for the expectations is that a stable grasp
has been planned by the system.

Figure 9. An Example of a Monitored Action

from its current position. The expectation is that the final
force of the gripper on the object exceed 50 units and that the
gripper not close on itself. The action terminates when the
gripper exerts a force greater than 60 units on the object or the
gripper closes on itself. The expectation of feeling the object
between the fingers with force greater than 50 units is justified
by an explanation for why the planned grasp is stable (so the
object will not slip away as force is applied). The specification
of expectations as well as their justification facilitates attribu-
tion of execution failures to poorly set rule parameters. The
process by which parameters are tuned is discussed in the next
section.

4.3. A General Algorithm for Tuning Parame-
ters in Light of Failures

Given a goal, the system constructs an explanation for how
the goal may be achieved. This can be accomplished in either
an understanding mode, given an applied operator sequence,
or in a planning mode where the operator sequence is derived.
Rules involved in constructing the explanation include para-
meter-based rules as outiined above. Most of the facts
employed in constructing the explanation are data-approxi-
mate having been derived from sensed values from the real
world. In order for a monitored action to be achieved in the
explanation, a set of expected sensor values must be justified
by a further subpart of the explanation. The overall explana-
tion is then generalized using EGGS [Mooney86] and pack-
aged into a rule as with standard EBL systems. When the rule
is executed in the real world, those sensors described in the
monitored actions are observed. If the sensor readings ob-
served violate the constraints described in the monitored ac-
tions, plan execution has failed.1 In this case, the subpart of
the original explanation which justified the expected sensor
readings is suspect. Clearly, in the approximate model of the
world, no error was foreseen, otherwise the explanation would
not have been possible. This suspect subpart of the original

1. Parameter tuning in our system is driven based on expectation fail-
ure. This idea has long been advocated by Roger Schänk [Schank82].

goal

_explanation in
generalized form

explanation is the starting point for our general tuning algo-
rithm.

The tuning algorithm has two major steps:

1) generate a qualitative explanation for how the probability
of the failed expectation can be increased through tuning
of parameters in the rules employed and

2) perform the actual tuning of the indicated rule parame-
ters.

The key in accomplishing the first step is to express the rela-
tionships between generalized variables in the failing subtree
as qualitative relations. This will make possible qualitative
proofs which relate data-approximate quantities, rule param-
eters, and qualitative probabilities of success of the various
predicates. The procedure is primary
depicted graphically in Figure
10. First, the sub-tree of the
overall explanation
which supports the
failed expectations is
instantiated with the
generalized bind-
ing list which
EGGS produced
for the original goal expla-
nation. The predicates at
the root and leaves of this
sub-tree are asserted in a
new situation as quali-
tative relations. The
quantity arguments to
these predicates (which
are generalized vari-
ables) become quanti-
ties in our qualitative
model of the sub-proof.
Any data-approximate
quantities or rule param-
eters which took part in
the original explanation

sub-explanation
V supporting action whose

expectations were violated

assert root and leaves
of failed sub-tree as
qualitative relations

(pred argl arg2 arg3 ...)
1 quantities

named same
quantity ,. , ^ . ,, as generalized
variable . ,, variables

Figure 10. Generating the
Qualitative Model

318

and whose quantity variables are members of the set of gener-
alized quantity variables for the sub-proof are asserted as da-
ta-approximate and tunable quantities respectively in the cur-
rent situation. Once these facts have been asserted which
pertain to the specific proof tree, the goal of increasing the
probability of the root predicate to the sub-proof can be
proved using a set of domain-independent qualitative rules.

There are four classes of domain independent qualitative
rules used by the system for generating the qualitative tuning
explanation:

general qualitative inference rules
These are rules for inferring the effects of changes in quan-
tities. For instance, the qualitative proportionality predi-
cate (Q+ ?a lb) asserts that the magnitude of the quantity
lb directly influences the magnitude of the quantity la.
Therefore, one such inference rule states that to achieve
the goal of increasing la one could find a quantity lb for
which (Q+ la lb) holds and try to achieve the goal of in-
creasing lb.

qualitative predicate definitions
These rules provide qualitative representations for the
quantitative predicates employed in generating explana-
tions. For example, the predicate (diflql lq2 Prjisused
by the system for taking the difference between two quan-
tities (Iql and lq2) and computing the result {If). One of
several rules which form the qualitative predicate defini-
tion for the dif ^\t :form
predicate is (Q+ ?r ?ql)
shown on the . ^

tlfthe'UgS (qrelation <dif ?<n ?i2 ?r»
tude of the quantity Iql directly influences the magnitude
of the result Ir in a ^/predicate. These definitions and the
general qualitative inference rules described above are
similar to elements of Forbus' Qualitative Process Theory
[Forbus84].

approximation definition rules
Data-approximate quantities have properties which can
be expressed in a qualitative manner as discussed earlier
in section 2.

qualitative probability rules
These rules relate the probabilities of succes s of predicates
in a way similar to the general qualitative inference rules.
Proportionalities can be declared between the probabili-
ties of success of certain pairs of predicates as well as be-
tween the probability of success of a predicate and the
magnitude of a quantity. Using these proportionalities,
goals of achieving increases or decreases in probabilities
of success can be achieved. For example, the probability
of success of the antecedent to a rule is declared to have a
positive influence on the probability of success of the con-
sequent of a mle.

In order to see ho w the qualitative tuning explanation is con-
structed using these rules, it is important to understand how
qualitative probabilities of success are related to tunable quan-
tities. Quantitative predicates employed by the system have
one of two basic intents. Either they are calculation predi-
cates, whose purpose is to compute some value (e.g. the dif

function discussed earlier), or they are test predicates, which
are designed to fail for certain sets of inputs (e.g. the less-than
function). There is no way to vary the probability of success
of a calculation predicate since they always succeed. A test
predicate's probability of success, is sensitive to the probabili-
ty distribution of its argument quantities. In the diagram be-
low, the less-than test on the right has a higher probability of

(<abV? probability (<ab)?

succeeding given the illustrated probability distributions for
its arguments. While probability distributions are difficult to
define and work with, recall the simpler qualitative view of the
probability distribution defined decreasina^p^decreasing

central *'!
value =3^ for data approximations in sec-

tion 2: probability density de-
creases as one moves either higher or lower away from the
central value. The general definition for a data approximation
embodies this principle. The measured quantity is taken to be
the central value. Some distribution is present because of the
uncertainty involved. Without knowing any details about the
distribution, the definition for a data approximation states that
the probability of encountering the actual value for the mea-
sured quantity decreases as we get farther from the measured
approximate value. One of the approximation definition rules
regarding data approximate quantities is shown below
(rule :form

(PQ- (< ?test ?loc) ?test)
rants
(data-approx-quantity ?loc2)
(IQ+ ?loc ?loc2))

This translates to: if a less-than is being performed between
Itest and a quantity Hoc which is indirectly or directly quali-
tatively proportional to a data approximate quantity, the prob-
ability of the less-than succeeding is inversely proportional to
the magnitude of the Itest quantity.

Rules like this effectively translate goals to increase the proba-
bility of success of a predicate into goals to increase or de-
crease quantities.

In general, an explanation for positively influencing the
probability of a predicate proceeds so as to:
1. relate the probability of the failing predicate to that of a

test predicate involving data-approximate quantities
2. use the definition of a data approximation to relate the

probability of success of a test predicate with the magni-
tude of a tunable quantity

To guarantee that the probability of the failing predicate will
increase, all the test predicates in the rule antecedents must be
examined. At least one must show an increasing probability
of success and the others must be non-decreasing.

The tuning explanation, once generated, indicates only
which parameters to tune and in which direction. To carry out
the tuning as prescribed by the qualitative tuning explanation,
new constraints are imposed on the values of the indicated pa-
rameters. Figure 11 illustrates several possible scenarios
when constraints have been imposed on a rale parameter. If

319

the value at which the failure was suggested was originally
generated from one of the constraints or bounds on the param-
eter, the same general predicate expression is used for calcu-
lating it but the type of constraint is changed as necessary.
When constraints need to be posted between sets of existing
constraints, a new general expression is created using the gen-
eral expressions for the two surrounding constraints and using
the ratio between their specific values in the context of the fail-
ure. Once the new constraint has been added (or the old con-
straint changed) the quality function is re-computed and for
control parameters, the corresponding rules revised to reflect
the new quality function.

With constraint parameters, another decision also must be
made before tuning. When the qualitative tuning explanation
indicates that the tunable quantity related to a constraint pa-
rameter is the target for tuning, it is possible that the current
constraint rule had no say in the choice that failed. This is be-
cause constraint rules are combined using weights. If Inequal-
ity function of the current constraintparameter did give the se-
lected value a negative rating, the associated weight should be
tuned instead of the constraint itself. This serves to increase
the relative importance of a constraint which is already tuned
correctly. Since weights are scaled in the range 0 to 1, this
amounts to either tuning the indicated weight to be increased
from the current value or equivalently tuning all the weights
for the other constraints employed in the rating function to be
decreased from their current values if the indicated weight is
already set to 1.
Next, we introduce the robotic grasping domain which serves
as the first testbed for the approach.

Unconstrained

 , lower
"' bound

+
quality function

upper |
bound

With Increasing Constraint
quality function

+-*•=
, 1

With Opposing Constraints

+^*
•S quality function

**T+ x
X.

Constraint Types
-• Failure, Decrease = Better
V*" Failure, Increase = Better
| Bound

Figure 11. Three Possible Constraint Diagrams
Show Constraints on a Rule Parameter

5. An Example in the Robotic Grasping Do-
main

We are currently using a robotic grasping domain to test our
approach. Figure 12 shows the laboratory setup. The current

Camera

Robot
I Manipulator

Prab
RTX

Workspace

Pieces from a
puzzle for young

children

Figure 12. Laboratory Setup

implementation of the architecture is called GRASPER and is
written in Common Lisp running on an IBMRT125. GRASP-
ER is interfaced with a frame grabber connected to a camera
mounted over the workspace. The camera produces bitmaps
from which object contours are extracted by the system. The
system also controls an RTX scara-type robotic manipulator.
The RTX has encoders on all of its joint motors and the capa-
bility to control many parameters of the motor controllers in-
cluding motor current. This gives the system a rudimentary
capability of detecting collisions with the RTX gripper. If
enough current (force) is applied to the motor to overcome
friction of the joint and the position encoder indicates no
movement, an obstacle must have been encountered. This
type of sensing gives feedback during execution of a plan
when the camera's view of the workspace would otherwise be
obscured. This precise control of the manipulator is ideal for
carrying out monitored actions in the world.

For the robotic grasping task, we are using plastic pieces from
puzzles designed for young children. These pieces have inter-
esting shapes and are large enough, yet challenging, to grasp.
The goal is to demonstrate improving performance at the
grasping task over time in response to failures. Some of the
failures the current implementation learns to overcome, when
using isolated grasp targets, include learning to open wider to
avoid stubbing the fingers on an objects, and learning to prefer
more parallel grasping faces to prevent unstable grasps.

Initially, the system uses the camera to acquire contour in-
formation about objects in the workspace. These contours are
then approximated with n-gons (internal data approxima-

320

(MONITOR (MOVE-GRiPPER 7GRIPPER32878 CLOSE 20 64 20 POSITION) ■*— close Gripper Until Termination Met
(AND f^oRcS2i^1GWORCEZ2in) ^ Final force should exceed 50 units and final

(FINAL-POSITION GRIPPER 7GFP0S32732) "~ position should be such that the gripper
(> 7GFPOS327321)) didn't close on itself (otherwise failure).

(OR (AND (POSITION GRIPPER 7GPOS32733)
(PRINT (LIST (QUOTE POSITION) 7GPOS32733))
(QUAL= 7GPOS32733 0)) ^ Terminate action if the gripper closes on

(AND (FORCE GRIPPER 7GFORCE132734) itself or if ftg force exceeds 60 UüitS
(PRINT (LIST (QUOTE FORCE) 7GFORCE132734))

(> 7GFORCE132734 60))) justification for the expectations is that a stable grasp

"Closing gripper for force 60" ^-"^ ^s been planned by the system.
(STABLE-GRASP 7GRIPPER32878 7OBJECT32870 ((RELATIVE-FACE 7NAME132744 7X132762

?Y132763?REF-ANGLE32779?LEN132748)(RELATIVE-FACE?NAME232749?X232764?Y23276S?REF-ANGLE32824
7LEN232753))))

Figure 14. The Failing Monitored Action

tions) which result in (n2-n)/2 possible unique grasping face
pairs. In runs performed here, n was set to 5. The data approxi-
mated object representations as well as the current informa-
tion about the state of the robotmanipulator are asserted in the
initial situation. The target object is then selected and an ex-
planation is generated for how to achieve a grasp of the target.
Figure 13 (automatically generated by the implementation)

actual piece
contour

/

data approximation
of contour

Figure 13. Grasp Target

shows the selected target object with the visually sensed con-
tour drawn with a heavy line. The light pentagon is the data
approximation for the object. The object approximation
employed here involves an algorithm which, in this case, tries
to find the best pentagonal representation using extremes on
the object contour. The arrows indicate the positions of the
leading edges of the fingers for the grasp position given by the
produced explanation (keep in mind that the system starts out
with a very unconstrained set of rule parameters). This partic-
ular grasping operation is taking place after the system has al-
ready learned to open as wide as it can to avoid an earlier fail-
ure where the finger struck the object while moving
downward.2 It learned this by imposing a constraint on the
opening-width rule parameter. The explanation for achieving
grasp-object involves a total of about 3 00 nodes with a maxi-
mum depth of 10 levels. The approximate rule employed in
the explanation forrating potential grasping faces on the angle
between them consults the quality function of the contact-
angle-constraint parameter. This rule is:

2. For a detailed example illustrating an instance of how the system
learned to open wider, see [Bennett90].

if *!

rule to return a rating of
the quality of the contact

angle between two
INTRA-RULE: R205 potential grasping faces

FORM:
(QUALITY-CONTACT-ANGLE-CONSTRAINT7GRIPPER

7CALC-CA 7RETURN)
ANTS:

(QUALITY-CHECK CONTACT-ANGLE-CONSTRAINT
(7GRIPPER 7CALC-CA) 7RETURN)

CONS:
APPROX: CONTACT-ANGLE-CONSTRAINT

initially flat quality function for
the contact-angle-constraint -
parameter rates all contact

angles equally

The contact-angle-constraint parameter is initially con-
strains the angle between grasp faces to be less than the arc-
tangent of the friction coefficient (45 degrees for the approxi-
mate friction coefficient of 1 initially assigned here). All
angles below this level are rated as equally good. After the ex-
planation was generated, and its associated operator sequence
executed, the monitored action, shown in Figure 14, encoun-
tered a violation of the expected sensor readings. The original
explanation for the stable-grasp goal, indicated in the failing
monitored action, is now suspect due to the violated expecta-
tions. A sketch of the specific explanation is shown in Figure
15. This explanation for why a stable grasp should have been
achieved is the starting point for developing the qualitative
tuning explanation. The generalized consequents and ante-
cedents of the stable-grasp subproof are asserted as qualita-
tive relations. Approximate quantities employed in the sub-
proof are identified and asserted as such. A proof is then
constructed for increasing the probability of success of the
stable-grasp goal. Figure 16 shows the qualitative explana-
tion for how preferring a smaller contact angle positively in-
fluences the probability that a stable grasp will be achieved.
Table 1 gives the semantics for the predicates employed in the
explanation. The topmost left-hand subtree establishes that
the probability of the < = test predicate can influence the prob-
ability of the stable-grasp goal because it is an antecedent of

321

(STABLE-GRASP GRIPPERl OBJECT494 ((RELATIVE-FACE FACE495 -18.2 -11.5 64.8 18.79)
(RELATIVE-FACE FACE496 -10.2 -19.0 184.76 24.08)))

(CONTACT-ANGLE ((RELATIVE-FACE FACE495 -18.2 -11.5 64.8 18.79)
(RELATIVE-FACE FACE496 -10.2 -19.0 184.76 24.08))
42.087609999999984)

" Sub-proof of 19 Built-ins

(MATERIAL GRIPPERl SMOOTH-PLASTIC)

(MATERIAL OB JECT494 SMOOTH-PLASTIC)

(FRICTION-COEFFICIENT SMOOTH-PLASTIC SMOOTH-PLASTIC 1)

(DEGATAN1 1 45.0)
(<= 42.087609999999984 45.0)

Figure 15. Explanation Specific to Failure

(PS-mcsG) all quantities are named using
variable names from the general rule

(P+ SG (<= B32891 FANGLE32742)) (PS-INC (<= B32861 FANGLE32742))

(ANTECEDENT-OF SG (<= B32861 FANGLE32742))

(PQ- (<= B32861 FANGLE32742) B32861) (DECREASE B32861)

(APPROX-OUANTITY FRIC32741) (IQ+ FANGLE32742 FRIC32741)

(QRELATION (FRICTION-COEFFiaENT MAT132739 (TUNABLE B32861)
MAT232740 FRIC32741)) (IQ+ B32861 B32861)

(DATA-APPROXIMATION (FRICTION-COEFFICIENT MAT132739 MAT232740 FRIC32741) FRIC32741)
I 1
1 Where SG represents the failing predicate:

| (STABLE-GRASP GRIPPER32730 OBJECT32736 ((RELATIVE-FACE NAME132744 X132762 |
| Y132763REF-ANGLE32779LEN132748) (RELATIVE-FACE NAME232749X232764Y232765REF- |
I ANGLE32824 LEN232753)))) I

Table 1. Predicates Employed in the Tuning
Explanation of Figure 16

(PS-INC ?pred)
the probability of success of?pred is influenced positively

(P+ ?predl ?pred2)
the probability of success of?pred2 influences the
probability of success of?predl positively

(ANTECEDENT-OF ?predl ?pred2)
?pred2 is an antecedent of?predl in the rule being analyzed

(PQ+ ?pred ?quant)
the magnitude of the quantity ? quant influences the
probability of success of ?pred positively

(INCREASE ?quant)
the magnitude of the quantity ?quant is influenced positively

(APPROX-QUANITTY ?quant)
?qant is an approximate quantity from a data approximation
(not controllable by the system)

(IQ+?ql?q2)
the magnitude of quantity ?q2 indirectly influences the
magnitude of quantity ?ql positively

(TUNABLE ?quant)
the magnitude of quantity ? quant is a tunable rule pa-
rameter

the rule. The right-hand subtree establishes that the probabili-
ty of the <= can be positively influenced through a decrease

Figure 16. A Qualitative Tuning Explanation

in the contact angle between faces. The IQ+ predicate is a
built-in predicate for establishing transitive relations between
quantities. It consults the body of qualitative proportionalities
which hold in the current situation

The qualitative tuning explanation indicates that a smaller
contact angle should be preferred in choosing grasping faces.
Figure 17 illustrates the contact-angle-constraintparameter's
constraint diagram before (top) and after (bottom) tuning has
occurred. After tuning, the associated rule rates contact faces
using the new quality function for the contact-angle-con-
straint parameter and chooses a grasp position such that the
two faces to be contacted are closest to parallel.

Figure 18 shows results from the first test of our current ver-
sion of the parameter tuning algorithm. All 12 pieces from one
puzzle were used in the experiment. Piece orientations and the
order of presentation were chosen atrandom. Grasping targets
were presented in isolation from other pieces. On the left is
performance without parameter tuning on failure. Finger
stubbing failures occurred on most of the pieces because the
gripper only opened as wideasthemodel of the piece dictated.

322

Contact-Angle-Constraint (Initial)

t
quality function

 I parallel faces /l_

--1

faces at maximum angle for the initial friction
coefficient (in the example, friction coefficient
of 1 and 45 degrees)

Contact-Angle-Constraint (After Tuning)

I ~~~ — ^— quality function

-fc ^^
 parallel faces are ideal

posted constraint:
prefer smaller
contact angles

Figure 17. The Contact-Angle-Constraint
Approximation Before and After Tuning

Therefore, various errors in positioning of the piece and grip-
per as well as the approximation of thepiece shape contributed
to failures of this variety. Two of the twelve pieces presented
were succes sfully grasped. One grasp failed because the piece
slipped away when the gripper was closed, indicating that a
stable equilibrium grasp was not chosen. The results when pa-
rameter tuning was employed were much better. Since the
pieces were presented in isolation, after the system learned to
open wider, that was sufficient to prevent stubbing fingers on
the object in all of the remaining trials. Vertical slipping fail-
ures did occur on the second and third trials, however. The
system doesn't have a complete model of the piece beyond its
contour and has insufficient knowledge to explain a failure in
the vertical dimension. These failures occur when the piece
pops up when the gripper squeezes because either of tapering
of the sides or flex of long narrow sides of the piece. We plan

12

to add a more complete model of the piece, using model-based
vision, to permit these types of failures to be explained. In the
fifth trial, the piece slips out of the gripper fingers during clos-
ing and the system learns to prefer the most parallel grasping
faces it can find. This strategy succeeded on the rest of the
pieces in trials seven through twelve.

6. Future Directions
For a planning system to able to function effectively in a do-
main where uncertainties arise, it is important that it be able
togenerateuncertainty-tolerantplans. Itisalsoimportantthat
in complex domains it be possible for the planner to be able
to generate these tractably. Our architecture for planning with
approximations addresses both of these important problems.
The most important areas we are now addressing involve the
development of a theory of when parameter tuning, in general,
is worthwhile, when tuning a particular parameter can be det-
rimental, and studying the performance and generality of our
approach.

One important theoretical problem to be investigated involves
when tuning should take place. Tuning a parameter for one
particular observed failure, despite the rarity of that type of
failure, may unnecessarily compromise performance on later
encountered, but much more likely, failures. There are many
desirable qualities for a real-world plan. A system performs
better with plans which are uncertainty tolerant, whose pre-
conditions are efficient to check, whose actions are efficient
to carry out, and several other factors. These are all part of a
real-world plan's operationality [Bennett89]. The current
tuning algorithm assumes all failures are worth having the pa-
rameters tuned, consequently affecting the revised plan's op-
erationality. A more intelligent algorithm would tune a pa-
rameter only if it believed there was a high likelihood of the
tuned parameter preventing other failures in the future. This
would prevent possible adverse effects on plan operationality

p$~S
ES~"
f

j*
/

/
/s

1 2 3 4 5 6 7 8 9 10 11 12

Trials Without Tuning

FS

Down

Finger stubbing failure

LS

Lateral slipping failure

^-

Up

vs i~
Down

Vertical slipping failure

12

11

10

9

8

7

6

5

4

3

2

1

I tuning occurs here .

Ä' [at this time, no knowledge ■
■* about vertical slipping

failures has been included J

*- r
1 2 3 4 5 6 7 8 9 10 11 12

Trials With Tuning

Figure 18. Comparison of Tuning to Non-tuning in Grasping
the Pieces of a Puzzle

323

if the improved payoff in error tolerance was minimal. There
are several possible approaches to recognizing the signifi-
cance of a gain in error tolerance. One approach is strictly em-
pirical whereby data is obtained on the likelihood of different
types of tasks and situations in the domain. If a failure is en-
countered with a task and situation of low likelihood, the sys-
tem would decide if it was below some threshold and simply
not perform the tuning. Another interesting possibility is to
have a weak theory of the types of errors likely to manifest
themselves in the domain. Furthermore, some types of errors
are more likely to be specific to a certain object or type of ob-
ject than all the objects as a whole. Such a theory could repre-
sent this as well and help to explain when the failure was sig-
nificant enough to trigger tuning of the parameters.
Another important problem we are working on involves the
possibility of overtiming one particular parameter. Even if the
observed failure is determined to be worthwhile tuning, be-
cause it presumably is a common failure type, there may be an
adverse effect in tuning the parameter which must be tuned to
prevent that failure. This is because that parameter may have
already been tuned to prevent a previous failure in such a way
which opposes the tuning suggested by the current failure.
This is either evidence that another parameter would be a bet-
ter one to tune or that there is something different in this world
situation which has been ignored by the system. That is, that
the parameter is really being used in a different context now.
If such a situation is recognized, the goal should be to distin-
guish this situation from the one which lead to the previous
tuning. Then, the one parameter would be split into two, one
for each context. The first would retain the previous learned
tuning and the second would include the proper tuning for the
failure just discovered. The effect is to split what was pre-
viously considered by the system to be one context into two
separate contexts. We refer to this process as context-split-
ting.

7. Acknowledgments

I would like to thankmy advisor, Gerald DeJong, particular-
ly for recent discussions on characterizing data approxima-
tions. Seth Hutchinson was also very helpful in discussions
on planning for uncertainties in robotics. This research was
supported by the Office of Naval Research under grant
N-00014-86-K-0309.

References

[Bennett89] S. W. Bennett, "Learning Uncertainty Tolerant
Plans Through Approximation in Complex Domains,"
M.S. Thesis, ECE, University of Illinois, Urbana, n., Jan-
uary 1989. (Also appears as Technical Report UILU-
ENG-89-2204, AI Research Group, Coordinated Sci-
ence Laboratory, University of Illinois at
Urbana-Champaign)

[Bennett90] S. W. Bennett, "Reducing Real-world Failures
of Approximate Explanation-based Rules," To Appear in
the Proceedings of the Seventh International Conference
on Machine Learning, Austin, TX, June 1990.

[Brooks82] R. A. Brooks, "Symbolic Error Analysis and
Robot Planning," Memo 685, MIT AI Lab, Cambridge,
MA, September 1982.

[DeJong86] G. F. DeJong and R. J. Mooney, "Explanation-
Based Learning: An Alternative View," Machine Learn-
ing 1,2 (April 1986),pp. 145-176. (Also appears as Tech-
nical Report UILU-ENG-86-2208, AI Research Group,
Coordinated Science Laboratory, University of Illinois at
Urbana-Champaign.)

[Donald90] B. R. Donald, "Planning Multi-Step Error De-
tection and Recovery Strategies," International journal
of Robotics Research 9,1 (February 1990), pp. 3-60.

[Forbus84] K. D. Forbus, "QualitativeProcess Theory," Ar-
tificial Intelligence 24, (1984), pp. 85-168.

[Hutchinson90] S. A. Hutchinson and A. C.
Kak, "Spar: A Planner That Satisfies Operational and
Geometric Goals in Uncertain Environments," Artificial
Intelligence Magazine 11,1 (1990), pp. 30-61.

[Lozano-Perez84] T. Lozano-Perez, M. T. Ma-
son and R. H. Taylor, "Automatic Synthesis of Fine-Mo-
tion Strategies for'Robots,"International Journal ofRo-
botics Research 3,1 (Spring 1984), pp. 3-24.

[Mitchell86] T. M. Mitchell, R. Keller and S. Kedar-Cabelli,
"Explanation-Based Generalization: A Unifying View,"
Machine Learning 1,1 (January 1986), pp. 47-80.

[Mooney86] R. J. Mooney and S. W. Bennett, "A Domain In-
dependent Explanation-Based Generalizer," Proceed-
ings of the National Conference on Artificiallntelligence,
Philadelphia, PA, August 1986, pp. 551-555. (Also ap-
pears as Technical Report UILU-ENG-86-2216, AI Re-
search Group, Coordinated Science Laboratory, Univer-
sity of Illinois at Urbana-Champaign.)

[Schank82] R. C. Schänk, Dynamic Memory, Cambridge
University Press, Cambridge, England, 1982.

324

Explanation-Based Control: An Approach to
Reactive Planning in Continuous Domains*

Gerald DeJong
Computer Science Department and the Beckman Institute

University of Illinois
UrbanalL 61801

ABSTRACT
This research grew from frustrated attempts to design an
AI planning system to solve a number of every-day
real-world planning problems. Beneath these failures
lurked a concern that current symbolic (i.e.,
non-connectionist) AI planning approaches could never
lead to adequate solutions. Applying current techniques
to continuous domain problems feels a bit like trying to
change a light bulb with a screwdriver; the tool, though
fine for other applications, seem singularly inconvenient
for this one. Neurally-inspiried approaches face equally
daunting problems. Primary among these are the great
size of the network with the concomitant high training
costs (both in time and number of training instances
required), and their rather limited ability to benefit from
existing background knowledge, especially background
knowledge of a symbolic form.

Instead, the approach is inspired by Control Theory,
which has a long and successful history of dealing with
continuous real-world problems. The approach can be
seen either as extending AI planning with plausible
inference and a control theory-inspired ontology, or as
providing an automated AI solution to the identification
problem [Truxal61] of control theory resulting in a kind
of intelligent adaptive control. The research reported
here is not proposed as a general substitute for current AI
planning approaches. Rather, it suggests a new direction
by which symbolic AI may extend its war chest of
planning techniques.

Planning in continuous domains presents difficult
problems for conventional planning approaches. Not the
least of these is the need for reactivity. This paper
investigates a direction in planning research that takes its
inspiration from control theory. There are no "operators"
as such with effects and preconditions that transform
world states. The approach involves plausible
explanation-based learning using a background domain
theory of qualitative descriptions. Direct experience with
the world refines and calibrates the generalized plausible

The research reported in this paper was supported by
the Office of Naval Research under grant number
N0001486-K-0309

explanations. The approach offers anatural integration of
qualitative with quantitative reasoning and also
explanation-based learning with empirical learning to
acquire effective strategies for achieving goals in
continuous domains.

1. Introduction
Planning in AI has traditionally been treated through
some kind of calculus for articulated actions. A plan is
viewed as a set of actions that transform a given initial
world state into a world state satisfying some goal. Thus,
a planning problem is a triple of an initial state, a goal
relation, and a set of operators. The process of planning
consists in discovering a set of operators together with
sufficient constraints to guarantee thatthe goal is satisfied
in the final world state [Chapman87, Genesereth87].

In one guise or another this view is nearly universal in
conventional AI approaches to planning. The underlying
notion of actions that are executed to alter the world has
pervaded work in classical planning [Fikes71, Laird86,
Wilkins88], as well as reactive planning [Agre87,
Firby87, Gervasio89, Schoppers87], opportunistic
planning [Hammond88], incremental planning
[Chien89], and multi-agent planning [Georgeff86].

Traditional operators are characterized by their
preconditions and effects (whichmay be conditional e.g.,
[Pednault88]). It is understood that an operator may be
applied to any world state in which its preconditions are
satisfied, resulting in a different world state. Often this
transition is modeled as timeless or instantaneous
[Fikes71, Wilkins84] although increasingly it has been
found that temporal reasoning is needed to adequately
describe the world [Allen83, Dean83, McDermott82,
Shoham86a, Vere83]. For some domains even this sort of
temporal reasoning does notgo far enough. In particular it
is insufficient for continuous domains. An exception is
the work of [Sandewall89] and [Dean90]. Their approach
involves including integral and differential calculus
constructs in an otherwise-conventional temporal
reasoning system.

Nearly all domains have some continuous attributes.
Such attributes, or at least their continuity, can often be

325

neglected. Unfortunately, forcing the continuous facets
of a domain into a discrete action mold can result in
spurious complications. These often surface in the guise
of the frame problem [McCarthy69]

The problem is in large part due to what we will term the
discrete action assumption which states that changes in
the world are due to temporally bounded applications of
operator instantiations (actions). While often adequate,
the view of changing the world through actions can
introduce unnecessary (and sometimes insurmountable)
obstacles.

To illustrate, consider the following scenario: An
airplane is on the correct glide slope to land but with an
airspeed that is 10 knots too fast.

The pilot gently begins to close the throttle. A
moment later he eases back on the control yoke
(the pilot's steering wheel) deflecting the
elevator up and increases the plane's angle of
attack. He stops closing the throttle and then
holds the yoke steady once again. The plane
slows while maintaining its current glide slope.

In this example gentle and continuously coordinated
changes in throttle and elevator controls are essential.
Closing the throttle slows the plane but also reduces the
amount of lift that the wings are producing. Alone, this
would steepen the glide slope. The undesirable side
effect is counteracted by pulling back on the yoke which
increases the angle of attack and produces more lift.
These actions cannot be modeled as instantaneous. A
temporal reasoning approach can help some but at a
rather substantial cost. A temporal system would
correctly recognize that the two intervals defined (one for
closing the throttle and one for moving the elevator) in
fact result in three important intervals: 1) throttle
changing alone, 2) both throttle and elevator changing, 3)
elevator changing alone. However, temporal reasoning
does not ameliorate the cost of managing what happens
during the second interval in which both the throttle and
elevator controls change. A separate operator must exist
that specifies how the combination of these two actions
affects the world. Compound effects cannot in general be
deduced from the effects of the simple constituent
operators. The domain theory implementor must have
anticipated the need for the combination operator.
Indeed, a separate combination operator is needed for all
such possible composite actions. In worst case this results
in an exponential increase in the number of operators to
be defined (the power set of the primitive operators). The

planning problem with all of the combination operators is
much more difficult since many more operators will
appear to be relevant to accomplishing any given goal.

Even if all relevant combination operators could be
anticipated and defined, planning is problematic. Many
of the parameters (e.g., current engine oil viscosity) are
difficult or impossible to know. Thus, an individual
operator's effect may not be precisely predicted, nor can
its preconditions be guaranteed. This greatly complicates
planning. Somehow, people are able to successfully find
solutions in these kinds of situations. Given a little
practice, they have no trouble coordinating actions; they
effortlessly ignore irrelevant parameters; they appear to
assume reasonable values for unknowable parameters
while implicitly relegating their planning behavior to
those situations in which their approximations hold.

Control theory offers an intriguing alternative model for
world change. Instead of operators and effects, the world
is seen as an on-going process to be controled through the
manipulation of certain inputs. The world imposes
inter-relatioinships among the values of a collection of
real-valued quantities. The planning problem, in this
light, is seen as a strategy for manipulating input
quantities in such a way as to bring about desired changes
in other world quantites. It is this approach to world
change that we adopt.

2. A Representation for Continuous Changes
The primary techniques used to wed artificial intelligence
and control theory are qualitative reasoning and
explanation-based learning. Qualitative representations
are used to mediate between numerical values and the
symbolic domain knowledge of how they relate.
Plausible explanation-based learning is used to
automatically conjecture control analyses from the
observation of an expert's behavior and later to refine
these control strategies when deficiencies are observed in
the course of exercising the planning system.

The continuous aspects of the world are called quantities.
(The term has a similar meaning in both qualitative
reasoning [Forbus84] and control theory [Kuo87].
Examples of quantities are the position of the aircraft's
throtüe, the fuel flow through the intake manifold, the
wing's angle of attack, and the speed of the plane.
Quantities a) take on real values, b) are continuous, andc)
may have limited extreme values. In general many world
quantities are changing simultaneously. Some quantities
can be directly manipulated by the planner (for example,
the aircraft's throtüe position or the setting of a radio's
volume control). We call these quantities controllable
parametric quantities (or controllable parameters). The

326

corresponding control theory term is input variables
(which has a rather different meaning in computer
science.) Thus, we use the new more descriptive term. As
the controllable parameters are varied, values of other
world quantities react in accordance with the laws of
nature. Quantities which can only be indirectly
manipulated are called internal quantities. Examples of
these are the speed of the aircraft, the wing's angle of
attack, the descentrate, etc. In control theory these values
are usually encoded in the state of the system. One other
kind of quantity is termed a non-controllable parametric
quantity. These are quantities which, like controllable
parameters, determine the values of internal quantities,
but, unlike controllable parameters, cannot be
manipulated by the planner. An example of a
non-controllable parametric quantity in the aircraft
domain is the air density. The density of the air
surrounding the aircraft cannot be manipulated either
directly or indirectly, but it significantly alters the
aircraft's flying characteristics.

Continuous world changes are more appropriately
represented as a graph of simultaneous quantity values
rather than as a sequence of discrete world states. We call
these graphs quantity profiles. They are similar in spirit to
event shape diagrams [Borchardt84, Waltz82]. Example
quantity profiles for a simplifies automobild domain are
shown in figures 1,2, and 3.

The planning problem, viewed in this way, is as follows:
given an initial state of the world (initial values of
quantities), goal values for some internal quantities, and
knowledge about how quantities interact, find a
consistent profile of changes of the controllable
parameters which when combined with the values of the
non-controllable parameters brings about the desired
internal quantity changes. The aircraft example above
falls into this mold: given the initial positions of the
aircraft controls, the heading, the altitude, etc. of the
aircraft, find a manipulation of the controls that (for the
current air temperature, air density, wind conditions, etc.)
reduces the speed by 10 knots while preserving the
current angle of descent.

3. The Approach
The approach we take is to rely on Explanation-Based
Learning (EBL) over a. plausible and qualitative domain
theory to learn about and exploit domain characteristics.
Learning produces new planning constructs which are the
continuous analog of EBL-acquired schemata
[Mooney88, Segre87, Shavlik88] (generalizations of
macro-operators).

Briefly, the learning algorithm involves 1) observing an
expert who solves a problem currently beyond the
system's capabilities, 2) constructing a plausible
qualitative explanation for why the expert's actions result
in the desired effect, 3) generalizing the explanation in
standard EGGS fashion [Mooney86], and 4) fitting
observed quantitative points to the resulting general
qualitative concept. The new concept can be used
efficiently in planning the achievement of similar future
goals.

More formally, at any instant in time, the current state of
the continuous world is given by a point in
N-dimensional space, one dimension for each of N
quantities in the world. As the world changes, the values
of the quantities change in a continuous fashion, and so
the point traces out a continuous trajectory in N-space.
The trajectory is constrained to lie on a (possibly rather
complicated) hyper-surface which characterizes the laws
of Nature. Suppose there are P parameters. We can more
conveniently characterize the constraints inherent in the
complicated N-space world hyper-surface as N - P
different hyper-surfaces each in P+l dimensional space
where each of these latter hyper-surface characterizes
ho w a single one of the N - P internal quantities depends
on the P parameters. The relationship of the internal
quantity to the parametric quantities is functional. That is,
for each combination of values assigned to theparameters
there is at most one value that each internal quantity can
have. This derives from the assumption that the world is
deterministic. Thus, each internal quantity is precisely
characterized by a P dimensional functional surface in a
P+l dimensional space.

In general, a planning goal is the specification of a profile
of continuous coordinated values for a subset of the
world's internal quantities over some time interval. A
plan is a profile over a time interval of continuous
coordinated values for a subset of the world's controlable
parametric quantities. It is seldom necessary or desirable
to generate a full plan prior to execution. Rather it is better
to make the final decisions about contolable parameter
adjustments during execution. This reduces the need to
accurately predict the values that relevant
non-controlable parameters will have during execution.
Instead, currently observed values of the non-controlable
parameters can be used. The system's reactivity derives
from this use of execution-time monitored values of the
world in selecting what to do next.

Before discussing planning in this formalism, consider
the characterization of a particular value for a chosen
internal quantity. Such a value corresponds to the
intersection in P+l dimensional space (with P

327

dimensions for the parameters and one for the internal
quantity) of the chosen function and a P-dimensional
hyperplane intercepting the internal quantity axis at the
desired value and parallel to each of the parameter
coordinate axes. If the goal hyperplane does not intersect
the function, then the internal quantity cannot take on that
value. If there is an intersection, it will, in general, be a
P-l dimensional surface capturing the constraints
imposed by both the hyperplane and the function. The
goal hyperplane constrains the internal quantity to the
desired value; the surface enforces consistency between
the internal quantity value and the parameter values. In a
world with more than one parameter, the "solution" can
be underdetermined; any point on the intersection
suffices. Since the number of parameters can be very
large indeed, the solution may be extremely
underdetermined.

Now consider the problem of achieving a particular value
for a single internal quantity. Further, suppose we do not
care what intermediate values the internal quantity takes
on. The current state of the world is fully specified and
specifies a point on the surface of the selected internal
quantity's function (corresponding to the current values
for all P parameters.) The goal, if achievable, is the P-l
dimensional contour described above. Any countour
along the function's surface that connects the current
world point to the goal contour is a candidate plan.

Mathematically, the comitment to solve a simple problem
of the above form (achieving a particular value for an
internal quantity) adds a constraint to the
underdetermined system which specifies the world's
possible futures. The resulting system will in general still
be (grossly) underdetermined. As the goal is made more
complex (e.g., by requiring intermediate values for the
internal quantity or by insisting on the coordinated
behavior of other internal quantities), additional
constriaints are imposed on the system.

After taking into account all of the goal's constraints, any
remaining underdeterminism can be resolved arbitrarily.
One obvious strategy is to select, at each time point,
changes to the controlable parameters within the
remaining constraints that give the greatest decrease in
the distances (measured along the various internal
quantity functions) to the goal.

In fact, underdetermination is a great advantage for
reactive planning. For if the system were determined,
there would be only one future that achieves the goal.
This means values for the non-controlable parameters
have been perscribed. If it happens that Nature chooses

other values for the non-controlables the planned
solution fails. As long as the system is underdetermined
there is hope for effectively reacting to unanticipatable
changes in the values of non-controlable parameters.

3.1. Plausible Qualitative Explanations
The plausible explanation is constructed from the
system's domain theory. The domain theory is loosely
based on Forbus' QualitativeProcess Theory [Forbus84].
We use the qualitative predicates INCREASING,
DECREASING, and CONSTANT which denote a
relation between a quantity and a time interval. They are
true in justthose cases in which the value of the quantity is
monotonically increasing, monotonically decreasing, or
constant respectively over the entire time interval. The
qualitative predicates GREATER-THAN,
LESS-THAN, and EQUAL are relations between two
quantities and a time interval. They are true if the value of
the first quantity has the mathematical relation >, <, =
respectively to the value of the second quantity over the
entire specified interval. Finally, and most interestingly
are the two qualitative proportionality predicates Q+ and
Q-. The names and inspiration for these are from
Qualitative Process Theory, but the semantics of Q+ and
Q- are somewhat different here.* In Qualitative Process
Theory Q+ and Q- have meaning only after the world of
qualitative relations has been closed by assumption. That
is, drawing and inference using any is contingent on
knowning all fo them. We are making no such
assumption. (Q+ ql ql i) is to be thought of as the
conjunction of:

(INCREASING ql i) => (INCREASING ql i) and
(DECREASING ql i) => (DECREASING ql i)

while (Q- ql ql i) is short for

(INCREASING ql i) => (DECREASING ql i) and
(DECREASING ql i) => (INCREASING ql i)

The symbol "=>" denotes plausible (not logical)
implication. Its new semantics raises many issues that are
only beginning to become clear but in any case cannot be
treated here. Think of the consequent of a plausible
implication as not logically entailed, but only plausibly
supported. Domain knowledge is coded in the form of
processes. Each process has preconditions and a body.
The body specifies a set of qualitative proportionalities
among quantities. Over intervals in which the
preconditions of a process are met, the process is active
and its plausible qualitative proportionalities are
available for explanation construction. Multiple
processes may be active at once. An explanation for an
internal quantity specifies a set of qualitative

328

proportionalities from the active processes which justify
the observed qualitative behavior ofthat internal quantity
in terms of observed qualitative behavior of parameters.
There may be many different explanations possible for an
observed behavior.

In the example below there are two processes. One,
ENGINE-RUNNING, has as a precondition that the
engine be running, which may be inferred if there is gas in
the tank, ignition switch on, etc. It specifies plausible
knowledge such as that the engine REV's are positively
qualitatively proportional to the gas pedal position. The
second process, CAR-MOVING, is when the car's
speed is greater than zero. It specifies things like how the
brakes work (we assume no power assist in braking in our
simple automobile) and what happens going up or down
hills. If we observe the expert's car slowing down while
the expert simultaneously lets up on the gas, depresses the
brake, rolls up the window, and coasts up a hill, the system
may plausibly attribute the slow down to the hill, or the
gas, or the brake, or any combination of them. There is no
plausible inference chain linking rolling up the window
to the slow down. If the expert had killed the engine (say
he turned off the ignition) prior to slowing, the gas pedal
manipulation would no longer be included in a plausible
explanation since some crucial proportionalities are
derived from the ENGINE-RUNNING process which
is not active.

Explanations are generated in a most-plausible-first
ordering. The a priori plausibility of of an explanation is
derived from the plausibility ratings of the component
qualitative proportionalities. In the current
implementation, all qualitative proportionalities are
considered equally plausible and "most-plausible"
becomes the same as "simplest". Given an observation of
an expert's planning, such as in figure 1, the system
constructs the simplest explanation that accounts for the
qualitative behavior of the automobile's speed. This
explanation is generalized and used for planning.

Of course, the first explanation may not be the correct
explanation. If it is incorrect or incomplete, the solution it
proposes to solve some later planning problem may fail.
At that time the explanation is refined to be consistent
with both the old and new observations. It is generalized
into a replacement planning concept.

This refinement-on-demand of the planning concepts
means that the system cannot guarantee that its plan
solves the problem it is given. Any solution may be a
failure signaling the need for further refinement. Indeed,
there wouldseemto be thepossibility thatrefinement will

continue indefinitely with the planner never approaching
any level of competence. It can be shown that for a
problem distribution, the learning algorithm converges
although to a set of adequate (not necessarily correct)
planning concepts.

3.2. Quantifying the Concept
A purely qualitative representation is not easily used to
solve the planning problem. (Although see [Hogge87] for
an interesting but computational intensive approach.) A
planner must produce a solution qualitatively precise
enough to execute in the world.

The quantitative planning concept is an approximation to
the internal quantity function Nature uses in the world to
compute the quantity's value from the parameter values.
It is approximated by numerical interpolation from
observed points.

The qualitative explanation provides two extremely
important constraints on the quantitiative interpolation
function. It A) identifies the parameters that are relevant
to achieving the specified goal and B) assures a strong
constraint on how the internal quantity value may change
with parameter changes: the internal quantity's function
must be monotonic in each of the identified parameters.
The monotonicity is computed through transitivity of
qualitative proportionalities (Q+ and Q-) in the
explanation.

Provided the qualitative explanation is correct, the
system has identified all of the relevant arguments to the
internal quantity function and also determined the
function's asymptotic behavior. The original observation
of the expert provides a number of quantitative sample
points. About 50 such samples make up figure 1. Each
sampled point contains numerical values of all the
quantities at each instant. Values for the internal quantity
of interest together with just the relevant parameters (as
identified by the qualitative explanation) are extracted
from each observed point. These tuples must fall on the
function's surface and they must obey the function's
asymptotic constraints. If any does not, the conjectured
qualitative explanation is not adequate to describe the
planning situation. The original explanation is rejected
and the next-most-plausible explanation consistent with
the new observation is substituted.

At every planning instant the actual achieved value (from
the finite difference simulator) is compared to the value
predicted from the approximated surface. The surface is
refined if the difference is beyond a pre-specified noise
level s. This means that within trial learning occurs and,
more importantly, that the remainder of the plan is

329

constructed reactively from the actual value rather than
the predicted value of the internal quantity.

The current implementation employs piece-wise linear
interpolation among points. Observed data points that are
within e of the interpolation surface do not contribute.

4. An Example

The domain that will concern us in the remainder of the
paper (one of three that the implemented systemhas been
tested on) is planning to achieve different speeds in a
simplified single-gear manual transmission automobile.
The "real world" automobile is, in fact, a finite difference
numerical model whose difference equations directly use
the values of controllable parametric quantities.

The planner can directly manipulate the setting of the
controllable parameters (gas, clutch, brake, window
position, air conditioner setting, etc.). However, the
settings cannot be changed instantaneously. There is a
small maximum rate of change of the controllable
parameters specified to the system. Any rate of change
(positive or negative) up to that amount may be selected at
any time point. The automobile can be "driven" by the
system or an expert using keyboard and mouse input.
Both are subject to the same maximum-rate-of-change
constraints.

The system is implemented in LUCID CommonLisp on
an IBM RT. There is but a single explanation interval so
the time interval arguments are omitted for simplicity.
The background domain theory contains two processes.
The ENGINE-RUNNING and CAR-MOVING
processes are:

ENGINE-RUNNING
PRECONDITIONS: (RUNNING ENGINE)
BODY:

(Q+ GAS-FLOW GAS)
(Q+ REVS GAS-FLOW)
(Q+ SPEED REVS)
(Q+ AIR-MOVEMENT FAN)
(Q- AIR-TEMP A/C-SETTING)
(Q+ ENGAGEMENT CLUTCH)
(Q+ SPEED ENGAGEMENT)
(Q- REVS ENGAGEMENT)
(Q+ TEMP SPEED)
(Q+ REVS TEMP)

CAR-MOVING
PRECONDITIONS: (GREATER-THAN
SPEED 0)
BODY:

(Q- SPEED BRAKE)
(Q- SPEED GRADE)
(Q-REVS GRADE)
(Q+ AIR-MOVEMENT
WINDOW-SETTING)
(Q+ AIR-MOVEMENT SPEED)

GAS, CLUTCH, and BRAKE represent the position of
the gas, clutch, and brake pedals respectively. These are
controllable parameters. The zero positions of GAS and
BRAKE are fully up, the zero position for CLUTCH is
fully depressed. ENGAGEMENT is the percentage of
power transmitted to the wheels through the clutch.
REVS is the rotational speed of the engine. SPEED is the
speed of the car. GRADE is the hill gradient, a
non-controllable parameter. TEMP is the engine
temperature.

GAS

CLUTCH

RPM

SPEED

Figure 1: The Expert's Solution

330

These two processes say that while the engine is running
increasing GAS makes REVS go up and SPEED go up;
letting out the clutch makes SPEED go up and REVS go
down; the engine heats up at higher speeds and allows
more efficient combustion (REVS go up), and also a
steeper grade causes SPEED and REVS both to go down,
while the BRAKE decreases SPEED.

It is important to note that the processes given above are
not the only ones that can be used to describe the workings
of our automobile. One of the strengths of this approach is
that it is relatively insensitive to how the domain
knowledge is crafted. In particular one might write a
simpler CAR-RUNNING process if one does not know
about engine RPM's or clutch engagement. On the other
hand one could write a much more complicated set of
processes specifying qualitative relations among the
carburetor butterfly valve position, venturi flow,
manifold pressure, vacuum advance, etc. Either of these
alternative domain theories would work as well as the one
above for our chosen task. The more complex theory
would support the acquisition of additional planning
concepts that ours does not, just as ours supports concepts
that the simpler alternative would not.

The system is given the goal of achieving a speed of 64
MPH from a dead stop with the engine on and idling. It
currently has no problem-solving concepts and thus
cannot solve the problem alone. It asks for an expert's
solution which is shown in figure 1.

The simplest plausible explanation consistent with the
expert's solution is:

(EXPLANATION (INCREASING SPEED)
((Q+ SPEED ENGAGEMENT)

(Q+ ENGAGEMENT CLUTCH)
(INCREASING CLUTCH)))

This explanation conjectures that the speed is increasing
because the speed is qualitatively positively proportional
to the clutch engagement which is qualitatively positively
proportional to the clutch pedal position which is
observed to be increasing.

A 2 dimensional linear quantitative interpolation
function is created and the observed numerical values for
SPEED, and CLUTCH are asserted. Not all observed
points are recorded in the interpolation function. If apoint
is already correctly interpolable by existing points, it is
not used. The interpolation function contains 5 points.

Next another acceleration problem is given to the system.
It is to accelerate from 0 to 20 MPH. The system selects
the newly constructed planning concept, but the
interpolation surface cannot accept the third new data
point without violating the qualitative montonicity
constraints.

The explanation is, in fact, not adequate. An observation
during planning is inconsistent with the qualitative
explanation. The system searches for the next most
plausible explanation of the data that is not contradicted
by the new point. The following plausible explanation is
constructed:

(EXPLANATION (INCREASING SPEED)
((Q+ SPEED REVS)

(Q+ REVS GAS-FLOW) (Q+
GAS-FLOW GAS) (INCREASING
GAS)))

In planning with this concept the system also meets with
nearlyimmediate failure. Finally, a more adequate
qualitative explanation is generated:

(EXPLANATION (INCREASING SPEED)
((Q+ SPEED REVS)

(Q+ REVS GAS-FLOW) (Q+
GAS-FLOW GAS) (INCREASING
GAS) (Q- REVS ENGAGEMENT) (Q+
SPEED ENGAGEMENT) (Q+
ENGAGEMENT CLUTCH)
(INCREASING CLUTCH)))

This explanation indicates thatthe SPEED is a function of
both the GAS and CLUTCH controllable parameters.
Notice that the explanation is not, in fact, correct. For
example, it misses the effect of GRADE upon SPEED.
There is an implicit assumption that GRADE can be
disregarded when solving acceleration/deceleration
problems . This rums out to be true in the
Champaign/Urbana area where the only two hills are
man-made for children's sledding pleasure in the winter.
It is one of the great strengths of the approach that the
solution found can take advantage of systematic
eccentricities in the distribution of planning problems
given to the system. Why burden a planning system with
reasoning about driving on a hill when this information
will never be needed? This feature insures that the
planner will not become bogged down in planning details
that do not matter for the problems it is given. If another
planning problem depends on the missing GRADE or
BRAKE parameters, the above concept also would be
eliminated in favor of one more faithful to reality.

331

GAS

CLUTCH

RPM

SPEED

Figure 2: The Planner
Nonetheless, this time it is sufficient to include CLUTCH
and GAS as controllables. The system generates the
adequate solution shown in figure 2.

Notice that the speed is not smoothly increasing; twice it
actually decreases. The controllable parameters' values,
particularly the CLUTCH, also exhibit a fair amount of
"hunting" for the right value. This is due to interpolation
error. The trajectory traced along the surface to solve this
problem differs from the trajectory of the observed
expert's solution. The approximated surface is most
accurate near the observed trajectory.

Of the 50-odd points in the observation, the system finds
that just 12 are sufficient to interpolate the others. There
are many possible function surfaces that contain the
observed points and respect the qualitative monotonicity
constraints. The system chooses one: linear interpolation
between the 12 selected points. Approximation error is

GAS

's First Solution
due to the interpolation surface predicting one value for
the internal quantity SPEED, while the finite difference
model in fact yields another. The discrepancies are small
enough and occur sufficiently far from observed points
that there is no violation of the qualitative monotonicty
constraints. Instead, new points are integrated into the
interpolation approximation so that the approximate
surface once again agrees with reality at all observed
points. As it happens, 5 additional points are asserted to
the interpolation function during this first successful
solution. The function is then approximated by a total of
17 points. After several additional acceleration and
decelerationproblems the interpolation function contains
21 points and produces the solution shown in figure 3 to a
different problem.

As can be seen, the speed is increased more smoothly. The
system'smanipulationsofthecontrolparameters are also
smoother. The solution in figure 3 compared to the

CLUTCH

RPM

SPEED

Figure 3: A Later Solution by the Planner

332

experts shows significantly higher REVs. As it happens
the controls, especially the clutch, are more effective at
higer REVs so smaller changes are required. This
unintended effect is interesting froma planning point of
view although not particularly desirable while driving
real cars.

8. Empirical Analysis
In practice for few the domains examined convergence to
competent problem-solving appears to be fast.
Furthermore, planning time with the acquired constructs
decreases with experience. The reason is that the cost of
refining the interpolating approximation function is high
compared to the cost of employing the function with no
refinement. As experience with the concept increases, the
approximation function converges to an acceptable
function so fewer refinements are performed.

Figure 4 shows a typical planning run of 10 randomly
generated acceleration and deceleration problems. Each
is successfully solved by the system and each represents
between 20 and 100 planning points. Fewer planning
points are needed when the randomly generated goal
speed is near the car's current speed. Figure 2 shows the
results from the first problem in this test sequence; figure
3 is from the last.

The graphs show cumulative average information. The
heavier line plots the CPU time in seconds used (up to and

3i

Run Time

(sec.)

Error

(MPH)

including the xaxis labeled problem) divided by the total
number of planed points processed. The lighter line plots
the cumulated error in miles per hour for all planned
points (up to and including those in the problem labeled
on the x-axis) divided by the number of such points.

As can be seen both CPU time and error decrease
significantly with experience in just 10 problems. This
graph is representative of such runs. If the graph were
extended with additional problems, the lines would
continue downward slightly. But this effect is due to the
cumulative nature of the data collected - the high expense
and error of early problems being diluted by later ones.
Interpolation refinement is increasingly infrequent. In the
10th and later problems with no errors, planning
continues at about 3 planned points per second with no
improvement.

9. Discussion and Conclusions
The major significance of this work is A) providing a new
avenue to pursue planning in continuous domains, B)
providing a model that supports efficient planning with
simultaneous, overlapping, and coordinated actions
without the need for the implementor to anticipate such
interactions, and C) providing a new model of plausible
inferencing which, incidentally, is not confined to
continuous domains. The cost for the planning benefits is
that learning is no w inextricably bound up with planning.
Conversely, in this model, planning cannot be viewed as
providing a guaranteed solution at planning time whose

^M Cumulative Average Time/Point

Cumulative Average Error/Point

Problem Number
13 5 7 9

Figure 4: Emperical Performance on a Sequence of 10 Random Problems

333

execution is superfluous since success is logically
entailed.

A major strength is in the planner's ability to acquire the
minimal sufficient planning concept. The ability to
control speed accurately while driving up and down hills
is of little use in Urbana. In San Francisco, however, this
skill may be crucial. Likewise, compensating for the
effects of wind and air density while driving is
unnecessary in a Detroit-built automobile, but may be
crucial in a sun-powered ulta-light vehicle. Many many
factors influence the speed of an automobile, or any
internal quantity. Through experience a planner such as
the one outlined tailors its planning concepts to
environmental needs. The trick in planning must be to
avoid ever thinking about most of such influences. They
must be ruled out implicitly. If a planner must enumerate
them all, if only to post non-monotonic assumptions that
they are irrelevant, it cannot survive in the complexities
of the real world. This is the well-known qualification
problem [Genesereth87, McCarthy69, Shoham86b].

Of significance to the machine learning community is the
knowledge level behavior pietterich86, Newell81] of
the EBL system. Due to the semantics of plausible
implication, every plausible conclusion that is drawn
changes the knowledge level of the system. The acquired
concepts are not in the logical transitive closure of the
system. Of course, they are in the plausible transitive
closure of the system. However, this is a weak statement.
Nearly every behavior is in the plausible transitive
closure of the domain theory. Yet, the system cannot
acquire all such concepts. There is a learning bias
[Utgoff86] precluding it. The bias guiding concept
acquisition are the experiences in the real world mediated
by the need to plausibly explain them. Also, theexpert's
training example plays a much larger role in plausible
EBL than in standard EBL.

Refining the qualitative explanation can be
computationally intensive, but its convergence is
guaranteed. Refining the approximate surface is less
expensive but it too is guaranteed to converge. Planning
without refinement is efficient for achieving simple goals
with single planning concepts because hillclimbing-like
approaches can be used. The monotonicity constraints
guarantee that we cannot be trapped at local extrema.

REFERENCES

References

[Agre87] P. Agre and D. Chapman, "Pengi: An
Implementation of a Theory of Activity," Proceedings
of the National Conference on Artificial Intelligence,
Seattle, WA, July 1987, pp. 268-272.

[Allen83] J. F. Allen and J. A. Koomen, "Planning
Using a Temporal World Model," Proceedings of the
Eighth International Joint Conference on Artificial
Intelligence, Karlsruhe, West Germany, August 1983,
pp. 741-747.

[Borchardt84] G. C. Borchardt, "A Computer Model
for the Representation and Identification of Physical
Events," M.S. Thesis, Department of Computer
Science, University of Illinois, Urbana, IL, May 1984.
(Also appears as Technical Report T-142, AI Research
Group, Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign.)

[Chapman87] D. Chapman, "Planning for
Conjunctive Goals," Artificial Intelligence 32,3 (1987),
pp. 333-378.

[Chien89] S. A. Chien, "Using and Refining
Simplifications: Explanation-based Learning of Plans
in Intractable Domains," Proceedings of The Eleventh
International Joint Conference on Artificial Intelligence,
Detroit, MI, August 1989, pp. 590-595.

[Dean83] T. Dean, "Time Map Maintenance,"
Technical Report 289, Yale University, New Haven, CT,
October 1983.

[Dean90] T. Dean and G. Siegle, "An Approach to
Reasoning about Continuous Change for Applications
in Planning," Working Paper, Computer Science
Department, Brown University, February, 1990.

[Dietterich86] T. G. Dietterich, "Learning at the
Knowledge Level," Machine Learning 1, 3 (1986), pp.
287-316.

[Fikes71] R. E. Fikes and N. J. Nilsson, "STRIPS:
A New Approach to the Application of Theorem
Proving to Problem Solving," Artificial Intelligence 2,
3/4 (1971), pp. 189-208.

[Firby87] R. J. Firby, "An Investigation into
Reactive Planning in Complex Domains," Proceedings
of the National Conference on Artificial Intelligence,
Seattle, WA, July 1987, pp. 202-206.

[Forbus84] K. D. Forbus, "Qualitative Process
Theory," Artificial Intelligence 24, (1984), pp. 85-168.

[Genesereth87] M. Genesereth and N. Nilsson, Logical
Foundations of Artificial Intelligence, Morgan
Kaufmann, Palo Alto, CA, 1987.

[Georgeff86] M. P. Georgeff, "Representation of
Events in Multiagent Domains," Proceedings of the
National Conference on Artificial Intelligence,
Philadelphia, PA, August 1986, pp. 70-75.

334

[Gervasio89] M. T. Gervasio and G. F. Dejong,
"Explanation-Based Learning of Reactive
Operators," Proceedings of the 1989 International

Machine Learning Workshop, Ithaca, NY, June 1989.
[Hammond88] K. Hammond, T. Converse and M.

Marks, "Learning from Opportunities: Storing and

Re-using Execution-Time Optimizations,"
Proceedings of the Seventh National Conference on

Artificial Intelligence, St Paul, MN, August 1988, pp.
536-540.

[Hogge87] J. Hogge, "Compiling Plan Operators

from Domains Expressed in Qualitative Process

Theory," Proceedings of the Sixth National Conference

on Artificial Intelligence, Seattle, July 13-17,1987, pp.
229-233.

[Kuo87] B. Kuo,in Automatic Control Systems,

Prentice Hall, 1987.
[Laird86] J. E. Laird, P. S. Rosenbloom and A.

Newell, Universal Subgoaling and Chunking: The

Automatic Generation and Learning of Goal Hierarchies,

Kluwer Academic Publishers, Hingham, MA, 1986.
[McCarthy69] J. McCarthy and P. J. Hayes, "Some

Philosophical Problems from the Standpoint of
Artificial Intelligence,"in Machine Intelligence 4, B.
Meltzer and D. Michie (ed.), Edinburgh University
Press, Edinburgh, Scotland, 1969.

[McDermott82] D. McDermott, "A Temporal Logic for
Reasoning About Processes and Plans," Cognitive

Science 6,2 (1982), pp. 101-155.
[Mooney86] R. J. Mooney and S. W. Bennett, "A

Domain Independent Explanation-Based
Generalizer," Proceedings of the National Conference on

Artificial Intelligence, Philadelphia, PA, August 1986,
pp. 551-555. (Also appears as Technical Report
UILU-ENG-86-2216, AI Research Group,
Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign.)

[Mooney88] R. J. Mooney, "A General
Explanation-Based Learning Mechanism and its
Application to Narrative Understanding," Ph.D.
Thesis, Department of Computer Science, University
of Illinois, Urbana, IL, January 1988. (Also appears as

UILU-ENG-87-2269, AI Research Group,
Coordinated Science Laboratory, University of Illinois

at Urbana-Champaign.)
[Newell81] A. Newell, "The Knowledge Level,"

Artificial Intelligence Magazine 2, (1981), pp. 1-20.
[Pednault88] E. Pednault, "Extending Conventional

Planning Techniques to Handle Actions with

Context-Dependent Effects," Proceedings of the

SeventhNationalConferenceonArtificiallntelligence, St.
Paul, MN, August 1988.

[Sandewall89] E. Sandewall, "Combining Logic and
Differential Equations for Describing Real-World

Systems,"in Proceedings of the First International

Conference on Principles of Knowledge Representation

and Reasoning, R. Brachman, H. Levewque, R. Reiter

(ed.), Morgan-Kaufman, 1989, pp. 412-420.

[Schoppers87] M. J. Schoppers, "Universal Plans for

Reactive Robots in Unpredictable Environments,"

Proceedings of the Tenth International Joint Conference

on Artificial Intelligence, Milan, Italy, August 1987, pp.

1039-1046.

[Segre87] A. M. Segre, "Explanation-Based

Learning of Generalized Robot Assembly Tasks,"

Ph.D. Thesis, Department of Electrical and Computer

Engineering, University of Illinois, Urbana, IL,

January 1987. (Also appears as UILU-ENG-87-2208,
AI Research Group, Coordinated Science Laboratory,

University of Illinois at Urbana-Champaign.)
[Shavlik88] J. W. Shavlik, "Generalizing the

Structure of Explanations in Explanation-Based

Learning," Ph.D. Thesis, Department of Computer
Science, University of Illinois, Urbana, IL, January

1988. (Also appears as UILU-ENG-87-2276, AI

Research Group, Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign.)

[Shoham86a] Y. Shoham, "Reasoning about Change:

Time and Causation from the Standpoint of Artificial
Intelligence," PhD. Thesis, Yale University, Dept. of

Computer Science, New Haven, CT, 1986.

[Shoham86b] Y. Shoham, "What is the Frame
Problem?," Proceedings of the 1986 Workshop on

Reasoning about Actions and Plans, Timberline,
Oregon, June, 1986, pp. 83-98.

[Truxalöl] J. Truxal, "Identification of Process

Dynamics,"inArfapfjVeConfro/5yrfe/n^,E.Mishkinand
L Braun (ed.), McGraw-Hill, 1961, pp. 51-90.

[Utgof f86] P. E. Utgoff, "Shift of Bias for Inductive

Concept Learning,"in Machine Learning: An Artificial
Intelligence Approach, Vol. II, R. S. Michalski, J. G.

Carbonell and T. M. Mitchell (ed.), MORGAN, 1986,

pp. 107-148.
[Vere83] S. A. Vere, "Planning in Time: Windows

and Durations for Activities and Goals," IEEE

Transactions on Pattern Analysis and Machine

Intelligence 5, 3 (May 1983), pp. 246-267.

[Waltz82] D. L. Waltz, "Event Shape Diagrams,"

Proceedings of the National Conference on Artificial

Intelligence, Pittsburgh, PA, August 1982, pp. 84-87.

(Also appears as Working Paper 33, AI Research

Group, Coordinated Science Laboratory, University of
Dlinois at Urbana-Champaign.)

335

[Wilkins84] D. E. Wilkins, "Domain-Independent
Planning: Representation and Plan Generation,"
Artificial Intelligence 22, (1984), pp. 269-301.

[Wilkins88] D. E. Wilkins, Practical Planning:
Extending the Classical Artificial Intelligence Planning
Paradiigm, Morgan Kaufman, San Mateo, CA, 1988.

336

A Framework for Evaluating Search
Control Strategies

Jonathan M. Gratch and Gerald F. Dejong

Artificial Intelligence Research Group
Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign
405 North Matthews Avenue

Urbana, IL 61801

gratch@cs. uiuc. edu

Abstract

This paper provides a framework for describing
systems which learn how to plan. In particular we
view planning as search through a totally ordered
space of possible plans. A control strategy de-
scribes the behavior of a planner by defining a
mapping from problems to ordered search spaces
and the goal of learning is to modify this control
strategy to reduce the combinatorics of search. We
conclude that this framework, even in this early
stage, provides a useful perspective for analyzing
performance learning systems. Given this charac-
terization, it is clear that such algorithms are en-
gaging in a search through the space of possible
control strategies. It is also clear that these sys-
tems make strong assumptions about the topogra-
phy of the search space, like guaranteed ascent,
which we argue are violated. While our focus is on
learning control strategies, the issues are relevant
to the study of control knowledge in general.

1 INTRODUCTION

There has been widespread interest in applying ma-
chine learning techniques to enhance strategies of auto-
mated planning. Considerable effort has been devoted to
the subproblem of performance learning. In this task a
system is provided with a correct but intractable domain
theory with which it must learn to solve problems effi-
ciently. Progress in this approach has been challenged by

The research reported in this paper was supported by the National
Science Foundation under grant NSF-IRI-87-19766

the realization of trade-offs between the power of knowl-
edge and the cost of using it, both in storage and time.
Resolution of this challenge lies in part on clarifying the
nature of the problem. The goal of this research is to pro-
vide a formal characterization of the planning process and
the mechanisms by which this process may be modified.
Given such a framework we can concisely describe the
impact of knowledge and the rigorously evaluate compet-
ing strategies for acquiring control knowledge. This pa-
per presents a first step towards this goal.

The focus of this paper is on learning how to plan. In
particular we view planning as search through a totally
ordered space of possible plans. A control strategy de-
scribes the behavior of a planner by defining a mapping
from problems to ordered search spaces and the goal of
learning is to modify this control strategy to reduce the
combinatorics of search. These modifications are judged
with respect to some measure of efficacy the learning
module is trying to maximize. Thus the methods by
which the learner can modify control knowledge are natu-
rally viewed as operators in a meta-space, the space of
possible control strategies where the efficacy measure
defines the topography of this space. We believe this
view of learning as a search in a control space provides an
appropriate framework for analyzing competing learning
strategies. Some important questions from this perspec-
tive include: what is the complexity of this space; what
search strategy is employed; what information is avail-
able to guide search; how are control operators specified.
While our focus is on learning control strategies, the is-
sues are relevantto the study of control knowledge in gen-
eral. For example, similar issues are faced when a knowl-
edge engineer is designing or modifying a control
strategy.

337

We will first describe a declarative representation for
a simplified model of planning and discuss how current
techniques of control strategy learning modify this repre-
sentation. Next we describe the utility problem within
this framework, describe how proposed solutions impact
the search through control space, and discuss limitations
of these strategies. Finally we will step into the realm of
meta-planning and describe some of the issues to be
faced by a system which plans to learn.

2 CONTROL STRATEGIES

This section takes a view of planning as a mapping
from problems to ordered search spaces. The character of
this mapping is defined by a body of knowledge called a
control strategy. We develop a framework for describing
control strategies which facilitates a discussion of strate-
gy modification. The framework is introduced and then
used to characterize properties of performance learning
systems. Section 3 then uses this framework to evaluate
competing learning strategies.

2.1 Planning

The goal of aPlanning is: given aproblem in terms of
a goal, an initial state, and a set of action descriptions, find
a sequence of actions which will transform the initial state
into a state satisfying the goal. One can measure the effi-
cacy of a Planner (from some perspective) through the
use of an efficacy/unction. Such a function can be based
on the percentage of problems a Planner can solve from a
set of problems or the average time it takes the Planner to
solve problems in a set. By associating a learning module
with a planner we can hope, through experience, to im-
prove the efficacy of a planner with respect to a particular
efficacy function.

The framework we are describing is sufficiently ab-
stract to apply to any search-based view of planning.
However to draw clear connection between this frame-
work and existing learning systems we will cast our pre-
sentation in terms of what is considered classical plan-
ning. This formalism uses a logic to represent states and
actions and simple chaining as a rule of inference. Classi-
cal planning is akin to producing a proof that a goal can be
realized from an initial world state. The process of plan-
ning is then one of search through possible proofs, guided
by a control strategy.

2.2 Planning Knowledge

Given this characterization, we can view the plan-
ning process as consisting of two information sources.
First there is a structural component which defines a
possibly infinite potential search space through the inter-
action of a particular problem and the inference proce-
dure embodied by the planner. For a typical backward-
chaining system this space takes the form of a tree where
nodes are partial state descriptions, links are partial oper-
ator descriptions, and the goal description is the root (see
figure 1). Structural information can be viewed as amap-
ping from problems to potential search spaces.

Restriction 1: For the remainder of this discussion
we will as sume that a search space takes the form of a tree
of partial state descriptions with a finite branching factor
where the goal description is the root. Thus identical de-
scriptions will be represented as different nodes if they
are reached by distinct paths from the root.

Next there is a ordering component which defines
how the potential space is explored for a node meeting a
halting criteria. For example PROLOG explores its
search space in a depth-first order where choice points
are resolved by the order of rules in the knowledge base
and the order of preconditions in those rules. To represent
the effects of the ordering component we introduce the
notion of an ordered search space. This can be viewed as
the presence of ordering links between nodes in the po-
tential search space. An incomplete ordering strategy
would then specify apartial ordering among the nodes. A
complete ordering strategy would impose a total ordering
over the nodes. Given a total ordering we can then restric-
tively represent a potential search space as an order list of
nodes - namely the order in which they will be visited by
the planner

Restriction 2: We assume that search must be deter-
ministic.

The PROLOG example highlights that the distinc-
tion between structure and order is not necessarily re-
flected in the implementation of these systems. It is typi-
cally not possible to encode an inference procedure
without implicitly defining an ordering strategy. Howev-
er, as since we are striving for a mathematical character-
ization we can entertain the fiction that these processes
are independent.

Since our focus is learning we will make an addition-
al distinction which is meaningful to this task. A plan-
ner 's behavior is described by its mapping from problems
to ordered search spaces and determined by its structural

338

Figure 1 - A search space (from [Mitchell86])

R,: Volume(pl, vl) A Density(pl, dl) =3 Weight(pl, vl*dl)
R2: Weightfpl. wl) A Weight(p2. w2) A Less(wl,w2)

=> Lighter(pl, p2)
R3: Endtable(pl) => Weightfpl. 5)
Ri Lighter(x,y) => Safe-to-stack(x,y)
Rs Unfragile(y) => Safe-to-stack(x,y)

Goal: Safe-to-stack(x,y)

Initial state:
Volume(a, 1)
Density(a, 1)
Endtable(b)

A: Safe-to-stack(x,y)

R4

B: (Llghter(x,y)J

Rs

Unfragile(x •y>J

E:
Volume(x,Vi)
Densltytx.d!)
Volume(y,vj
Densityty.dJ

^•d, <v2*d.

and ordering knowledge. Learning changes the behavior
of a planner by modifying or overriding this knowledge.
Knowledge which cannot be modified, which is inherent
to the planner, will be termed the native strategy of the
planner. Knowledge which can be modified and new in-
formation which is acquired through learning will be
termed the learned strategy. Information in either of
these strategies can be characterized as modifying the
structural or ordering component of the planner. The na-
tive strategy is simply the default control strategy implicit
in the planning system (typically opaque to the learning
module) while the learned strategy is a body of acquired
knowledge which determines the final behavior of the
system.

2.3 Planning Modification

We have sketched the basic organization of control
strategies. We will now describe three basic classes of
control strategy modifications. This will then provide a
vocabulary to discuss our model of control strategies.

The goal of a learned control strategy is to allow rap-
id discovery of successful plans within a search space.
Following from our dichotomy in planning knowledge

there are two natural approaches for modifying planning
behavior. One obvious approach is to limit the size of the
potential search space defined by the structural compo-
nent. Thus if we are doing a depth-first search, not
searching below a node will effectively skip the subtree
rooted in that node. We will call a modification to the
structure of the potential search space a structural modifi-
cation.

Learning can be exploited to alter the structure of a
search space in many ways. For example acquiring new
domain theory operators or modifying the definition of
existing ones will change the set of reachable states. For
the scope of this paper we will limit ourselves to a subset
of structural modifications termed reduction modifica-
tions. These are modifications which prune regions of a
potential search space. A reduction modification is com-
plete if is guaranteed not to prune any solutions.

In that knowledge is rarely sufficient to make these
irrevocable modifications without disrupting complete-
ness we may simply prefer exploring some nodes before
others, so if the preference is wrong the alternatives will
be eventually reached. Information which modifies the

339

ordering component of planning is termed an ordering
modification.

There is a third class of modification which we will
not address in this paper. Recall that planners are re-
source limited and that transitions in the ordered search
space consume resources. Resource modifications are
ways of changing the pattern of resource use. Examples
include truth-preserving simplifications of control
knowledge [Minton88] and non-truth-preserving tech-
niques [Cohen, Keller]. However, in that resource modi-
fications also serve to change structural and ordering
components, and that we have yet to develop an adequate
vocabulary for describing them, we will not describe
them further.

Given that the search may incorporate rejection
modifications, a subset of the nodes in the search space
will be visited. Given that the search is deterministic
these nodes will be visited in a well defined order. Thus
we can view planning as a mapping from problems to or-
dered lists of nodes. Information such as where solution
nodes lie in this ordering and the resources expended at
each node can be used as parameters to an efficacy func-
tion which in turn can serve as a measure of planning suc-
cess. This is summarized in figure 2.

Figure 2 - simplified model of planing

m

Efficacy

2.4 Control Axioms

The previous sections introduce a view of planning
in terms of structural and ordering knowledge. Learning
is then seen as modifications to these knowledge sources.
In particular, we view performance learning as a search
through a space of possible search control strategies. To
support this perspective we must precisely define the no-
tion of control strategy and how a learning module can
transition between alternatives. For this purpose we will

adopt a declarative representation of a control strategy
based on the notion of declarative control packets used in
[Minton88].

Our general approach is to view a control strategy as
arising from the interactions of individual declarative
packets of control information termed control axioms.
Each axiom describes a particular search space modifier
and the circumstances where it applies. A state in the
space of possible control strategies is then defined by a set
of control axioms. Thus a set of control axioms define a
mapping from problems to ordered nodes. Movement
through this space is through the addition, deletion, or
modification of these axioms.

As mentioned above we are restricting attention to
two basic modification classes: reduction modifications
and ordering modifications. A decision procedure con-
tains the criteria for determining when a modification ap-
plies. A control axiom is then a decision procedure/mo-
dification pair, and can be a reduction axiom or an
ordering axiom.

It is natural to think of a control axiom as a condi-
tion-action rule axiom. Figure 3 illustrates this with a re-
jection axiom acting on the search space in figure 1. In
this case the decision procedure is defined by precondi-
tion satisfaction and the control modification is a rejec-
tion procedure which removes individual links. Any in-
stantiation of this rule removes one link from the search
and indirectly discards all nodes in the subtree pointed to
by the link.

Figure 3 - Example reduction axiom

Rejection Axiom:
IF (AND [Current-node = n]

[Endtable(?) e n])
Reject operator R3

D:
R;

^Ri R3 /*

Rejected ^
nodes ""

To complete our description we must make one more
distinction. Ordering axioms can conflict while reduc-
tion axioms cannot. For example a control strategy may
simultaneously recommend that node B be explored be-
fore node P and that node P be explored before node B.

340

This property requires us to maintain an arbitration pro-
cedure whenever potentially contradictory ordering
modifications are allowed.

We can now provide a first cut at defining a control
strategy. A control strategy C is composed of two parti-
tions: 1) a set of reduction axioms; 2) a set of ordering ax-
ioms and an arbitration procedure (figure 4).

Figure 4
I CONTROL STRATEGY

■^ Arbitrator*
Rejection axioms

<D2Rj>

Ordering axioms
<Di Oi>
<D, o,> JJ

To briefly summarize, planning is composed of two
information sources. There is structural knowledge
which defines the structure of apotential search space and
control knowledge which defines the order in which this
space is search. A control strategy emerges from the syn-
ergy of individual control axioms. There are then three
questions we can ask of a control strategy:

1) What is the vocabulary of control modifications - what
are the mechanisms available to alter the search space.

2) What is the vocabulary of decision procedures - what
information is available and appropriate to constrain the
modifications.

3) Ho w do local decisions interact to form a global strate-
gy-

2.5 Vocabulary of Modifications.

First let us consider the vocabulary of modifications,
modifications are the actions available to the learning
system. To describe these modifications we must consid-
er both their local effects (what direct impact do they have
on the search space) and their global effects (how do the
direct effects interact with the structure of the space and
othermodifications to impact the space). This section de-
fines the local effects available to systems.

As defined, the notion of a control modification is far
too powerful. It allows such control modifications as de-
lete every node except a solution node and decision proce-
dures like prefer a path if it leads to the best solution. We
will begin by specializing the notion of control modifica-
tion. Thus while arbitrary control modifications are pos-
sible, we will for now restrict consideration to the three

control axioms utilized by explanation-based learning
research: rejection rules1, preference rules, and macros.

The search space view we have adopted from restric-
tion 1 defines a tree of partial state descriptions joined by
partial operator descriptions. The primary restriction im-
posed by these strategies is that reduction modifications
can only directly impact the connections between nodes.
Ordering modifications tend to be more subtle and are de-
scribed below. Although a control modification might
only affect a single link in the search space, figure 3 illus-
trates a single control axiommay have several distinct in-
stantiations and thus influence a set of links in a particular
search space.

2.5.1 Rejection and Preference Rules

The PRODIGY/EBL system [Minton88] is the pro-
totype for rejection and preference rales. Rejection con-
trol axioms encode the further restriction that the connec-
tions affected must be between parent and child. The
strategy implemented in PRODIGY/EBL permits a wide
range in flexibility in specifying connections. As Minton
observed, constructing a link from parent to child in this
space can be viewed as three control modifications:
choose a parent's unsatisfied state descriptor, choose an
operator relevant to the descriptor, choose a specializa-
tion of the operator. PRODIGY/EBL can take advantage
of these distinctions to subtly specify links but we will
disregard this for the purpose of this discussion. The
main point is that the rejection modifications are re-
stricted in scope to deleting connections connecting apar-
ticular parent to some set of children.

PRODIGY/EBL allows two classes of ordering ef-
fects. Goal, operator, and bindings preferences result in
ordering modifications which obey the above constraint,
changes are only made in the ordering of links between a
parent and its children. The node preference axiom how-
ever allows arbitrary nodes to be preferred to others as
long as one is not a descendent of the other.

2.5.2 Macro Operators

Traditional explanation-based learning systems
have relied on the notion of a macro operator to increase
their efficacy. Macros can be viewed as a form of order-
ing modification. The body of a macro encapsulates a
particular path through the search space from which it
was learned. This sequence is then generalized to repre-

xMinton [Minton88] distinguishes between selection
and rejection rules but for our purposes they are treated
as one. The difference is one of descriptive conve-
nience. Selection rules say discard everything but X
while rejection rules say discard X.

341

sent a set of possible paths. Macros alter the behavior of a
planner by presenting themselves as operators. In the
case of backward chaining the planner can now regress a
goal through a sequence of operators in one step. If mac-
ros are expanded before other operators, this means that
the node defined by the preconditions of the macro will be
reached sooner than it would have otherwise been. Thus
macros may order a descendent of a node before one of
the nodes immediate children.

Unfortunately macros impose ordering modifica-
tions at the expense of redundancy. As is clear in figure 5,
macros effectively copy nodes in the search space and
change their position in the ordering. Figure 5 illustrates
the effect of a macro on the search space from figure 1. In
this case a redundant link has been created between node
B and N. A depth-first strategy would then search node N
earlier than before and then search it again in its original
position. See [Greiner89] for arelated analysis on the im-
pact of redundant links.

Figure 5 - Direct macro effects

Macro operator:
Lighter(x,y) <= (AND VolumeCx.V!)

Densityfx.di)
Endtable(y)

Ordering: vi*di<5)
Depth-first search ^** ,

R2

Macro C:

E£
Rj Ro

Rg R3

F§ iK/ 4

2.6 Decision Procedures

A decision procedure determines when a particular
control modification will be realized. While control
modifications provide the vehicle for defining a control
strategy, the decision procedures embody the expertise.
There is no reason to prefer one alternative to another un-
less there is some information which suggests this is a
correct modification.

The purpose of a decision procedure is to constrain a
control modification to apply to contexts where it is ap-

propriate. So while arbitrary rejection of nodes is unlike-
ly to benefit a system, a more informed rejection may be.
In the case of the input resolution example we can guaran-
tee the decision is appropriate given the restriction of
horn-clause theories. There are also tradeoffs involved
in determining appropriateness. Thus a control axiom
may be appropriate in that it trims only redundant paths
but efficacy reducing in that it increases the resources re-
quired to achieve a goal. Determinations of appropriate-
ness will be discussed at length within the section on the
utility problem.

There are two distinctions to make about decision
procedures: their heuristic power [Nilsson80p. 72] and
their discriminability. The first distinction centers on
their properties on convergence (how quickly can a solu-
tion be found, are we guaranteed to find a solution, are
their localmaxima). The second describes what informa-
tion is available to make a decision (simply the goal, the
initial state, tokens on the goal stack, ordering informa-
tion). A decision is heuristic if under certain circum-
stances it may lead to decreased efficacy. For example a
decision procedure associated with a reduction modifica-
tion will be heuristic if it sanctions the modification in cir-
cumstances which prune solution nodes.

Heuristic decisions have been typically acquired by
inductive techniques. Thus LEX2 acquires preference
heuristics by inducing the conditions under which an op-
erator leads to success. PRODIGY/EBL on the other
hand uses logical proofs to guarantee a control modifica-
tion is correct with respect to the discriminability of the
procedure.

The view of macros as control axioms leads to an in-
teresting conclusion when we question what decision
procedure they use. Macros have traditionally used a
very simple decision procedure: apply a macro iff it has
an effect which unifies with the current goal. As we will
argue later we believe that much of the utility problem
with macro learning can be attributed to the unsatisfacto-
ry nature of this decision procedure. Indeed it is impor-
tant that many of the suggestions for improving macro
performance can be viewed as adding more information
to the decision procedure associated with a macro. Thus
the inductively acquired utilization filters of [Marko-
vitch] are directly mapped into this representation.
[Mooney89] also suggests limitations of the use of mac-
ros. In this case he makes the strong suggestion that one
should not chain on the preconditions of macros. From
our viewpoint this imposes a decisions procedure which
is guaranteed to visit the state characterized by a macro's
preconditions iff that state is a solution node.

342

Figure 6 - Indirect macro effects

Macro operator:
Lighter(x,y) <= (AND Weight(x.wl)

Volume{y,v2)
Density(y,d2)
wl < v2*d2)

2.7 Indirect Control Modification Effects

While section 2.4 limited the direct effects of control
modifications, it is clear from figure 6 that other nodes
can be effected. In this case not only is a copy of node M
moved earlier in the ordering but also copies of its descen-
dents. These indirect effects arise from interactions be-
tween control modifications and the current ordering
strategy used by the planner. This means that besides the
node direcüy affected by the control modification, the en-
tire subtree beneath that node is impacted in some way.
This is obvious in the case of rejection modifications
since the subtree is completely pruned from the search. In
the case of a preference or macro modification the effects
can vary wildly depending on the other ordering modifi-
cations it must interact with.

Figure 7 illustrates the interaction of a preference
and macro modification with the traditions ordering strat-
egies of depth-first and breadth-first search. In the case
of depth-first search an entire subtree is moved as a block
before other nodes in the search. For breadth-first the
pattern is more complex. A whole subtree is reordered
but this is broken across levels in the search. Along with
reordering, macro modifications have the effect of mov-
ing subtrees to a higher level in the search. For an empiri-
cal analysis of the interaction of ordering strategies with
macro modifications, see [Mooney89].

Macros are distinct from preference rules in that they
may also engage in interactions with reduction modifica-
tions. This is because macros serve to insulate paths from
other control axioms. In figure 6 amacro is created which
corresponds to the path from B to C to M. If a rejection
rule is later acquired which deletes C from the search
space the macro maintains a connection to M. Thus a re-
duction axiom which effects intermediate nodes in the

path captured by a macro will not impact the nodes dupli-
cated by the macro.

2.8 Resource Bounds

The above discussion is in terms of potential prob-
lem spaces but only a finite subset of such a space can ac-
tually be explored by an implemented system This is be-
cause actual planning is resource limited and the act of
creating and traversing the search space consumes re-
sources. In that resource bounds serve to limit the poten-
tial search space, these too can be described as reduction
axioms. For our purposes it suffices to say that resource
bounds map potential search spaces into realizable
search spaces. A realizable search space consists of the
set of nodes actually visited by the planner. For an in
depth description of the impact of different resource
bounds, see [Segre].

3 EBL AS SEARCH
Section 2 described how we can represent a planner

by a set of control axioms. We have discussed how these
axioms interact to specify a control theory and that the
goal of learning is to modify this control theory in such a
way as to maximize a measure of efficacy. The methods
by which the learning module can modify control knowl-
edge are thus naturally viewed as operators in a meta-
space, the space of possible control strategies. We now
turn to describing prior learning strategies in terms of the
search methods they employed. This will then allow us to
characterize their utility in terms of our model.

3.1 Guaranteed ascent assumption

Early EBL strategies make many implicit assump-
tions about the character of the control-space to simplify
their search for a control strategy. The primary assump-
tion is that any action in the control-space serves to in-

343

Figure 7 - Indirect modification effects
Preference modification: prefer c over b

Depth-First:

h i j k

.Affected subtrees
a

Without:
With:

Breadth-first
Without:
With:

a bdhie jk cflmgno
a|c f 1 in g n o b'fffejk

a b 1 de w. hijk I m n o
a I;b 11i e 1 m n o hijk

Macro modification: prefer copy of d over b and c.

i j k 1 m n

Depth-First:
Without:
With:

Depth-First:
Without:
With:

crease the output of the efficacy function, a guaranteed
ascent assumption. With this strong assumption the effi-
cacy function can be disregarded and backtracking is un-
necessary.

Early systems thus employed a single operator in the
control-space: learn a macro. This operator was then in-
stantiated to a particular macro or macro set which was
concatenated to the existing control strategy. The ulti-
mate effect of such actions is then determined by aspects
of the native strategy, primarily the default search strate-
gy, and any decision procedure assigned to the learned
macros. The typical decision procedure is apply if macro
has a consequent which unifies with the current subgoal,
which is sometimes specialized to include no chaining on
macros or other ubiquitous restrictions.

Unfortunately empirical results demonstrate the fail-
ing of such a simplistic learning method [Minton85,
Mooney89]. There have been four main approaches to
address this failing: 1) define a native strategy which pro-
duces guaranteed ascent; 2) choose a vocabulary of con-
trol axioms which produces guaranteed ascent; 3) allow
heuristic search; 4) allow backtracking. We will elabo-
rate this briefly.

We can imagine a control-space which is the power
set of all possible control axioms. As was mentionedpre-
viously, we can view an overall search strategy as com-
posed of a fixed native component and a modifiable con-
trol component. The native component defines a starting
point in control-space and the operators available to the
learner define possible transitions beginning at this point.
One possible approach is to identify a starting point such

abdhiejkcflmgno
a Id: hi bdhiejkcflmgno

abcdefghijklmno
ape h;:i; defghijklm.no

that we have guaranteed ascent within the space of possi-
ble learning actions. The recommendation to use a
breadth-first search strategy with macro-learning [Moo-
ney89] is a step in this direction. Such recommendations,
however, rely onproperties which remain constant across
different domain theories, problem distributions, and ef-
ficacy functions. In that changes to any of these parame-
ters can have dramatic consequences to the topology of
the control-space we must await strong theoretical analy-
sis before placing confidence in the generality of these
recommendations.

An alternative is to change the actions available to
the learner in the hope of establishing guaranteed ascent.
In the framework of our decision/modification represen-
tation of control axioms this corresponds to changing the
constraints on decision procedures and control modifica-
tions. A fair amount of work has centered on the former.
Thus limiting the use of macros through chaining restric-
tions [Mooney89] can be viewed as adding more condi-
tions to decision procedure of each macro modification.
The utilization filters of [Markovitch] also specialize de-
cision procedures and in that these filters can be acquired
through learning, the control space is effectively en-
riched. The approach to "killer chunks" in SOAR
[Tambe] and the emphasis on non-recursive decisions
[Etzioni] again restrict the class of decision procedures.
To evaluate these methods one must have a sophisticated
domain independent understanding of how they alter the
topography of the control-space, an understanding which
is still forthcoming.

The above two methods avoided use of state evalua-
tion functions to judge their progress. An alternative is to

344

use the efficacy function or an approximation to it to
guide search through the control-space. This the ap-
proach taken by PRODIGY/EBL [Minton88] where esti-
mates of the utility of individual rules guides the search
for a global solution. Only rules with high estimated util-
ity are incorporated into the learned strategy. Thus
PRODIGY/EBL performs a hillclimbing search for an
effective control strategy.

The above methods suggest irrevocable search for a
control strategy. Given that a learning system incorpo-
rates a state evaluation function, it becomes useful to con-
sider backtracking. Any strategy which incorporates se-
lective forgetting of learned rules could be viewed as a
form of backtracking. In this sense, PRODIGY/EBL has
implemented a hillclimbing search with backtracking.

3.2 Efficacy Estimation

Guaranteed ascent insures every action in control
space increases efficacy but it seems difficult to ensure
this property. If we relax this restriction such that some
action increases efficacy then we are forced to specify or
approximate some action evaluation procedure or else
abandon convergence. In this section we will discuss
how efficacy can be approximated to guide search.

An efficacy function maps sets of control axioms to
efficacy values for a given distribution of problems.
Without further knowledge, a this function can only be
implemented by table look-up and acquired through rote
learning (execute a representative problem set and re-
member the performance). Furthermore, this table must
be as large as the power set of all control axioms to obtain
full coverage. Instead it is profitable to take advantage of
local properties of control axioms and to understand how
this local information combines to produce a global mea-
sure.

PRODIGY/EBL exemplifies the only efficacy esti-
mation strategy suggested by the explanation-based
learning community. This local strategy relies on the ob-
servation that all else being equal the contribution of one
control axiom, its utility, is determined by the average
savings it provides (an estimate) minus the average cost
of its decision procedure (empirically derived). A strong
assumption is then made that efficacy can be maximized
solely by maintaining axioms of positive utility.

3.3 Interactions

Empirical studies have demonstrated the difficulty
in obtaining guaranteed ascent. In this section we de-

scribe properties of control operators which shed light on
this difficulty. We will also show how these same proper-
ties call into question local efficacy estimation strategies
like that used in PRODIGY/EBL.

We have presented a view of control axioms opera-
tors in a control-space. To search this space effectively
using the simple search strategies proposed we require
strong constraints on the transitions between control
strategies - either guaranteed ascent or no local maxima
and effective evaluation functions. The previous section
on indirect control axiom effects was the first warning
that these restrictions may not hold. We now expand on
that line of analysis.

What is difficult about control operator effects is that
efficacy is dependent on factors which are not domain in-
dependent, calling a priori biases into question. One of
these factors is the distributions of problems that will be
seen. This is not an extreme problem - we could require
that distributions are provided from the onset or assume
that future distributions reflect past experience, the later
requiring variable biases. More problematic is that effi-
cacy is also dependent on the distribution of decision
points within the search spaces of problems (this is elabo-
rated below). This is problematic because this distribu-
tion is dependent on the particular control strategy in use.
Thus to correctly predict the effects of adding new control
knowledge we must understand how this changes the dis-
tribution of choice points within each problem space for
every problem in the expected distribution of problems.
A hefty task. We will now describe why efficacy is so de-
pendent on choice point distribution and why distribution
changes are so hard to predict.

Appropriateness of decision procedures: As was
illustrated in figure 3, a control axioms can be instantiated
in multiple ways, both within and across problems. Thus
a particular control axiom corresponds to a set of instan-
tiated control axioms. An instantiated control axiom is
termed appropriate if its application increases the effica-
cy measure, all other things being equal. An interaction
occurs when this axiom is appropriate for some members
of its set of instantiated control axioms, but not for other
members. This interaction is realized if nodes which
would lead to inappropriate decisions are actually en-
countered during the search. This last statement means
that local utility of a control axiom is dependent on fac-
tors which determine membership in the set of instan-
tiated control axioms. These factors include the distribu-
tion of problems presented to the planner and other
control axioms. The later is because control axioms alter
the realizable search space for an particular problem and

345

thusmay altertheclass of possible instantiations forother
control axioms.

Pedanticness of decision procedures: One way to
alleviate the problem of appropriateness is to increase the
discriminability of decision procedures. Thus if we can
guarantee that all of the instantiations of a control axiom
are appropriate, we have simplified determination of lo-
cal utility. PRODIGY/EBL rejection rules only trim
nodes which are provably irrelevant. Markovitch's utili-
zation filters attempt to discriminate when a macro will
lead to a solution. Unfortunately increasing the discri-
minability of a decision procedure typically requires
more resources for its evaluation and thus lowers its local
utility. Thus PRODIGY/EBL learns rejection rules
which suggest appropriate modifications but whose in-
troduction increases the cost of the control strategy. This
occurs when the information required to determine the
appropriateness of a search modification is more expen-
sive than the savings realized by it.

Additionally in is often not realistic to derive a deci-
sion procedure which guarantees appropriateness. An
example of this arises in the context of conjunctive goals.
Satisfying one subgoal in a particular way might preclude
the simultaneous satisfaction of other subgoals. Thus a
control axiom which is locally appropriate may be glob-
ally inappropriate. To be appropriate such a decision pro-
cedure must have available all the constraints which arise
from the rest of the plan, information which may not be
available.

savings of R2 if Rl is eventually forgotten. One unfortu-
nate consequence of this property is that PRODIGY/EBL
can be stuck on local maxima in its search for the best con-
trol strategy.

Figure 8 - sociopathlc control rules

Saved by Rl alone Saved by R2 alone

Saved by R2 given Rl Estimate of R2 after
Rl forgotten

Search space savings credited to rule

In summary we feel that the utility problem is arising
from complex and subtle properties of the control space.
We have shown that the search methods learning systems
have available are quite simple and in our opinion inade-
quate to the task. Our hope in future research is to provide
a better understanding of the control space which can sug-
gest more appropriate learning operators or a better char-
acterization of operator effects.

Sociopathic control strategies: A set of control ax-
ioms is sociopathic [Ma] if axioms are individually
judged to be good but the global behavior is bad. If this
property holds, any efficacy measure in terms of local
utility can be complex indeed. Appropriateness trade-
offs are one property which may lead to the sociopathic
property. We will also illustrate another example which
impacts the PRODIGY/EBL system.

As illustrated in figure 8 the effects of reduction ax-
ioms can overlap in the areas of search they avoid, in this
case two rejection rales, Rl and R2, trim overlapping
nodes. PRODIGY/EBL computes the local utility of a
rule base on its match time and estimated search savings.
Which rale is actually credited for the savings is deter-
mined simply by the order in which they were learned. In
the case where Rl is learned before R2, Rl is credited
with all of the savings under the left subtree. This interac-
tion makes Rl's estimate overly optimistic and R2's pes-
simistic and Rl may be incorrectly retained over R2. Fur-
thermore, the information is not available to update the

4 PLANNING TO LEARN

In that we are admitting that learning is a search
through a meta-space, what information do we want
available at this level. One obvious possibility is to pro-
vide a richer vocabulary of control-space operator ef-
fects. It is currently not possible to even express control
axiom interactions much less reason about their impact
on efficacy. While it is not clear such a vocabulary could
be operationally specified, it seems a prerequisite to in-
formed control strategy modification.

There are also several other issues which have been
generally avoided by the learning community and which
might appropriately be handled through meta-reasoning.
One important issue is when to learn. Resources con-
sumed during learning have not generally been incorpo-
ratedinto empirical evaluations of these systems. The ex-
cuse has been that learning time can be amortized over all
problems the system will solve. However in that no sys-
temhas shown convergence and thatrecent learning strat-

346

egies are resource intensive, this excuse may not be rea-
sonable.

The reinforcement learning there has been the obser-
vation that when the search space is ill-behaved a system
can achieve better overall performance by performing a
broader search [SammufJ. This can be viewed as a form
of experimentation, trading off current performance in
the hope of a future gain. Decisions to experiment could
thus be reasoned about at this level.

5 CONCLUSIONS

We have presented a search space view of planning
where the efficacy of a planner is determined by proper-
ties of the ordered search spaces produced by it on a distri-
bution of problems. A control strategy is a set of individ-
ual control axioms which determine a planners mapping
from problems to ordered search spaces. The power set of
all possible control axioms then defines a space of all pos-
sible control strategies and efficacy determines the to-
pography ofthat space.

We conclude that this framework, even in this early
stage, provides a useful perspective for analyzing per-
formance learning systems. Given this characterization,
it is clear that such algorithms are engaging in a search
through the space of possible control strategies. It is also
clear that these systems make strong assumptions about
the topography of the search space, like guaranteed as-
cent, which seem to be violated. Instead we have argued
that the operators used to transition in this space engage in
complex and subtle interactions, resulting in a space to-
pography which is ill-suited to the search strategies cur-
rently emploied.

In that current approaches to the utility problem are
not directiy addressing control interactions we feel they
are not well motivated. Instead we suggest characterizing
these interactions and either reasoning about them during
learning or utilizing them in restricting the class of con-
trol axioms. The later should also be of interest to control
strategy engineers. In that control interactions are com-
plex, progress will likely result from strong restrictions
upon the vocabulary of decision procedures.

Acknowledgements

We would like to thank Steve Chien for helpful dis-
cussions on this topic as well as comments on the draft of
this paper. Thanks also to Scott Bennett and Michael Bar-
behenn.

References

[Cohen] W. W. Cohen, "Learning Approximate Con-
trol Rules Of High Utility," ML90„ pp. 268-276.

[Etzioni] O. Etzioni, "Why Prodigy/EBL Works,"
AAAI90,.

[Greiner89] R. Greiner and J. Likuski, "Incorporating
RedundantRules: A Preliminary Formal Analysis of EBL,"
Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, Detroit, MI, AUG 1989, pp.
744-749.

[Keller] R. M. Keller, "Concept Learning in Con-
text," ML87„ pp. 91-102.

[Ma] Y. Ma and D. C. Wilkins, "Sociopathicity
properties of evidential reasoning systems," Technical Re-
port KBS-90-002, Department of Computer Science, Uni-
versity of Illinois

[Markovitch] S. Markovitch and P. D. Scott, "Utilization
Filtering: a method for reducing the inherent harmfulness
of deductively learned knowledge," Proceedings of the
Eleventh International Joint Conference on Artificial Intel-
ligence, Detroit, Michigan,, pp. 738-743.

[Minton85] S. Minton, "Selectively Generalizing Plans
for Problem-Solving," Proceedings of the Ninth Interna-
tional Joint Conference on Artificial Intelligence, Los An-
geles, August 1985, pp. 596-599.

[Minton88] S. N. Minton, "Learning Effective Search
Control Knowledge: An Explanation-Based Approach,"
CMU-CS-88-133, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA, MAR 1988.

[Mitchell86] T. M. MitcheU, R. Keller and S. Kedar-Ca-
belli, "Explanation-Based Generalization: A Unifying
View," Machine Learning 1,1 (JAN 1986), pp. 47-80.

[Mooney89] R. J. Mooney, "The Effect of Rule Use on
the Utility of Explanation-based Learning," Proceedingsof
the Eleventh International Joint Conference on Artificial
Intelligence, Detroit, MI, AUG 1989, pp. 725-730.

[Nilsson80] N. J. Nilsson, Principles of Artificial Intelli-

gence, TTOGA, 1980.

[Sammut] C. Sammut and J. Cribb, "Is Learning Rate a
Good Performance Criterion for Learning," ML90„ pp.
170-178.

[Segre] A. Segre, C. Elkan and A. Russell, "On Val-
id and Invalid Methodologies for Experimental Evalua-
tions of EBL," Machine Learning Journal (to appear),.

[Tambe] M. Tambe and P. Rosenbloom, "Eliminat-
ing Expensive Chunks by Restricting Expressiveness,"
Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, Detroit, Michigan,, pp. 731-737.

§9

347

Competition-Based Learning for Reactive Systems

John J. Grefenstette

Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory

Code 5514
Washington, DC 20375-5000

Email: GREF@AIC.NRL.NAVY.MIL

Abstract

Traditional AI planning methods often assume a well-
modeled, predictable world. Such assumptions usually
preclude the use of these methods in adversarial,
multi-agent domains. This paper describes our investi-
gation of machine learning methods to learn reactive
plans for such domains, given access to simulation
model. Particular emphasis is given to the task of
assessing the effects of differences between the simula-
tion model and the environment in which the learned
plans will ultimately be tested. Methods for utilizing
existing partial plans are also discussed.

1. Introduction
The goal of this work is to explore the application of
machine learning techniques to reactive planning prob-
lems arising in adversarial, multi-agent domains. In
such domains, traditional AI planning approaches are
usually infeasible, because of the complexity of the
multi-agent interactions and the inherent uncertainty
about the future actions of other agents. One approach
to such problems is to develop a plan expressed as a set
of condition/action rules that specify appropriate
responses to any given situation. The behavior of a
plan can be monitored in a simulation to discover any
weaknesses or inadequacies. This information can be
used to modify the rules, which can then be re-
evaluated in the simulation. Such a generate-and-test
cycle can be repeated until a satisfactory plan is found,
which can then be released for application in the real
world (see Figure 1). In many applications, off-line
learning is the only realistic alternative for evaluating
the performance of hypothetical plans, since testing
plans on the "live" system is too difficult, too costly, or
too dangerous. The current system was designed with
off-line learning in mind. The overall objective is to
reduce the manual effort involved in the generate-and-
test cycle in evolving high-performance reactive plans.

The reactive systems we consider here may be
characterized by the following general scenario: The
decision making agent interacts with a discrete-time
dynamical system in an iterative fashion. At the begin-

ning of each time step, the agent observes a representa-
tion of the current state and selects one of a finite set of
actions, based on the agent's decision rules. As a result,
the dynamical system enters a new state and returns a
(perhaps null) payoff. This cycle repeats indefinitely.
The objective is to find a set of decision rules that max-
imizes the expected total payoff.1 Several tasks for
which reactive systems are appropriate have been
investigated in the machine learning literature, includ-
ing pole balancing (Selfridge, Sutton and Barto, 1985),
gas pipeline control (Goldberg, 1983), and the animat
problem (Wilson, 1987). For many interesting prob-
lems, including the one considered here, payoff is
delayed in the sense that non-null payoff occurs only at
the end of an episode that may span several decision
steps.

2. Overview of the Approach
SAMUEL is a system that uses competition-based
machine learning to develop reactive plans. SAMUEL

incorporates several assumptions selected to make the
system broadly applicable to real-world problems.
First, the system's perception facilities are limited to a
fixed set of discrete, possibly noisy, sensors.2 There is
also a fixed set of control variables may be set by the
decision making agent. The system's decision rules are
limited to simple condition/action rules of the form

if
then

(and Ci
(and ai

where each c; is a condition on one of the sensors and
each action a,- specifies a setting for one of the control
variables. A reactive plan in SAMUEL comprises a set
of such decision rules.

The knowledge base in SAMUEL can be initialized
with plans that provide a minimal level of competence

1 See (Barto, Sutton and Watkins, 1989) for a good discussion of
broad applicability of this general model.

2 See (Whitehead and Ballard, 1990) for a discussion of the
problem of perceptual aliasing under such conditions.

348

ON-LINE SYSTEM OFF-LINE SYSTEM

TEST
ENVIRONMENT

RULE
INTERPRETER

TRAINING
MODEL

RULE
INTERPRETER

A

V

A

/ TEST V.
1 RULE BASE f*"

LEARNING — --/ HYF 3OT \
BASE 1 MODULE "1 RULE

Fig. 1. Learning from a Simulation Model

PROBLEM SPECIFIC
MODULE

PERFORMANCE
MODULE

SENSORS

CONTROLS
CONFLICT

RESOLUTION

CREDIT
ASSIGNMENT

PLAN
FITNESS

GENETIC
ALGORITHM

LEARNING
MODULE

RULE
STRENGTHS

NEW
PLAN

Fig. 2. SAMUEL: A System for Learning Reactive Plans

on the performance tasks. SAMUEL improves its reac-
tive plans through the application of competition at two
levels (Figure 2). At the rule level, each rule is
assigned a strength that estimates its utility on the basis
of its record of past payoff (Grefenstette, 1988).
Conflict resolution is implemented as a probabilistic
competition among rules based on rule strength.
SAMUEL maintains a population of alternative plans.
These plans compete with one another using a genetic
algorithm (Holland, 1975): Each plan in the current
population is evaluated on a number of tasks from the
problem domain (typically, 20 tasks in the experiments
described here). As a result of these evaluations, plans

with high performance are selected and recombined,
using genetic operators such as CROSSOVER and MUTA-

TION, producing plausible new plans for the next itera-
tion.

This learning system has been tested on a sequen-
tial decision problem first discussed by Erikson and
Zytkow (1988), called Evasive Maneuvers (EM). In
EM, there are two objects of interest: a prey and a pur-
suer. The decision maker controls the actions of the
prey to evade the approaching pursuer. The pursuer can
track the motion of the prey and steer toward the prey's
anticipated position. Six sensors give information
about the current state: the current turning rate of the

349

^4
speed

heading ?

/ range

bearing

 ,„. ^

Fig. 3. The Evasive Maneuvers World

prey, a clock, the pursuer range, the pursuer bearing, the
pursuer heading, and the pursuer speed (Figure 3).
There is a single control variable, the turning rate of the
prey. The process is divided into episodes that begin
with the pursuer approaching the prey from a randomly
chosen direction. The pursuer initially travels at a far
greater speed but is less maneuverable than the prey
(i.e., the pursuer has a greater turning radius than the
prey) and gradually loses speed as it maneuvers. The
episode ends when either the pursuer captures the prey
or the pursuer's speed drops below a threshold and it
loses maneuverability. This requires between 2 and 20
decision steps, depending on how many turns the pur-
suer performs while tracking the prey. At the end of
each episode, the critic provides a payoff defined by the
formula:

payoff = 1000 if prey escapes pursuer

= lOf if prey is captured at time t

A plan for EM consists of a set of decision rules. A
sample rule follows:

if (and (last-turn 0 45) (time 4 14)

(range 500 1400) (bearing 3 6)

(heading 90 180) (speed 50 850))

then (and (turn 90))

strength 750

Each condition on the left-hand side of a rule specifies a
range of values for a sensor, and each action specifies
the value for a control variable. The strength is an esti-
mate of the rule's utility and is used for conflict resolu-

tion (Grefenstette, 1988).3 For more details, see (Gre-
fenstette et. al, 1990).

3. Case Studies
This section presents a summary of a number of empiri-
cal studies of the performance of SAMUEL on the EM
problem. Because SAMUEL employs probabilistic learn-
ing methods, all graphs represent the mean performance
over 20 independent runs of the system, each run using
a different seed for the random number generator.
When two learning curves are plotted on the same
graph, a vertical line between the curves indicates that
there is a statistically significant difference between the
means represented by the respective plots (with
significance level a = 0.05) at that point on the curves.

3.1. Accuracy of Simulation Model
One important topic concerns the inevitable

differences between the simulation model in which the
knowledge is learned and the target environment in
which the learned knowledge will be used (see Figure
1). We have performed a number of experiments in
which the rules learned in one environment were tested
in an slightly different environment. These experiments
give some feeling for the robustness of the rules
learned.

In one experiment, two environments were
defined that differed by the initial conditions selected
for the start of each episode (Grefenstette, Schultz and
Ramsey, 1990). In the environment with fixed initial
conditions, the pursuer's initial speed, distance to the
prey, and relative heading were always the same, but
the bearing (direction) from which the pursuer
approached the prey was selected as random for each
episode. In the environment with variable initial condi-
tions, the pursuer's initial speed, distance and heading
were randomly selected from a range of values.

Figure 4 shows the result of learning plans under
fixed initial conditions (dashed curve), and the results
of testing those plans in the environment with variable
initial conditions (solid curve). Not surprisingly, per-
formance of the plans degraded in the less restricted
environment. Figure 5 shows the results when learning
occurs in the environment with variable initial condi-
tions (solid curve), and the results of testing those same
plans in the environment with fixed initial conditions

3 The strength of a rule is reduced by an estimate of the rule's
inconsistency, measured by the variance in the payoff obtained by
the rule. A similar method is used by Whitehead and Ballard (1990)
in their Q-learning system.

350

(dashed curve).

0 20 40 60 80 100 120 140 160 180 200

SUCCESS
RATE
ON

TEST
MODEL

TESTED WITH VAR INIT CONDS

TESTED WITH FIXED INIT CONDS — 20

"i i i i i i i i r
0 20 40 60 80 100 120 140 160 180 200

GENERATIONS

Fig. 4. Learning with Fixed Initial Conditions

SUCCESS
RATE

ON
TEST

MODEL

20 40 60 80

l I I l

100 120 140 160 180 200

TESTED WITH VAR INIT CONDS

- - TESTED WITH FIXED INIT CONDS

20 40 60

~1 1 1 1 1 1~

80 100 120 140 160 180 200

GENERATIONS

Fig. 5. Learning with Variable Initial Conditions

The interesting result here is that there was no
significant degradation of performance when the plans
final learned in the variable environment were tested in
the simpler environment. The evidence is that the sys-
tem learned robust plans that perform well regardless of
the initial conditions of the pursuer. Comparing the two
graphs, it is obvious that one pays a price for learning
the more robust plans, in that a longer period of learn-
ing is required to reach equivalent levels of perfor-
mance.

Figure 6 illustrates some aspects of this trade-off,
comparing the best plans learned in each of the two
training environments. Each plan was tested on 11
environments with differing initial conditions, ranging
from the conditions in the fixed-initial-conditions case
to the conditions in the variable-initial-conditions case.

SUCCESS
RATE
OF

BEST
PLAN

60-

40-

20-

20

__1—

40 60 80 100

^T

TRAINED WITH VAR INIT CONDS

TRAINED WITH FIXED INIT CONDS

I

80

100

0 20 40 60 80 100

PERCENTAGE OF VARIATION IN INIT CONDS IN TEST ENVIRONMENT

Fig. 6. Performance of Learned Plans Tested Against
Gradually Variable Initial Conditions

The plan that was learned in the variable-initial-
conditions environment performed uniformly well in all
the tested environments. The plan learned in the fixed-
initial-conditions environment degraded steadily as the
environment included a greater variety of initial condi-
tions. One interesting interpretation of Figure 6 is that
the penalty for assuming an overly predictable environ-
ment is far greater that the penalty for assuming the
environment less regular than it is.

Similar results were obtained in another set of
experiments in which the difference between the two
environments concerned the amount of noise in the sen-
sors (Ramsey, Schultz and Grefenstette, 1990). Figure
7 shows the result of learning plans with noise-free sen-
sors (dashed curve), and the results of testing those
plans in an environment with noisy sensors (solid
curve). Figure 8 shows the results when training occurs
in the environment with noisy sensors (solid curve), and
the results of testing those same plans in the environ-
ment with noise-free sensors (dashed curve). Again,
there was no loss of performance when the plans
learned in the noisy environment were tested in the
noise-free environment. These results suggest strongly
that, for systems like SAMUEL, it pays to make the simu-
lation of the environment more challenging that the
actual test environment is likely to be (see Figure 9).

3.2. Improving Existing Plans
One of the features of SAMUEL is that, unlike

many previous genetic learning systems (Smith, 1980;
Goldberg, 1983; Holland, 1986), the knowledge
representation consists of symbolic condition-action
rules, rather than low-level binary pattern matching
primitives. The use of a high level language for rules

351

SUCCESS
RATE
ON

TEST
MODEL

0 20 40 60 80 100 120 140 160 180 200

100-1 I I I I I I 1 1 _ I I 100

40-

TESTED WITH NOISY SENSORS

TESTED WITH NOISE-FREE SENSORt- 20

H I I I I I I I I

0 20 40 60 80 100 120 140 160 180 200

GENERATIONS

Fig. 7. Learning with Noise-Free Sensors

explain the success of the empirically derived rules
(Gordon and Grefenstette, 1990). Finally, it makes it
easier to incorporate existing knowledge. A recent
study (Schultz and Grefenstette, 1990) addressed this
final point by comparing two mechanisms for initializ-
ing the knowledge structures in SAMUEL. The results
presented here show that genetic algorithms can be
used to improve partially correct plans, as well as to
learn plans given no initial knowledge.

First, a tactical plan for EM was manually
developed:

If the pursuer is far enough away, turn so that it is
behind the prey. When the pursuer is closing in, make
hard turns such that the pursuer losses velocity. If the
pursuer is heading away from the prey and going slow,
ignore it and continue in the current direction.

0 20 40 60 80 100 120 140 160 180 200

100-1 1 1 1 1 1 1 1 1 1 1-100

RATE
ON

TEST
MODEL

— TESTED WITH NOISY SENSORS

- TESTED WITH NOISE-FREE SENSOR$- 20

~"I 1 1 1 1 1 1 1 V

0 20 40 60 80 100 120 140 160 180 200

GENERATIONS

Fig. 8. Learning with Noisy Sensors

This plan can be expressed naturally in the rule
representation language of SAMUEL. The manually
generated plan successfully evades the pursuer about
75% of the time. Three methods for initializing the
population of competing plans were compared. In the
adaptive initialization method, each plan in the initial
population consisted of a set of maximally general
rules, which are then specialized according to the sys-
tems early experiences (Grefenstette et. al, 1990). In
the homogeneous population method, each of the initial
plans consisted of the heuristically generated plan, aug-
mented by the maximally general rules. Finally, in the
heterogeneous population method, part of the popula-
tion is assigned the heuristic plan and the remainder of
the population consists of the maximally general rules.
A comparison of the three methods is shown in Figure
10.

OVERSPECIALIZED
RULES LEARNED

IDEAL LEARNING
SITUATION

ROBUST
RULES LEARNED

Fig. 9. Effects of Simulator Accuracy

SUCCESS
RATE

OF
CURRENT

PLAN

60.

HETEROGENEOUS POPULATION

HOMOGENEOUS POPULATION

ADAPTIVE INITIALIZATION

—\—
20 60

100

offers several advantages. First, it is easier to transfer
the knowledge learned to human operators. Second, it
makes it possible to combine empirical methods such as
genetic algorithms with analytic learning methods that

Generation

Fig. 10. Learning from Partially Correct Plans

352

The dotted line shows the learning curve when
the no heuristic knowledge is available, i.e., the adap-
tive initialization method. The dashed line shows the
learning curve when heuristic knowledge is incor-
porated in the initial population of knowledge struc-
tures using the homogeneous population method. The
solid line is the learning curve for the heterogeneous
population method, in which the partially correct plans
compete directly with plans generated by the adaptive
initialization heuristics. While a detailed analysis of
the results are beyond the scope of this paper, the
results indicate that, using the heterogeneous method,
SAMUEL can exploit existing knowledge and leam more
quickly when heuristic rules are available. This sug-
gests that future work might explore the trade-offs
between manual knowledge acquisition and machine
learning.

4. Summary
These initial studies in a simple competitive environ-
ment have shown that it is possible for learning systems
based on genetic algorithms to develop high perfor-
mance, robust reactive plans. Once a high performance
plan has been learned, it can be viewed as a source of
expert behavior. In (Gordon and Grefenstette, 1990)
we outline an approach to applying explanation-based
techniques to reactive plans learned by SAMUEL, in
order to clarify the system's performance as well as
generate new reactive rules. Current efforts are also
aimed at augmenting the task environment to test
SAMUEL'S ability to learn reactive plans for a variety of
more realistic domains. Further developments along
these lines can be expected to reduce the manual effort
required to build systems with expert performance in
complex, adversarial domains.

Acknowledgments
I want to acknowledge the contributions toward the
development of SAMUEL by the members of the
Machine Learning Group at NRL, including Alan
Schultz, Connie Ramsey, Diana Gordon, Helen Cobb,
and Ken De Jong.

References

Barto, A. G., R. S. Sutton and C. J. C. H. Watkins
(1989). Learning and sequential decision mak-
ing. COINS Technical Report, University of
Massachusetts, Amherst.

Erickson, M. D. and J. M. Zytkow (1988). Utilizing
experience for improving the tactical manager.
Proceedings of the Fifth International Confer-
ence on Machine Learning. Ann Arbor, MI. (pp.
444-450).

Goldberg, D. E. (1983). Computer-aided gas pipeline
operation using genetic algorithms and machine
learning, Doctoral dissertation, Department Civil
Engineering, University of Michigan, Ann Arbor.

Gordon, D. G and J. J. Grefenstette (1990). Explana-
tions of empirically derived reactive plans.
Proceedings of the Seventh International Confer-
ence on Machine Learning. Austin, TX. (pp.
198-203).

Grefenstette, J. J. (1988). Credit assignment in rule
discovery system based on genetic algorithms.
Machine Learning, 3(2/3), (pp. 225-245).

Grefenstette, J. J. (1989). A system for learning control
plans with genetic algorithms. Proceedings of
the Third International Conference on Genetic
Algorithms. Fairfax, VA: Morgan Kaufmann,
(pp. 183-190).

Grefenstette, J. J., A. C. Schultz and C. L. Ramsey
(1990). Simulation-assisted learning by competi-
tion. To appear in Machine Learning.

Holland, J. H. (1975). Adaptation in natural and
artificial systems. Ann Arbor: University Michi-
gan Press.

Ramsey, C. L., A. C. Schultz and J. J. Grefenstette
(1990). Simulation-assisted learning by competi-
tion: Effects of noise differences between train-
ing model and target environment. Proceedings
of the Seventh International Conference on
Machine Learning. Austin, TX. (pp. 211-215).

Selfridge, O., R. S. Sutton and A. G. Barto (1985).
Training and tracking in robotics. Proceedings of
the Ninth International Conference on Artificial
Intelligence. Los Angeles, CA. August, 1985.

Smith, S. F. (1980). A learning system based on
genetic adaptive algorithms, Doctoral disserta-
tion, Department of Computer Science, Univer-
sity of Pittsburgh.

Wilson, S. W. (1987). Classifier systems and the
animat problem. Machine Learning, 2(3), (pp.
199-228).

Whitehead, S. D. and D. H. Ballard (1990). Active per-
ception and reinforcement learning. Proceedings
of the Seventh International Conference on
Machine Learning. Austin, TX. (pp. 179-188).

353

Towards a Theory of Agency*

Kristian Hammond Timothy Converse

The University of Chicago

Mitchell Marks

Department of Computer Science
Artificial Intelligence Laboratory

1100 East 58th Street
Chicago, IL 60637

ai@tartarus.uchicago.edu

1 Introduction
There is a tension in the world between complexity and
simplicity. On one hand, we are faced with a richness of
environment and experience that is at times overwhelm-
ing. On the other, we seem to be able to cope and even
thrive within this complexity through the use of simple
scripts, stereotypical judgements, and habitual behav-
iors. It seems that to function in the world, we have
idealized and simplified it so as to make tractable our
own reasoning about it. As a group and as individuals,
human agents search for and create islands of simplicity
and stability within a sea of complexity and change.

In general, Artificial Intelligence has ignored this ten-
sion. It has tended towards theories that either attempt
to face the complexity of the world head on, or trivial-
ize the problem through oversimplification of the world.
The result of the former has been the production of
"general purpose" devices that that are uniform in their
ability to solve problems from different domains only in
that are uniformly bad at doing so. The result of the lat-
ter has been toy programs for toy domains that do little
to inform us about the true structure of intelligence.

The response to the failure of this drive towards gen-
eral purpose problem-solvers has, unfortunately, been
the production of domain-dependent programs that sac-
rifice any hope of generality in return for specialized
problem-solving skills. This has been most apparent re-
cently in the reactive movement that has been producing
specialized devices that are robust in their own areas be-
cause of the skills of particular programmers rather than
their own internal structure.

In this paper, we will discuss an approach to relieving
this tension that rises out of the case-based reasoning
movement. This approach embraces rather than avoids
this paradox of the apparent complexity of the world and
the overall simplicity of our methods for dealing with it.
It does this by treating the behavior of intelligent agents
as an ongoing attempt to discover, create, and maintain
the stability that is necessary for the production of goal-
satisfying action.

Our basic argument rests on the idea that general
purpose intelligence is only possible within the confines

'This work was supported in part by the Defense Ad-
vanced Research Projects Agency, monitored by the Air
Force Office of Scientific Research under contract F49620-
88-C-0058, and the Office of Naval Research under contract
N0014-85-K-010.

of learning and planning systems that work to establish
functional correspondences between the world and their
conception of it. This is not to say that we advocate the
position that systems should be attempting to construct
perfect internal models of the world. Our view is that
autonomous agents must strive towards the production
of goal-satisfying behavior—not the production of inter-
nal categories that exist only to match the structure of
the external world.

Our framework for the study of agency consists of four
basic parts:

• Case-based planning.

• Learning from failure.

• Learning from execution-time opportunity.

• Stabilizing the environment through enforcement.

Each of these components provides a piece in the overall
effort to establish the correspondence between the inter-
nal world of an agent and the complex environments in
which it must function. The starting point, case-based
planning, provides the framework by producing stan-
dard plans that themselves are fixed points in the world.
The ability to learn from failure allows for the incre-
mental search of the simplified space of variations that
actually arise in the world as opposed to the far more
complex space of those problems that might occur. Like-
wise, the ability to recognize and learn from execution-
time opportunities provides the ability to construct and
save plans for the conjuncts of goals that actually arise
in a problem space while avoiding the problems of ex-
ponential search of the space itself. Finally, the ability
to stabilize an environment with respect to an agent's
view of the world and the plans that he has built to deal
with it provides the ability to create niches in which the
complexity of the world is reduced, thus making it easier
to reason about and act within.

Because we are concerned with goal-satisfying behav-
ior and with the production of actual actions in the
world, we prefer not to label our work as planning. In-
stead, we prefer a label that links the work to our object
of attention, the intelligent agent, and thus refer to it
as the study of agency. We discuss our work on agency
in the context of three programs: CHEF, TRUCKER, and
RUNNER.

354

2 Planning and Action in an
Open World

Most AI work on problems of autonomous agency has
been within the context of planning research, where a
fairly strict separation between planning and execution
was assumed. The classical development of the theory
of planning and problem-solving emphasized exhaustive
preplanning, with the goal of being able to guarantee
that an optimal or near-optimal plan would be found if
one existed. Planners in this paradigm required certain
assumptions to hold:

• The world will be stable; it will behave as projected.

• Time consumed in planning is independent of the
time that can be devoted to execution.

• The information available to the planner is com-
plete, and execution will be flawless.

• Any initially correct plan will remain correct and
can in fact be carried out.

In the real world, however, these assumptions simply do
not hold. As we relax these assumptions, new issues
arise that researchers in the early days of planning work
were able to avoid. This opening of the world leads us
to a new set of constraints that apply to any agent that
must produce plans and actions in the world. These
constraints include:

• An agent lacks perfect information about its world
and the effects of its own actions.

• An agent does not always know all of its goals in
advance.

• Planning time is limited, and shared with
execution-time.

• The mapping from an action in a plan to an action
in the world is non-trivial.

• Projection over all possible worlds is theoretically
and practically intractable.

• The goal of the agent is to act, not simply to plan.

We do not make these assumptions because we want
to. We make them because we have been forced to. Such
is the nature of real world domains. In general, we pro-
pose that the only way to deal with the intractability
of exhaustive reasoning within complex domains is to
integrate the tasks of planning and learning into a sin-
gle agent architecture. Rather than suppose that it is
possible to construct functional plans from scratch, we
suggest that a dynamic case base of plans and their ef-
fects be produced and used incrementally. In this way,
a planner can improve itself over time through the un-
derstanding of its own success and failure within a given
domain.

3 Case-based Planning
One technological proposal for addressing both the issue
of execution-time failure and the complexity of de novo
plan construction comes out of emerging work in case-
based reasoning [Hammond, 1989, Kolodner and Simp-
son, 1984, Martin, 1990, Owens, 1990, Schänk, 1982].
This work has suggested an approach to problem-solving

that seems to be a tractable alternative to the more tra-
ditional rule-based approaches [Fikes and Nilsson, 1971,
Sacerdoti, 1975]. Case-based planning suggests that the
way to deal with the combinatorics of planning and pro-
jection is to let experience tell the planner when and
where things work and don't work. Rather than replan-
nig, reuse plans. Rather than projecting the effects of
actions into the future, recall what they were in the past.
Rather than simulating a plan to tease out problematic
interactions, recall and avoid those that have cropped
up before.

3.1 A framework for case-based
planning

This framework suggests seven basic case-based plan-
ning processes:

• An ANTICIPATOR that predicts planning prob-
lems on the basis of the failures that have been
caused by the interaction of goals similar to those
in the current input.

• A RETRIEVER that searches a plan memory for
a plan that satisfies as many of the current goals
as possible while avoiding the problems that the
ANTICIPATOR has predicted.

• A MODIFIER that alters the plan found by the
RETRIEVER to achieve any goals from the input
that it does not satisfy.

• A PROJECTOR that uses cases indexed by plan-
ning solutions rather than problems to predict the
outcomes of suggested plans on the basis of the out-
comes of similar plans in memory.

• An INDEXER that places new plans in memory,
indexed by the goals that they satisfy and the prob-
lems that they avoid.

• A REPAIRER that is called if a plan fails. It is here
that we argue that causal knowledge is applied - if
it is applied at all.

• An ASSIGNER that uses the causal explanation
built during repair to determine the features which
will predict this failure in the future. This knowl-
edge is used to index the failure for later anticipa-
tion. As in repair, causal knowledge is useful in
anticipation but not essential.

These seven modules make up the basic algorithm for
a case-based planner. The RETRIEVER, MODIFIER
and INDEXER make up the central planning loop that
allows old plans to be modified in service of new goals.
The REPAIRER is required for those situations in which
plans fail. And the ASSIGNER and ANTICIPATOR
provide the learning and application modules that allow
the planner to avoid making mistakes that it has already
encountered.

4 Learning from failure
The lack of a perfect domain model and thus complete
projection means that case-based planners are open to
the possibility of failure. While this is problematic in
general, we argue that this possibility must be faced
by any reasoning system that is functioning in an open

355

world. Our way of facing the issue of failure is to allow
that it will happen and design systems that are able to
cope with it at execution-time and, as a result of the ex-
perience, anticipate and avoid it in later planning. The
product of this approach is the incremental search of
the space of actual problems that tend to arise in any
particular domain. The apparent complexity of possible
worlds is reduced by allowing the planner to only con-
cern itself with those worlds that actually exist. Our
approach to the complexity of projection in planning is
to learn to recognize the situations in which failures oc-
cur and use that recognition to avoid them. The plan-
ner uses its own failures to learn problematic features
in a domain. These problematic features can then be
used to predict problems in later planning situations so
that the planner can construct its new plan knowing the
problems it must avoid. By also storing plans in terms
of the problems that were encountered while building
them, the planner can use the prediction of a problem
to find a plan in memory that avoids it.

This idea of using failures to learn the features that
predict them is implemented in the CHEF planner [Ham-
mond, 1989]. CHEF uses an anticipate and avoid ap-
proach to planning problems that is sharply contrasted
with the create and debug approach taken by earlier
planners [Wilensky, 1983, Sacerdoti, 1975]. CHEF at-
tempts to predict and plan for possible failures before
they actually occur rather than waiting for them to hap-
pen and repairing them once they have. The ability to
learn from its own failures allows the CHEF planner to
anticipate and avoid those problems that it has seen be-
fore.

It is important to note that this type of knowledge is
learned through an active experimentation in new do-
mains. In particular, it is learned when the planner's
expectations fail. The case of learning to anticipate and
avoid problems in involves expectation failures that cor-
respond to planning errors. As we will see in the section
that follows, learning about specific optimizations in-
volves expectation failures that correspond to episodes
of the planner recognizing and exploiting opportunities.

5 Opportunism and memory
Despite addressing some of the problems of traditional
planning, case-based planning still shares some of its ba-
sic assumptions; the most central being a view of action
as decomposable into separate planning and execution
phases, where the execution phase is carrying out the
dictates of the computational object called the plan. In
recent years there has been a realization in the planning
community that the domains that will support such a
separation are much rarer than had previously been sup-
posed.

Exhaustive pre-planning for a set of goals seems to
require at a minimum that an agent be aware of all its
goals at plan time and that he have complete knowl-
edge of the physics and other agents in his environment.
Unfortunately, this is simply not true of any interesting
domains or situations that an agent must confront.

Just as a system that cannot fully predict the future
must contend with those futures in which plans fail, it
must also deal with those futures in which they succeed

in unanticipated ways. In order to be effective, it must
also cope with and learn from opportunities that were
not predicted in much the same way that it deals with
failures.

Our approach to the problem of execution-time oppor-
tunism uses episodic memory to organize, recognize and
exploit opportunities. Briefly, the algorithm includes
the following features:

• Goals that cannot be fit into a current ongoing plan
are considered blocked and, as such, are suspended.

• Suspended goals are associated with elements of
episodic memory that can be related to potential
opportunities.

• These same memory structures are then used to
parse the world so that the planner can make rou-
tine execution-time decisions.

• As elements of memory are activated by conditions
in the world, the goals associated with them are also
activated and integrated into the current processing
queue.

In this way, suspended goals are brought to the planner's
attention when conditions change so that the goals can
be satisfied. Because the recognition of opportunities
depends on the nature of its episodic memory structures,
we call the overall algorithm presented here opportunis-
tic memory.

5.1 Opportunistic planning

Our approach to opportunism builds on two views of op-
portunism in planning—that of Hayes-Roth and Hayes-
Roth [Hayes-Roth and Hayes-Roth, 1979], and that of
Birnbaum and Collins [Birnbaum and Collins, 1984].

Hayes-Roth and Hayes-Roth presented the view that a
planner should be able to shift between planning strate-
gies on the basis of perceived opportunities, even when
those opportunities are unanticipated. Their model,
which they called opportunistic planning, consisted of
a blackboard architecture and planning specialists that
captured planning information at many levels of ab-
straction. The planner could jump between strategies
as different specialists "noticed" that their activation
conditions were present. In this way, the planner could
respond to opportunities noticed at planning time.

More recently, Birnbaum and Collins [Birnbaum and
Collins, 1984] presented a view of opportunism that in-
cluded a role for execution. Under their model, goals
are viewed as independent processing entities that have
their own inferential power. When a goal is suspended
because of resource constraints, it continues to examine
the ongoing flow of objects and events that pass by the
agent. If circumstances that would allow for the satis-
faction of the goal arise, the goal itself recognizes them
and asserts itself. We share Birnbaum's and Collins'
philosophical stance of trying to explain complex op-
portunistic behavior. However, we disagree that this
behavior results from goals constantly monitoring the
world. We believe that indexing suspended goals is a
better explanation.

356

5.2 An example of opportunism
It is important to understand the type of behavior we
want to capture. We will do this by looking at a simple
example:

On making breakfast for himself in the morn-
ing, John realized that he was out of orange
juice. Because he was late for work he had no
time to do anything about it.
On his way home from work, John noticed that
he was passing a Seven-Eleven and recalled
that he needed orange juice. Having time, he
stopped and picked up a quart and then con-
tinued home.

There are a number of interesting aspects to this ex-
ample. First of all, the planner is confronted with new
goals during execution, making complete preplanning
impossible. Secondly, the planner is able to stop plan-
ning for a goal before deciding exactly how to satisfy it.
In effect, he is able to say "I don't have all the informa-
tion or the time to completely integrate a plan for this
goal into my current agenda." Using Schank's vocabu-
lary, we call this the ability to suspend a goal [Schänk
and Abelson, 1977]. And third, although the goal is sus-
pended, the planner is able to recognize the conditions
that might lead to its satisfaction.

There is another more subtle element to this example:
in order to suspend planning for the goal to possess or-
ange juice, John has to do some reasoning about what
a plan for that goal entails. That is, he has to see that
the goal is blocked by lack of time to go to the store. As
a result, he has a clear idea at planning time what an
execution-time opportunity would look like.

In this example, our opportunistic memory algorithm
translates into the following:

• John's goal to possess orange juice is blocked by
lack of time to run the default plan. He decides,
on the basis of the preconditions he knows about,
that being at a store would constitute an opportu-
nity to get the orange juice. As a result, he links
the suspended goal to the condition of being near a
store.

• While coming home, he sees and recognizes a Seven-
Eleven. This activates the goal to obtain orange
juice that he associated with this condition earlier
in the day.

• He then tests the preconditions on the plan and
merges it into his current agenda.

In our example, having money, being at a grocery
store, and having time are all preconditions for buying
orange juice. But there is a difference between them, in
that having money is a normative condition and as such
does not constitute an opportunity, while being near a
store is a non-normative precondition and as such does
constitute an opportunity.

First, the planner suspends the blocked goals by asso-
ciating them with the elements of memory that describe
potential opportunities. This requires that the planner
have access to a vocabulary that differentiates between
the different types of planning problems.

Next, the planner executes the plans for its active
goals. During execution, it has to monitor the ongoing

effects of its plan as well as the effects of the plans of
others in its world. The representational elements used
to do this parsing are the same elements with which
suspended goals have been associated. As a result, the
planner's general recognition of a situation that consti-
tutes an opportunity can immediately activate any goals
that have previously been associated with that situation.

Finally, any activated goals are integrated into the
current set of scheduled steps, and the plan is executed.
This requires reasoning about resources and protections,
as well as the effects of actions.

5.2.1 Suspending blocked goals
In general, opportunities to run plans can be derived

from the preconditions on each of the steps of a plan. A
planner could, given time, move through a plan step by
step and collect the preconditions that have to obtain
at that point in the plan. But this would require the ex-
amination of many conditions that are not particularly
useful in the context of opportunism. Some precondi-
tions for obtaining orange juice—having money, having
time, and being able to carry the carton—are not useful
if we are looking for the features that will allow us to
recall the suspended goal at the appropriate time. For
example, having money is a strong precondition for buy-
ing orange juice, but it is also a normative condition. As
a result, it is a bad predictor of an opportunity to satisfy
the goal to have orange juice. If the suspended goal is
tied to having money, the planner will be reminded of
the goal far too often.

Rather than test all preconditions of a plan for these
constraints, we propose a taxonomy of opportunity types
to derive the conditions that will serve as opportunities
to satisfy the plan. For a further discussion of this tax-
onomy, see Hammond et al [1988].

In this example, it is possible to associate the
blocked goal to possess orange juice with the location,
GROCERY-STORE, and the object itself, ORANGE-
JUICE. Associating the goal with the least likely condi-
tions with the belief that most of the other conditions
will obtain when the suspended goal is activated.

5.2.2 Recalling suspended goals
An agent usually has a wide variety of planning op-

tions for any one goal. In our example, John can pick up
orange juice at any grocery store, not just a particular
one. It is necessary, then, to be able to recognize a wide
variety of situations as opportunities for goal satisfac-
tion.

To deal with this, we have been using a version of
Martin's DMAP parser [Martin, 1990] a general pur-
pose recognition system. DMAP uses a marker-passing
algorithm in which two types of markers are used to
activate and predict concepts in an ISA and PART-OF
network. Activation markers are passed from primitive
features up an abstraction hierarchy. When any PART-
OF a concept is active, prediction markers are spread to
its other parts. When a predicted concept is handed an
activation marker, it becomes active. Likewise, when all
parts of a concept are activated, the concept itself is ac-
tivated. For our uses, we have added a new type of link
to the basic memory stuctures. This link associates sus-
pended goals with concepts that represent opportunities

357

to achieve them. Pointing from concepts to goals, this
SUSPEND link is traversed by any activation marker
that is placed on the concept. So, the activation of a
concept also activates any suspended goals associated
with it.

5.2.3 Exploiting the opportunities

Once a suspended goal is reactivated, it has to be eval-
uated for integration into the current execution agenda.

In our orange-juice example, the steps required to get
the planner to a store can be ignored, in that being at
the store is the condition that activated the goal in the
first place. But the planner can also ignore other steps.
In particular, the steps that are used to "recover" from
the precondition of being at the store once the plan is
over can be ignored. The remaining steps—going into
the store, buying the orange juice, and exiting—might
be integrated in a fairly traditional way. The planner
checks the preconditions not set by the activation con-
ditions, and it notes the use of resources and their in-
teractions with existing protections. The final product
is a small change in the overall plan that takes the plan-
ner into the store for a moment before resuming his trip
home.

5.3 Learning from opportunities
As in the case of execution-time failure, an unexpected
opportunity may indicate a chance for learning to im-
prove future performance. Just as failure-driven learn-
ing is an alternative to complete projection in debug-
ging of conjunctive goal plans, learning from encoun-
tered opportunities presents a method for constructing
such plans without complete search of the space of pos-
sible plans.

This is best understood in the context of an elabora-
tion of our example: going to the store to buy orange
juice. The basic plan for this goal is simple: go into the
store, find the orange juice, buy it, and go home. During
the execution of this plan a planner will have to move
through the store looking for the juice. As he does so,
he may see a bottle of milk and recall the need for it.
He also may recall that he was out of aluminum foil as
well.

At this point he does what any optimizing planner
should do: he merges the separate plans for obtaining
milk, orange juice and aluminum foil into a single plan
for the conjunct of goals. He buys them all at once while
at the store rather than buying them one at a time and
returning home with each.

We want a planner that will take this experience and
use it to form a new plan to pick up milk when it is
at the store getting orange juice—without also picking
up aluminum foil each time as well. The rationale for
this choice of items to be included in this plan is clear.
Given the rate of use of orange juice and milk, there is
a good chance that at any given moment you may be
out of either. Given the rate of use of aluminum foil,
however, there is little chance that at any one time you
will be out of it.

To do this the planner must face a two-fold task. It
must evaluate the likelihood that a similar conjunction
will ever arise again - i.e., determine if the plan is worth
saving at all and which goals in the initial conjunct

should be included. Then it must determine the set
of features that predicts the presence of the conjunct.
In the language of case-based planning, it must deter-
mine how to index the plan in memory. This determi-
nation can be made empirically, by trying the new plan
when any one of the goals arises and removing links
between it and those goals that do not predict the pres-
ence of the other goals. Or it can be done analytically,
using explanation-based learning methods to construct
explanations for why the goals should or should not be
expected to arise in concert. Regardless of the reason-
ing involved in deciding what conjoined plan to save,
though, the crucial point is that the possibilities for con-
junction are suggested by the world, not by projection.

5.4 An implementation of opportunistic
memory: The TRUCKER program

Our first experiments with an implementation of op-
portunistic memory were in the TRUCKER program.
TRUCKER'S domain is a UPS-like pickup and delivery
task in which new orders are received during the course
of a day's execution. Its task is to schedule the orders
and develop the routes for its trucks to follow through
town. A dispatcher controls a fleet of trucks which roam
a simulated city or neighborhood, picking up and drop-
ping off parcels at designated addresses. Transport or-
ders are "phoned in" by customers at various times dur-
ing the business day, and the planner must see to it that
all deliveries are successfully completed.

TRUCKER optimizes its planning for multiple goals
only when it notices an opportunity to do so during ex-
ecution. If TRUCKER notices an opportunity to satisfy
a goal that is scheduled later in its agenda, it stops and
reasons about the utility of merging the later plan with
the steps it is currently running. If it is able to construct
a plan that is significantly better than one which treats
the plans independently, it uses the new plan. It also
stores the new plan in memory, indexed by each of the
separate goals. When either goal reoccurs, TRUCKER
searches its action queue for for the partner goal and
uses the plan that it has created for the pair. Even when
a goal is placed on its action queue, TRUCKER treats
it as though it were blocked. That is, it establishes
the conditions that would allow TRUCKER to satisfy
the goal and then associates the goal with the memory
structures that would be active during the recognition
of those conditions.

TRUCKER'S apporach to this task is a serious depar-
ture from conventional approaches. Conventional ap-
proaches to planning, however, would be inadequate
to this task, not just because of the intractability of
an optimal solution, but because TRUCKER does not
even know all of its goals before it must begin to act.
TRUCKER must plan opportunistically, recognizing and
acting upon opportunities for goal satisfaction as they
arise. We argue further that since planning time is lim-
ited, and plan construction is costly, plans should be
stored and re-used as much as possible. Finally, pat-
terns of opportunity that are recognized once should be
learned, and should be easier to recognize again if they
recur.

358

5.5 Opportunism in TRUCKER
TRUCKER controls its fleet of trucks by deciding which
trucks should receive given pickup-and-delivery orders,
retrieving or calculating routes for the trucks to fol-
low, and actually monitoring the progress of the trucks
(the trucks are better viewed as effectors of the plan-
ner than as autonomous agents), TRUCKER'S central
control structure is a queue-based executor, reminiscent
of Firby's RAP system [Firby, 1989], with planning and
monitoring actions sharing space on the queue. In ad-
dition to planning the agendas for the trucks, and con-
structing routes for them to follow, the planner must
react to new goals as they come in on the "telephone".

7:58:00 AM Planner Action: (ANSWER-TELEPHONE)
7:58:00 AM Planner Action:

(HANDLE-NEW-REQUEST REQUEST.41)
- Planner relating request REQUEST.41 to memory -
7:58:00 AM Planner Action:
(TRY-ASSIGN-TO-IDLE-TRUCK REQUEST.41)
PLANNER assigning request REQUEST.41 to truck #1

In absence of good reasons to the contrary, the plan-
ner hands pickup and dropoff orders to trucks based on
availability in the order they come in.

Starting INTEGRATE-REQUEST REQUEST.41 #1 IDLE
Resulting new plan:

((GOTO (800 E-61-ST))
(PICKUP PARCEL.42 (850 E-61-ST))
(GOTO (6200 S-C0TTAGE))
(DROPOFF PARCEL.42 (6230 S-C0TTAGE)))

When TRUCKER receives a new request for a pickup
and delivery, it attempts to satisfy the order using a va-
riety of methods. First it checks all active requests on
its truck's agendas for one that has a known positive in-
teraction with the new request. If this fails, TRUCKER
attempts to find a truck that is currently idle to take up
the order. If this also fails, TRUCKER searches for a
suspended request that might be usefully combined with
the new order. If all else fails, TRUCKER is forced to
place the request on a queue of orders waiting for idle
trucks and must construct a new route for the truck us-
ing its map and current information about the available
trucks.

7:58:39 AM
*** Truck #2 making delivery at 1450 E-62-ST ***
- Planner searching memory for route from

(6100 S-W00DLAWN) to (800 E-61-ST) -
Search unsuccessful.

======= PLANNER consulting map
to build route ========

8:03:12 AM *** Truck #1 has a new route: ***
((START N 6100-S-W00DLAWN)

(TURN W E-61-ST)
(STOP 800-E-61))

8:03:12 AM *** Truck #1 is starting new route at
6100 block of S Woodlawn ***

8:05:48 AM *** Truck #1 making pick-up at
850 E-61-ST ***

*** Truck #2 done with delivery ***

Whenever TRUCKER is forced to construct a new
route from scratch, considers the goal that is planned
for to be blocked, and thus suspends it. To suspend a
goal, TRUCKER marks its representation of the goal's
pickup and delivery points with an annotation that there

is a goal related to those locations. TRUCKER ties exe-
cution of actions to locations, landmarks and addresses
that they recognize in the world. It must parse and
interpret the objects in the world. It is during this
parse that TRUCKER recognizes and recalls previously
suspended goals. A typical TRUCKER plan, when fully
expanded, is a route in the form of a list of the turns
that have to be made, described in terms of street names
and compass directions. So the plan step (GOTO (920
E-55th)) after a pick-up at (5802 S-W00DLAWN) ex-
pands into:

(START NORTH (5802 S-W00DLAWN))
(TURN EAST E-57TH)
(TURN NORTH S-CORNELL)
(TURN EAST E-55TH)
(STOP (920 E-55TH))

As TRUCKER moves through its world, it parses
the objects at its current location and responds to any
changes that the tokens it has recognized suggest: turn-
ing, for example, when it recognizes the 5700 block of
Woodlawn. It also checks the token for any annotation
of a goal that might be associated with it. If one is
found, TRUCKER activates the suspended goal and at-
tempts to integrate it into the current schedule. This
allows TRUCKER to easily and effectively activate sus-
pended goals when the opportunities to satisfy them
arise. The same memory for places and landmarks that
is used to tell the trucks when to turn and where to stop
is annotated with the delivery goals that have not yet
been satisfied. When such a location is recognized in
the course of executing another delivery, the possibility
of opportunistically satisfying the goal is suggested.

8:17:12 AM *** Truck #1 is starting new route at
800 block of E 61st Street ***

*** Truck #1 has noticed an opportunity to make the
pickup for request REQUEST.49 ***

*** Request REQUEST.49 is assigned — Truck
#1 inserting reassignment request in
planner's agenda.

*** Noting combination opportunity in memory ***
8:17:45 AM Planner Action:

(REASSIGN-BY-N0TICED-0PP0RTUNITY REQUEST.49 #1)
- Reassignment of request REQUEST.49 means that

truck #2 need not continue to its destination.
PLANNER assigning request REQUEST.49 to truck #1
Starting INTEGRATE-REQUEST
Current plan:

((GOTO (6200 S-C0TTAGE) »{Structure ROUTE 2})
(DROPOFF PARCEL.42 (6230 S-C0TTAGE)))

Request-plan to integrate:
((GOTO (6100 S-C0TTAGE))

(PICKUP PARCEL.50 (6150 S-C0TTAGE))
(GOTO (900 E-63-ST))
(DROPOFF PARCEL.50 (925 E-63-ST)))

8:17:45 AM *** Truck #1 is stopping in
6100 block of S Cottage Grove ***

Finishing INTEGRATE-REQUEST
Resulting new plan:

((GOTO (6100 S-C0TTAGE))
(PICKUP PARCEL.50 (6150 S-C0TTAGE))
(GOTO (6200 S-C0TTAGE))
(DROPOFF PARCEL.42 (6230 S-C0TTAGE))
(GOTO (900 E-63-ST))
(DROPOFF PARCEL.50 (925 E-63-ST)))

359

Once a suspended goal is reactivated, it has to be eval-
uated for integration into the current execution agenda.

Here TRUCKER uses special-purpose techniques tai-
lored to the domain. When a suspended goal is recalled
by the planner, it attempts to find the best placement
in the current route for the awakened request. Schedul-
ing the pickup is trivial, in that a truck is at the pickup
location. The difficulty lies in scheduling the delivery.
TRUCKER does this by stepping through each location
already scheduled and finding the section of the route
that will be the least altered by the insertion of the de-
livery. In this way the full planner is invoked only when
the recognition of an opportunity to satisfy a pending
goal suggests that the combination of delivery orders
may be fruitful.

5.6 Learning in TRUCKER

There is considerable regularity and repetition in the
orders that the world simulation hands to TRUCKER.
TRUCKER exploits this in a case-based manner, by sav-
ing particular constructed routes, remembering con-
juncts of requests that have been profitably combined,
and remembering the particular interleavings of steps
that these conjuncts produced. When the conjuncts of
goals reoccur, TRUCKER recognizes them as a known
conjunct of goals for which it has a plan and uses the
plan for that conjunc that it has saved in memory. When
TRUCKER receives a request, the request's long-term
record is inspected to see if there are any notations about
combinations with other requests. If so, the planner
looks to see if the other requests are currently active. If
it finds the requests that it has previously been able to
merge with the current one, the plan for the conjunc-
tion is added to the agenda rather than those for the
individual requests. It is important to note that plans
for combination of requests are only activated when all
the requests are active.
[Day#2]
8:17:00 AM Planner Action: (ANSWER-TELEPHONE)
- Planner relating request

REQUEST.73 to memory -
8:17:00 AH Planner Action:
(TRY-ASSIGN-TO-USEFUL-TRUCK REQUEST.73)
- Truck #1 is pursuing a request that has been

previously associated with route of request
REQUEST.73
PLANNER assigning request REQUEST.73 to truck #1

Starting INTEGRATE-REQUEST
Current plan:

((GOTO (6200 S-C0TTAGE))
(DROPOFF PARCEL.72 (6230 S-C0TTAGE)))

Request-plan to integrate:
((GOTO (6100 S-C0TTAGE))
(PICKUP PARCEL.74 (6150 S-C0TTAGE))
(GOTO (900 E-63-ST))
(DROPOFF PARCEL.74 (925 E-63-ST)))

Resulting new plan:
((GOTO (6100 S-COTTAGE))
(PICKUP PARCEL.74 (6150 S-COTTAGE))
(GOTO (6200 S-COTTAGE))
(DROPOFF PARCEL.72 (6230 S-COTTAGE))
(GOTO (900 E-63-ST))
(DROPOFF PARCEL.74 (925 E-63-ST)))

This automatic combination of requests that have
been joined in the past will obviously not necessarily

lead to an optimal assignment of requests to trucks, at
least in a sense of optimality that ignores the cost of the
work done in arriving at the assignment. There is an
side benefit to this standardization, however, which is
that using step interleavings that were previously calcu-
lated means that the routes between internal points of
the schedule can also be reused.

======== PLANNER consulting map
to build route ========

8:17:12 AM *** Truck #1 has a new route: ***
((START W 800-E-61)

(TURN S S-COTTAGE)
(STOP 6100-S-COTTAGE))

8:17:12 AM *** Truck #1 is starting new route at
800 block of E 61st Street ***

8:17:39 AM *** Truck #1 making pick-up at
6150 S-COTTAGE ***

- Planner searching memory for route from
(6100 S-COTTAGE) to (6200 S-COTTAGE) -

Search successful.
======== PLANNER knows route from

6100S-C0TTAGE to 6200S-C0TTAGE ========

Given some regularity in the orders it receives,
TRUCKER builds a library of planned routes, and a li-
brary of conjoined plans for groups of requests that have
occurred together. Learning from these encountered
opportunities advances TRUCKER'S background goal of
learning about interesting regularities in its environ-
ment, and helps amortize the complexity over the long
term of satisfying its goals.

Our discussion up to now has focussed on how an
agent can learn about regularities in its world, both fa-
vorable and unfavorable, and change its long-term be-
havior in response to them. In the next section we turn
to the question of how an agent can create such regular-
ities and profit from them.

6 Enforcement and the
stabilization of environments

There is a direct relationship between the overall stabil-
ity of an environment and our ability to predict and plan
within it. The greater the stability, the more certain our
predictions; and the more certain our predictions, the
more powerful our plans.

Both as individuals and as societies, we respond to
this by trying to increase the stability of our world.
We segment our schedules of work, play and relaxation
so that each day will tend to look very much like the
last. We organize our homes and workspaces so that
objects will be in predictable places. We even organize
our habits so that particular conjuncts of goals will tend
to arise together. In all aspects of our lives, we make
moves to stabilize our different worlds.

In this section, we discuss this concept of enforcement
and examine a few of the different forms that it takes. In
particular, we outline a basic taxonomy of classes of sta-
bility and presents the strategies for increasing overall
stability that are associated with each class. We ex-
amine its relationship to learning and argue that both
learning and enforcement are strategies for building up
a correspondence between an agent's mental model of
the world and the actual physical reality. We also dis-

360

cuss the learning and planning trade-offs that have to
be made when stability is optimized.

6.1 Opportunism and enforcement: An
example

Recall for a moment the example we discussed in the last
section involving an agent going to the grocery store to
pick up a quart of orange juice and noticing that he
needs milk as well. One element of this process that
interests us is the notion that the more likely it is that
that goals will show up in conjunction with each other,
the more useful the plan will be. In this example, the
utility of saving and attempting to reuse the plan to buy
both the orange juice and the milk is maximized when
the two goals are guaranteed to show up in conjunction
whenever either of the two recurs. This suggests the
idea that one of the steps that an agent could take in
improving the utility of his plans would be to force the
recurrence of the conjuncts of goals over which these
plans are optimized. In terms of the orange juice and
milk example, this means making sure that the cycles
of use of each resource are synchronized. This can be
done by either changing the actual use of the resources
to bring them into synchronization or by changing the
amounts purchased such that they would be used up at
the same time. In either case, the idea is to alter cir-
cumstances in the world such that the long term utility
of a plan that already exists is optimized. This is done
by stabilizing the world with regard to the relative use
of the two resources. This type of enforcement is aimed
at controlling what we call RESOURCE CYCLE SYNCHRO-

NIZATION in that its goal is to stabilize the use cycles of
multiple resources with respect to one another.

Adjusting the amount of orange juice purchased so
makes cycle of use match the cycle of use of the milk.
This increases the utility of the plan to buy the two
together in three ways: optimization of planning, opti-
mization of indexing, and optimization of execution.

• In terms of planning optimization, the agent now
has available a plan for a conjunct of goals that he
knows will recur so he never needs to recreate it.
This means never having to reconstruct the GET-
ORANGE-JUICE-AND-MILK plan again.

• And in terms of indexing optimization, the plan
can be indexed by each of the elements of the
conjunct—rather than by the conjunct itself—thus
reducing the complexity of the search for the plan
in the presence of the individual goals. This means
that the plan will be automatically suggested when
either the HAVE-MILK goal or the HAVE-ORANGE-
JUICE goal arises even when the other element of
the goal conjunct does not.

• In terms of execution optimization, the agent can
decide to commit to and begin execution of the
new plan when either of the two goals arises. It
can do this because it is able to predict that the
other goal is also present, even if it is not explic-
itly so. This means that the agent can begin to
run the GET-ORANGE-JUICE-AND-MILK plan when
he notices that he is out of either milk or orange
juice without being forced to verify that the other
goal is active.

One way of viewing enforcement is as an extension of
planning itself. As in planning, the conditions that are
enforced are fixed in the world using the same sorts of
actions that result in the satisfaction of goals. The dif-
ference is that the actions associated with enforcement
result in changes to the actual structure of a domain.

Likewise, enforcement can be seen as an active cousin
of learning. Just as learning techniques in planning are
designed to build up an effective set of plans and opera-
tors for a domain, enforcement techniques are designed
to do so as well. The difference here is that learning at-
tempts to satisfy this goal by changing the learner and
enforcement attempts to do so by changing the world.

6.2 Stability and enforcement
While RESOURCE CYCLE SYNCHRONIZATION was one of
the first instances of stability we encountered, it is by
no means the only kind. In the sections that follow,
we present two other basic types of stability and related
enforcement strategies.

The question is, is it possible to explicate this taxon-
omy of stability in a way that would allow a system to
actually recognize and enforce the different types? The
following sections outline this taxonomy with respect to
this question by breaking each type down in terms of
the following issues:

• What types of stability are useful in and of
themselves?

• Over what goals do they allow optimization?

• What strategies can be formed to enforce
them?

• How can opportunities to apply these en-
forcement strategies be recognized?

6.2.1 Stability of location

The most common type of stability that arises in ev-
eryday activity is that of location of commonly used
objects. Our drinking glasses end up in the same place
every time we do dishes. Our socks are always together
in a single drawer. Everything has a place and we en-
force everything ending up in its place.

Enforcing STABILITY OF LOCATION serves to optimize
a wide range of processing goals. First of all, the fact
that an often used object or tool is in a set location re-
duces the need for any inference or projection concerning
the effects of standard plans on the objects or the cur-
rent locations of objects. Second, it allows plans that
rely on the objects locations to be run without explicit
checks (e.g., no need to explicitly determine that the
glasses are in the cupboard before opening it). Third, it
removes the need at execution-time for a literal search
for the object.

The final question in terms of STABILITY OF LOCA-
TION, then, is the issue of when to attempt enforcement.
As in many instances of standard learning, failure is a
good indicator. Here, the problem will take the form of
an execution-time failure to actually find an object that
is both known to exist and is a object essential to a plan
being run.

361

6.2.2 Stability of cues

One effective technique for improving plan perfor-
mance is to improve the proper activation of a plan
rather than improve the plan itself. For example, plac-
ing an important paper that needs to be reviewed on his
desk before going home, improves the likelihood that an
agent will see and read it the next day. Marking calen-
dars and leaving notes serves the same sort of purpose.

One important area of enforcement is related to this
use of visible cue in the environment to activate goals
that have been suspended in memory. The idea driving
this type of enforcement is that an agent can decide on
a particular cue that will be established and maintained
so as to force the recall of commonly recurring goals.
One example of this kind of enforcement of STABILITY
OF CUES is leaving a briefcase by the door every night
in order to remember to bring it into work. The cue
itself remains constant over time. This means that the
agent never has to make an effort to recall the goal at
execution-time and, because the cue is stabilized, it also
never has to reason about what cue to use when the
goal is initially suspended. The advantage of this sort
of enforcement is that an agent can depend on the ex-
ternal world to provide a stable cue to remind it of goals
that still have to be achieved. This sort of stability is
suggested when an agent is faced with repeated failures
to recall a goal and the plan associated with the goal is
tied to particular objects or tools in the world.

These are only three of the types of stability and en-
forcement that we have uncovered. For a broader discus-
sion of these and other instances of stability, see Ham-
mond [1990].

6.3 The point
In order to plan at all in an environment, it must at
least be stable with respect to its basic physics. In
order to reuse plans in any interesting way at all, the
environment—including the agent—must be stable with
respect to other aspects as well. In particular, it must
be stable with regard to the physical structure of the en-
vironment, the goals that tend to recur and the times at
which events tend to take place. While many environ-
ments have this sort of stability, it is often the product
of the intervention of agents attempting to stablize it so
as to increase the utility of their own plans. The goal of
this enforcement parallels the goal of learning—the de-
velopment of a set of effective plans that can be applied
to satisfy the agent's goals. The path toward this goal,
however, is one of shaping the world to fit the agent's
plans rather than shaping the agent to fit the world.

7 A Model of Agency
These four elements, case-based planning, learning from
failure, learning from opportunity and enforcement of
stability are now coming together in an overall model
of planning and action. This model of agency rises
out of three pieces of work: Schank's structural model
of memory organization [Schänk, 1982] our own work
in case-based planning and dependency directed repair
[Hammond, 1989], and the work of Martin and Riesbeck
in Direct Memory Access Parsing [Martin, 1990]. The

model is currently under development in the RUNNER
program.

During execution, the agent performs an ongoing
"parse" of the world in order to recognize conditions
for action execution. Following DMAP [Martin, 1990],
this parse takes the form of passing markers through
an existing episodic memory. Because suspended goals
are indexed in the memory used for understanding the
world, the goals are activated when the conditions fa-
voring their execution are recognized. Once active, the
goals are then reevaluated in terms of the new condi-
tions. Either they fit into the current flow of execution
or they are again suspended.

In TRUCKER, and later in RUNNER, we tried to ad-
dress the specific problem of recognizing execution-time
opportunities. We now use the term agency to comprise
the spawning of goals, selection of plans, and execution
of actions. Our process model of agency is based on
Martin's DMAP understander [Martin, 1990]. DMAP
uses a memory organization defined by part/whole and
abstraction relationships. Activations from environmen-
tally supplied features are passed up through abstrac-
tion links and predictions are passed down through the
parts of partially active concepts. Subject to some con-
straints, when a concept has only some of its parts ac-
tive, it sends predictions down its other parts. When
activations meet existing predictions, the node on which
they meet becomes active. Finally, when all of the parts
of a concept are activated, the concept itself is activated.
The architecture provides a computational mechanism
for specifying and applying domain-dependent informa-
tion to a general memory search process. (For an expo-
sition of the DMAP architecture, see [Martin, 1990]).

To accommodate action, we have added the notion
of PERMISSIONS. PERMISSIONS are handed down the
parts of plans to their actions. The only actions that
can be executed are those that are PERMITTED by the
activation of existing plans. Following McDermott [Mc-
dermott, 1978], we have also added POLICIES. POLICIES
are statements of ongoing goals of the agent. Some-
times these take the form of enforcement goals, such as
"Glasses should be in the cupboard." or "Always have
money on hand." The only goals that are actively pur-
sued are those generated out of the interaction between
POLICIES and environmental features. We would argue
that this is, in fact, the only way in which goals can be
generated.

7.1 Goals, plans, and actions
Goals, plans, and actions interact as follows:

• Features in the environment interact with POLICIES
to spawn goals.
For example, in RUNNER, the specific goal to HAVE
COFFEE is generated when the system recognizes
that it is morning. The goal itself rises out of the
recognition of this state of affairs in combination
with the fact that there is a policy in place to have
coffee at certain times of the day.

• Goals and environmental features combine to acti-
vate plans already in memory.
Any new MAKE-COFFEE plan is simply the activa-
tion of the sequence of actions associated with the

362

existing MAKE-COFFEE plan in memory. It is re-
called by RUNNER when the HAVE-COFFEE goal is
active and the system recognizes that it is at home.

• Actions are permitted by plans and are associated
with the descriptions of the world states appropri-
ate to their performance. Once a set of features has
an action associated with it, that set of features (in
conjunct rather than as individual elements) is now
predicted and can be recognized.
Filling the coffee pot is permitted when the MAKE-
COFFEE plan is active; it is associated with the fea-
tures of the pot being in view and empty. This
means not only that the features are now predicted
but also that their recognition will trigger the ac-
tion.

• Actions are specialized by features in the environ-
ment and by internal states of the system. As with
Firby's RAPs [Firby, 1989], particular states of the
world determine particular methods for each gen-
eral action.
For example, the specifics of a GRASP would be
determined by information taken from the world
about the size, shape and location of the object
being grasped.

• Action level conflicts are recognized and mediated
using the same mechanism that recognizes informa-
tion about the current state of the world.
For example, when two actions are active (such as
filling the pot and filling the filter), a mediation
action selects one of them. During the initial phases
of learning a plan, this can in turn be translated into
a specialized recognition rule which, in the face of
a conflict, will always determine the ordering of the
specific actions.

• Finally, suspended goals are associated with the
descriptions of the states of the world that are
amenable to their satisfaction.
For example, the goal HAVE-ORANGE-JUICE, if
blocked, can be placed in memory, associated with
the conjunct of features that will allow its satisfac-
tion, such as being at a store, having money and
so forth. Once put into memory, this conjunct of
features becomes one of the set that can now be
recognized by the agent.

7.2 The study of agency
We do not see this model as a solution to the problems
of planning and action. Instead, we see this as a frame-
work in which to discuss exactly what an agent needs
to know in a changing world. Advantages of this frame-
work include:

1. A unified representation of goals, plans, actions and
conflict resolution strategies.

2. Ability to learn through specialization of general
techniques.

3. A fully declarative representation that allows for
meta-reasoning about the planner's own knowledge
base.

4. A simple marker-passing scheme for recognition
that is domain and task neutral.

5. Provision for the flexible execution of plans in the
face of a changing environment.

The basic metaphors of action as permission and
recognition, and planning as the construction of descrip-
tions that an agent must recognize prior to action, these
fit our intuitions about agency. Under this metaphor,
we can view research into agency as the exploration of
the situations in the world that are valuable for an agent
to recognize and respond to.

8 An Implementation of
Agency: RUNNER

Most of our work in studying this architecture has been
within the context of the RUNNER system. The RUNNER
project is aimed at modeling the full spectrum of activity
associated with an agent—goal generation, plan activa-
tion and modification, action execution, and resolution
of plan and goal conflict—not just the more traditional
aspect of plan generation alone.

8.1 RUNNER'S world
The agent in RUNNER currently resides in a simulated
kitchen, and is concerned with the pursuit of such goals
as simulated breakfast and coffee. Such commonplace
goals and tasks interest us in part because they are
repetitive and have many mutual interactions, both neg-
ative and positive. We are interested in how plans for re-
curring conjuncts of goals may be learned and refined, as
part of view of domain expertise as knowledge of highly
specific and well-tuned plans for the particular goal con-
juncts that tend to co-occur in the domain [Hammond et
a/., 1988]. We are also interested in the issue of exactly
how these plans can be used in the guidance of action.

8.2 RUNNER'S representation
The knowledge and memory of the agent is captured
in the conjunction of three types of semantic nets, rep-
resenting knowledge of goals, plans and states. Nodes
in these networks are linked by abstraction and pack-
aging links, as in DMAP. In addition, we propose an
additional SUSPEND link, which connects suspended
goals to state descriptions that may indicate opportuni-
ties for their satisfaction. For example, the goal to have
eggs would be suspended in association with the descrip-
tion of the agent being at a grocery store. In addition
to being passed to abstractions of activated concepts,
activation markers are always passed along SUSPEND
links.

In general, the only other way in which these nets are
interconnected is via concept sequences. A node may
be activated if all of the nodes in one of its concept se-
quences is activated - a concept sequence for a given
node can contain nodes from any of the parts of mem-
ory. The following is a partial taxonomy of the types of
concept sequences we currently allow:

• Activation of a goal node can activate a node rep-
resenting a default plan.

• Activation of a plan node and some set of state
nodes can activate a further specialization of the
plan.

363

• Activation of a goal node and some set of state
nodes can activate a further specialization of the
goal.

• Activation of any state node that has a SUSPEND
link will activate the associated goal.

8.3 An example: Making coffee
The above discussion of representation may make more
sense in the context of an example, currently imple-
mented in RUNNER, of how a particular action is sug-
gested due to conjunction of plan activation and envi-
ronmental input.

One of the objects in RUNNER'S simulated kitchen is a
coffeemaker, and one of the plans it has available is that
of making coffee with this machine. This plan involves
a number of subsidiary steps, some of which need not
be ordered with respect to each other. Among the steps
that are explicitly represented in the plan are: fetching
unground beans from the refrigerator, putting the beans
in the grinder, grinding the beans, moving a filter from a
box of filters to the coffeemaker, filling the coffeemaker
with water from the faucet, moving the ground beans
from the grinder to the coffeemaker, and turning the
coffeemaker on.

The subplans of the coffee plan are associated with
that plan via packaging links. In this implemented ex-
ample, the agent starts out with a node activated which
represents knowledge that it is morning. This in turn is
sufficient to activate the goal to have coffee (this is as
close as the program comes to a theory of addiction).
This goal in turn activates a generic plan to have cof-
fee. This turns out to be nothing but an abstraction of
several plans to acquire coffee, only one of which is the
plan relevant to our kitchen:

"Visual" input, in terms of atomic descriptions of
recognizable objects and their proximities, is passed to
memory. For example, the agent "sees" the following
visual types:

countertop, white wall, box of filters
Among sets of possible visually recognized objects

are concept sequences sufficient for recognition that the
agent is in the kitchen. The recognition of the white wall
and the countertop completes one of these sequences.
The "kitchen" node in turn passes activation markers
to its abstractions, activating the node corresponding
to the agent being at home:

The activation of this node in conjunction with the
activation of the generic coffee goal completes the con-
cept sequence necessary for the goal for making coffee
at home, which in turn activates the default plan for
that goal. In this way a specialized plan is chosen in
response to a conjunction of a recognized state and a
more generic goal:

MEMORY:
concept sequence

([GOAL: drink-coffee] [at-home])
for node

[GOAL: drink-coffee-at-home] is completed,
sending activation marker to

[GOAL: drink-coffee-at-home]
Activating concept:

[GOAL: drink-coffee-at-home]
Asserting new goal:

[GOAL: drink-coffee-at-home]
sending activation marker to

[PLAN: make-coffee-at-home]
Node [PLAN: make-coffee-at-home]
has both permission and activation:

((MARKER [GOAL: drink-coffee-at-home]))
(TOP-LEVEL-PLAN)

Activating concept:
[PLAN: make-coffee-at-home]

The activation of the coffee-plan causes permission
markers to be sent down packaging links to the nodes
representing the parts of the plan. The activation of the
other object concepts from the "visual" input in turn
have sent activation markers to the actions that contain
them in their concept sequences. Among these is the
plan step for taking a filter from the box and installing
it in the coffeemaker, which is activated by seeing box
of filters itself. In this way a sub-plan is suggested by
the intersection of permission from its parent plan and
cues from the environment that indicate that it is easily
satisfiable:

Asserting new plan:
[PLAN: make-coffee-at-home]

Sending permissions to steps of plan
Sending permission markers from

[PLAN: make-coffee-at-home]
to steps

FILL-CARAFE PUT-BEANS-IN-GRINDER
MOVE-GROUNDS-TO-COFFEE-MAKER
TURN-ON-COFFEE-MAKER GRIND-BEANS
PUT-IN-FILTER GET-COFFEE-BEANS

concept sequence
([filter-box]

[PLAN: make-coffee-at-home])
for node [PLAN: put-in-filter] is completed,
sending activation marker to

[PLAN: put-in-filter]
Node [PLAN: put-in-f ilter]
has both permission and activation:

((MARKER ([filter-box]
[PLAN: make-coffee-at-home])))

((MARKER [PLAN: make-coffee-at-home]))
Activating concept:

[PLAN: put-in-filter]
Asserting new plan: [PLAN: put-in-filter]
Sending permissions to steps of plan
Sending permission markers from

[PLAN: put-in-filter]
to steps

PUT-FILTER-IN-COFFEEMAKER GET-FILTER
concept sequence

([filter-box] [PLAN: put-in-f ilter])
for node [PLAN: get-filter] is completed,
sending activation marker to

[PLAN: get-filter]
Node [PLAN: get-filter]
has both permission and activation:

((MARKER ([filter-box]
[PLAN: put-in-filter])))

((MARKER [PLAN: put-in-filter]))
Activating concept: [PLAN: get-filter]

After another level of passing permission markers to
sub-plans, the process "bottoms out" in the suggestion
of the primitive action of picking up the box of filters.
With no suggestions to the contrary, the action is taken:

Asserting new plan:

364

[PLAN: get-filter]
Sending permissions to steps of plan
Sending permission markers from

[PLAN: get-filter]
to steps

TAKE-OUT-FILTER PICK-UP-BOX
LOOK-FOR-FILTER-BOX

concept sequence
([filter-box] [PLAN: get-filter])

for node [PLAN: pick-up-box] is completed,
sending activation marker to

[PLAN: pick-up-box]
Node [PLAN: pick-up-box]
has both permission and activation:

((MARKER ([filter-box] [PLAN: get-filter])))
((MARKER [PLAN: get-filter]))

Activating concept: [PLAN: pick-up-box]
Suggesting action: (GRASP 'FILTER-BOX)

ACTION:
Performing action: (GRASP 'FILTER-BOX)

To the left is a countertop, up close
To the right, there's a countertop, up close
Straight ahead, there's a countertop, up close
Result of action: I'm holding onto a filter-box

The final action is chosen both on the basis of ac-
tive plans and goals, and in response to the immediate
circumstances in which the agent finds itself. Given a
change in either the top-down guidance or the bottom-
up recognition, the selection of plan and action will
change in response.

9 Conclusion

Intelligence is an ongoing process. It does not begin and
end with one example. It is not exercised through tricks
or puzzles. It is instead a constant battle to sometimes
find, often establish, and eventually exploit the order
that lies within the rich complexity of the natural world.

Our study of agency rests on this idea that intelligent
behavior is a long-term activity and that much of it is
aimed at learning and enforcing order within a domain.
Our central premise is that the stability of the world in-
cludes stability over the collections of goals that we will
be called upon to satisfy, the types of difficulties we will
encounter and the kinds of conditions that we will be
forced to overcome. It is only by learning or enforcing
these, that an agent can develop a true expertise in any
domain. And it is only through an ongoing attempt to
satisfy goals in a dynamic world that opportunites for
learning and enforcement can ever be encountered. In
this paper, we have tried to extend the core idea of case-
based plannning to include learning from execution-time
failure and opportunity, in an effort to also extend the
kind of order that a system can learn and utilize. Like-
wise, we have proposed the idea of enforcement as a
means to impose order in those situations where it can
help the system in the later application of its own plans.
In all, we have tried to present a picture of an agent that
is able to cope with the complexity of its environment
by learning and using the order that lies within it.

References
[Birnbaum and Collins, 1984] L. Birnbaum

and G. Collins. Opportunistic planning and freudian
slips. In Proceedings of the Sixth Annual Conference
of the Cognitive Science Society, Boulder, CO, 1984.

[Fikes and Nilsson, 197l] R. Fikes and N. Nilsson.
STRIPS: A new approach to the application of the-
orem proving to problem solving. Artificial Intelli-

gence, 2, 1971.

[Firby, 1989] R. J. Firby. Adaptive execution in com-
plex dynamic worlds. Research Report 672, Yale Uni-
versity Computer Science Department, 1989.

[Hammond et al, 1988] K. J. Hammond, T. Converse,
and M. Marks. Learning from opportunities: Storing
and reusing execution-time optimizations. In Proceed-
ings of the Seventh Annual Conference on Artificial
Intelligence, pages 536-40. AAAI, 1988.

[Hammond, 1989] K. Hammond. Case-Based Planning:
Viewing Planning as a Memory Task. Academic
Press, 1989.

[Hammond, 1990] K. Hammond. Learning and enforce-
ment: Stabilizing environments to facilitate activ-
ity. In B. Porter and R. Mooney, editors, Proceed-
ings of the Seventh International Conference on Ma-
chine Learning, Austin, Texas, 1990. Morgan Kauf-
mann Publishers, Inc.

[Hayes-Roth and Hayes-Roth, 1979] B. Hayes-Roth
and F. Hayes-Roth. A cognitive model of planning.
Cognitive Science, 3(4):275-310, 1979.

[Kolodner and Simpson, 1984]
J. Kolodner and R. Simpson. Experience and prob-
lem solving: A framework. In Proceedings of the Sixth
Annual Conference of the Cognitive Science Society,
Boulder, CO, August 1984.

[Martin, 1990] C. E. Martin. Direct Memory Access
Parsing. PhD thesis, Yale University Department of
Computer Science, 1990.

[Mcdermott, 1978] D. Mcdermott. Planning and acting.
Cognitive Science, 2:71-109, 1978.

[Owens, 1990] C. Owens. Indexing and Retrieving Ab-
stract Planning Knowledge. PhD thesis, Yale Uni-
versity Department of Computer Science, 1990. In
preparation.

[Sacerdoti, 1975] E. D. Sacerdoti. A structure for plans
and behavior. Technical Report 109, SRI Artificial
Intelligence Center, 1975.

[Schänk and Abelson, 1977] R. C. Schänk and R. Abel-
son. Scripts, Plans, Goals and Understanding: An
Inquiry into Human Knowledge Structures. Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1977.

[Schänk, 1982] R. Schänk. Dynamic memory: A the-
ory of learning in computers and people. Cambridge
University Press, 1982.

[Wilensky, 1983] R. Wilensky. Planning and Under-
standing: A Computational Approach to Human Rea-
soning. Addison-Wesley Publishing Company, Read-
ing, MA, 1983.

365

Learning Steppingstones for Problem Solving

David Ruby*
Dennis Kibler

Information & Computer Science
University of California, Irvine

Irvine, CA 92717 U.S.A.
druby@ics.uci.edu

Abstract

One goal of Artificial Intelligence is to develop
and understand computational mechanisms for
solving difficult real-world problems. Unfor-
tunately, domains traditionally used in gen-
eral problem solving research lack important
characteristics of real-world domains, making
it difficult to apply the techniques developed.
Most classic AI domains require satisfying a
set of Boolean constraints. Real-world prob-
lems require finding a solution that meets a
set of boolean constraints and performs well
on a set of real-valued constraints. In addi-
tion, most classic domains are static while do-
mains from the real world change. In this pa-
per we demonstrate that SteppingStone, a gen-
eral learning problem solver, is capable of solv-
ing problems with these characteristics. Step-
pingStone heuristically decomposes a problem
into simpler subproblems, and then learns to
deal with the interactions that arise between
the subproblems. In lieu of an agreed upon
metric for problem difficulty, we choose signifi-
cant problems which are difficult for both peo-
ple and programs as good candidates for eval-
uating progress. Consequently we adopt the
domain of logic synthesis from VLSI design to
demonstrate SteppingStone's capabilities.

1 Introduction

Problem solving research in AI attempts to discover
and understand general computational mechanisms for
solving problems. Traditional planning research has fo-
cused on finding general mechanisms and demonstrating
them in classic AI problem domains. This approach has
been used to develop the general techniques of nonlin-
ear planning [Sacerdoti, 1977, Täte, 1977, Vere, 1983,
Wilkins, 1984], hierarchical planning [Sacerdoti, 1974,
Rosenschein, 1981, Stefik, 1981], and learning from plan-
ning experience [Fikes et al, 1972, Porter and Kibler,
1986, Minton, 1988, Ruby and Kibler, 1988, Laird et
al, 1986]. Unfortunately, these traditional problem do-

*This work was partially supported by a grant from the
Hughes Artificial Intelligence Center.

mains lack important characteristic of real-world prob-
lems. Real-world problems require solutions that are op-
timized for real-valued performance constraints as well
as satisfying Boolean constraints. In addition, real-world
problems have large search spaces and subgoals with
strong interactions. Traditional domains have only re-
quired meeting Boolean constraints. These differences
in the character of the problems have made it difficult
to transfer research results to real-world problems.

While general problem solvers have largely ignored
real-world problems, applications research has produced
domain-specific systems for solving these types of prob-
lems [Ow et al, 1988, Lin and Gajski, 1988, Zanden
and Gajski, 1988]. The success of application systems
depend on encoding large amounts of domain-specific
knowledge. One approach for acquiring this knowledge
is to encode it by hand. This approach is costly both
in time and human resources. A better approach is to
use a learning problem solver. A learning problem solver
acquires the appropriate knowledge by abstracting from
its problem solving experience.

In this paper, we demonstrate that SteppingStone is a
general learning problem solver for real-world problems.
We show that by decomposing a problem into subprob-
lems and learning to deal with interactions that arise be-
tween them, SteppingStone scales to difficult real-world
problems. In the following sections we outline the Step-
pingStone approach and examine how it applies to im-
portant real-world problems, such as logic synthesis from
VLSI design. We demonstrate SteppingStone's capabil-
ities with empirical results.

2 Steppingstones for Problem Solving

SteppingStone [Ruby and Kibler, 1989] uses a means-
ends analysis component to break a problem into sub-
goals. SteppingStone initially assumes that the ordered
subgoals are independent and can be solved without un-
doing them once solved. Although an entire problem
cannot usually be solved with this assumption, some
problem subgoals usually can be solved.

An impasse occurs when a subgoal is encountered that
cannot be solved under the independence assumption.
SteppingStone then searches its knowledge base for a
new sequence of subgoals we call steppingstones. Step-
pingstones allow the problem solver to pursue a different
set of subgoals then that suggested by means-ends anal-

366

ysis. These steppingstones comprise the domain-specific
knowledge that the system learns. If steppingstones for
resolving an impasse do not exist, the system resorts to
a localized brute-force search. This search is anchored at
the impasse state and is only used to resolve the current
impasse. SteppingStone generalizes the solution found
for the impasse to generate additional steppingstones for
resolving similar impasses.

The problem-solving control knowledge acquired in
SteppingStone is organized as sequences of subgoals
(steppingstones) for resolving impasses. A sequence of
subgoals consists of an ordered set of partial state de-
scriptions, or subgoals. Means-ends analysis uses these
subgoals as steppingstones to lead it through the im-
passe. These steppingstones are indexed by the subgoal
difference they reduce and the previously solved subgoals
that are undone and resolved. After following a sequence
of steppingstones, any previously solved subgoals remain
solved and the subgoal difference generating the impasse
is reduced.

Steppingstones reduce the distance between problem
states and goal states by introducing intermediate steps.
Since the steppingstones are only used when impasses
are encountered, they do not increase the branching fac-
tor of the problem. Since steppingstones are domain-
specific sequences of subgoals that lead from one par-
tial state description to another partial state descrip-
tion, they are not tied to either the initial state or the
final goal. Consequently steppingstones naturally apply
to different problems. This flexibility allows stepping-
stones to achieve generalizations that are impossible for
fixed sequences of operations.

An initial version of SteppingStone was implemented
and applied to the classic tile-sliding domain [Ruby and
Kibler, 1989]. Although, this is a difficult and classic
domain in AI, it lacks many important characteristics of
real-world problems. This paper describes extensions to
SteppingStone that allow it to solve more realistic prob-
lems. In the following sections we outline some charac-
teristics of real-world problems and describe how Step-
pingStone will operate on this new class of problems. We
then describe how the logic synthesis task of VLSI design
is an example domain for this new class of problems.

2.1 Steppingstones for Optimization

Real-world domains are characterized by large search
spaces, many subgoal interactions, and a variety of con-
straints. Real-world domains are difficult for people be-
cause there are no general heuristics that allow solving
them. They require experience with the domain to be-
come proficient. In addition, real-world problems change
over time and any approach for solving them must be
able to adapt to these changes.

Constraints used in real-world problems fall into two
classes. Hard constraints must be met and usually out-
line key aspects of the problem. Soft constraints measure
the quality of a solution. Soft constraints are often real-
valued performance measures and meeting them is an
optimization task. SteppingStone learns to optimize soft
real-valued constraints as well as solve hard constraints.

We view problem solving as moving to states where

Order Problem Subgoals g(l),...,g(n) using Openr
For i=l to n do

While g(i) unsolved do
Apply MEA without undoing g(l) g(i-l)

If MEA fails to solve g(i)
Then Apply Steppingstones from Memory
Elself Steppingstones Fail

Then Apply Local Search
If Local Search finds Improvement

Then Learn New Steppingstones
Elself Search Fails and g(i) is Sc

Then Assume g(i) Solved
Else Fail

End While
End For

Figure 1: Pseudo-code for SteppingStone

the goal is successively closer to completion, or improved.
For an unsolved Boolean constraint, the only way to
improve it is by finding a state where the constraint is
solved. Soft real-valued constraints can be improved by
finding a state with a better value for the constraint.
Problem solving with both hard and soft constraints
requires finding a solution that meets all of the hard
constraints and optimizes the soft constraints. Figure 1
provides pseudo-code for the SteppingStone approach to
problems with both hard and soft constraints.

Soft constraints are treated as subgoals by Stepping-
Stone and are ordered by an openness heuristics [Ruby
and Kibler, 1989] along with the other problem sub-
goals. Means-ends analysis initially attempts to solve
these subgoals without undoing any of the previously
solved subgoals. When this approach fails SteppingStone
switches to a knowledge-based approach. This approach
operates by searching memory for a sequence of sub-
goals (steppingstones) for improving upon the current
subgoal. Once indexed, means-ends analysis is used to
follow these steppingstones from the current state to a
new state. If in this new state the current subgoal is
not closer to being solved or all of the previously solved
subgoals do not remain solved, the current state is kept
and memory is searched for additional steppingstones.
If in this new state the current subgoal is improved and
the previously solved subgoals are still solved then this
state becomes the new current state and problem solving
continues.

When memory has no knowledge for reducing the cur-
rent subgoal, SteppingStone falls back on local search. If
this search produces further improvement, the sequence
of moves used to generate the improvement is generalized
into new steppingstones. Problem solving continues un-
til the subgoal is solved. For optimization subgoals it is
often impossible to determine when the subgoal cannot
be improved. In these cases, problem solving continues
until no further progress within the current resource limi-
tation is possible. At this point the subgoal is considered
solved.

During the search for a problem's solution, the irrel-

367

Critical Path Delay Impasse

States Leading to Improvement

_«.6-i>i _sD^-^i _ %:°\>

Stepping Stones

Jj»z - x*Y-t>~z - ^O-O-fr-z - $l>z

Figure 2: Steppingstones for Optimizing Critical Path

evant aspects of the state can greatly increase its diffi-
culty. For example, adding more blocks to a blocks world
problem can make the problem more difficult even if the
blocks are independent of the problem solution. The
local search procedure used by SteppingStone mitigates
this problem by beginning the search within the region
most likely to have a solution. Initially, only those parts
of the state involved in the subgoals generating the im-
passe are allowed to be changed. If the solution cannot
be found in this space, it is enlarged until the search
space includes a solution or the search is terminated.

When a sequence of moves is found to improve an
impasse, the sequence is generalized to generate a new
sequence of subgoals or steppingstones in the following
way. The sequence of moves generates a corresponding
sequence of states. This sequence of states can be re-
garded as a very specific sequence of subgoals. Since
these subgoals are used to reduce an impasse, those
parts of the state uninvolved in the impasse are re-
moved. This is determined by the parts of the state
involving the subgoal being solved, and those parts of
the states involved in the previously solved subgoals that
were changed during the sequence of moves. From this
generalized sequence of subgoals repeating subgoals are
removed, yielding the final set of steppingstones [Ruby
and Kibler, 1989].

In the past, problem-solving knowledge has primar-
ily been represented as macro-operators or control rules.
Macro-operators reduce the distance between states, but
also increase the branching factor. Unless these macros
occur often between problem states and goals states,
their cost can outweigh their benefit. Control rules re-
duce the branching factor but leave the distance between
problem states and goals states fixed. Control rules must
also be evaluated at every problem-solving step. Unless
they are applicable often, or result in large search reduc-
tions, their cost can also outweigh their benefit [Minton
1988].

2.2 Logic Synthesis

One important domain that requires optimizing real-
valued constraints as well as meeting a set of Boolean
constraints is that of integrated circuit design. A large

portion of integrated circuits consists of combinational
logic. Optimizing the performance of this circuitry is a
difficult and time-consuming task. Manual optimization
is often applied to only the most critical portions of a de-
sign because of the cost and time required. This results
in circuits that are larger and slower than necessary.

In logic synthesis, a functional specification of a cir-
cuit is mapped into combinational logic using a library
of available components. These components are taken
from a technology-specific library. These libraries vary
depending upon the technology and particular manufac-
turer chosen. The synthesized circuit is optimized for a
set of constraints which vary with the application.

Operating SteppingStone on the logic synthesis task
requires a state space representation of the problem.
Logic synthesis can be represented with a start state de-
fined by a functional description of a circuit, along with
a set of constraints. Boolean algebra provides a good
language for the functional description of a circuit. The
goal is a realizable circuit, using components from an
available library, that satisfies a set of hard constraints
and optimizes a set of soft constraints.

Operators for this domain map parts of the functional
description to components from the technology-specific
library. These mappings are well-defined and ensure the
correctness of the resulting design. Mapping a functional
description to a realizable design is a simple task. Find-
ing a realizable design that satisfies a set of hard and soft
constraints is much more difficult. To ensure global opti-
mality requires an exhaustive enumeration of the design
space, which is computationally intractable.

Figure 2 gives an example from the logic synthesis do-
main. The initial state for this problem is the boolean
expression a * b * c. The goal is a circuit that is real-
izable and optimized for critical path delay time. The
library of components consists of nand-gates, nor-gates,
and inverters. For each component there are two types
of operators, those mapping a boolean expression to that
component and those mapping the component into its as-
sociated boolean expression. Although it is always pos-
sible to map from boolean expressions to components
and from components back to boolean expressions, the
domain does not have to be invertible. It may not be

368

possible to map a component back to all of the possible
boolean expressions that can be mapped into it. Thus,
it may not always be possible to apply a sequence of
operators to move to a previous state.

Given the problem specified by the boolean equation
a * b * c, SteppingStone produces the realizable circuit
at the top of Figure 2. This is an impasse for Stepping-
Stone since it cannot improve the critical path without
undoing the goal of realizing the circuit. Local search
is used to find a circuit with an improved critical path
delay time. The states shown are those generated by the
sequence of moves leading from the impasse state to the
improved state. The steppingstones are generated by re-
moving from these states all but those portions involved
in the previously solved subgoal (realizable) that were
modified while generating the improved state. These fi-
nal steppingstones appear at the bottom of Figure 2.

Note that the steppingstones presented in Figure 2 are
goals and can match many states. The only requirement
is that the bound variables remain consistently bound
through the steppingstones. Since steppingstones are
used heuristically and only if grounded operations can
achieve them, this type of generalization is effective.

2.3 Macro-operators and Steppingstones

Macro-operators are a common representation for prob-
lem solving knowledge. By combining a useful sequence
of operations into a new operator, problem solving per-
formance can be improved. Steppingstones differ from
macro-operators in several ways.

Some types of generalizations are difficult with macro-
operators. For example, the sequence of operations ap-
plied in Figure 2 map a nor-gate with inverters on the
inputs and output to a nand-gate. Unfortunately, these
operations will only work when the nor-gate is a 2-input
nor-gate. This same transformation may also work with
a 3-input nor-gate, but this requires a different set of
operations. To achieve this generalization with a macro-
operator requires generalizing outside of the knowledge
closure, creating a new operator that cannot be deduced
from the original sequence of operations. Furthermore,
this form of generalization can introduce illegal and in-
correct states. In most situations this cannot be toler-
ated. For example, in logic synthesis the final circuit
must meet the functional specification and this cannot
cannot be guaranteed if there are illegal transformations.

Steppingstones do not have the same generalization
difficulty as macro-operators. A sequence of subgoals
only partially specify a path between states, and the se-
quence does specify the particular operators required.
The operators are selected through search after the sub-
goals have been instantiated. For example, the sequence
of subgoals given in Figure 2 can also be used when the
nor-gate is a 3-input nor-gate. Given a 3-input nor-gate
with inverted inputs a, b, c, two of the inputs (a, b) would
bind with the variables X and Y. SteppingStone would
then search for an operator that could map the 3-input
nor-gate with the inverted inputs to the conjunction a*b.
This is possible by mapping the 3-input nor-gate and in-
verters to a * b * c. The remaining transformations are
achieved in similar fashion. If there wasn't an opera-

tor for mapping this 3-input nor-gate and inverters to
a * b * c, or any of the other subgoals, the subgoal se-
quence would fail. The subgoal sequence would also fail
if after achieving all of the subgoals the final state did not
improve the original difference being solved. In any case,
the knowledge gained by SteppingStone can never gener-
ate an incorrect or illegal circuit since this knowledge is
only used heuristically to guide the search process. The
actual generation of the circuit is done using the basic
operators whose correctness is assumed.

Macro-operators must also be tested for applicabil-
ity on each problem solving cycle. Unless the macro-
operator is used often, or provides a particularly large
search savings, its cost may outweigh any benefit it pro-
vides. Steppingstones are only tried when the initial
domain definition and search procedure prove unable to
solve a subgoal. By reducing the need to test the appli-
cability of learned knowledge, its cost is greatly reduced.

3 Steppingstones for Logic Synthesis
To demonstrate SteppingStone's capabilities in real-
world domains we conducted a series of experiments in
the domain of logic synthesis. These experiments were
designed to demonstrate that SteppingStone could learn
to optimize soft constraints in circuit design. We also ex-
plored SteppingStone's ability to adapt to different opti-
mization tasks and changes in the domain. To estimate
the quality of the solutions found by SteppingStone we
built a custom program for solving the problems and
compared the performance of SteppingStone to our cus-
tom approach. Furthermore, we applied SteppingStone
to the solution found by our hand-crafted approach and
to determine if further improvements were possible. This
demonstrates that SteppingStone could be used as a
post-processor to an externally derived design, whether
human or machine generated, and still yield performance
improvements.

3.1 Learning Space Optimizations

In our first test of SteppingStone's ability to learn op-
timization knowledge we began with a domain used by
CPS design system [Tong and Franklin, 1989]. The de-
sign system was provided with a functional specification
using a Boolean equation. The system synthesized a cir-
cuit that met the specification and was optimized for
the space required. The components used to build the
circuits were inverters, two input and gates, or gates,
and nand gates. The space required for each of these
components was: and=5, or=5, int;erier=3, nand=l.

SteppingStone was initially trained on problems small
enough for local search to produce optimal designs.
Small random Boolean equations with independent in-
puts were used. These equations used the connectives
and, or, and not. There are 22 different equations of
this type with n inputs. With the given library of com-
ponents, there are three distinct ways of implementing
an and gate or an or gate, and two distinct ways of im-
plementing a not. Thus, for a problem of size n there
are of order 3n_1 different possible solutions. This large
search space makes this problem difficult for brute-force
methods. The subgoals described earlier are both highly

369

Gates Required
200;

175
SteppingStone
Optimal

0 2 3 4 5

Size of Training Problems

Figure 3: Average Performance on Problems of Size 30

interacting and different in character from those tradi-
tionally used, making the problem difficult for goal-based
approaches.

SteppingStone was trained on five successive sets of
problems with an increasing the number of inputs. The
first training set had 2-input problems. The number of
inputs increased until the last training set had 6-input
problems. Training in a set finished after ten succes-
sive random problems were solved without any learning.
Testing was done after finishing each set of training prob-
lems. The system was tested on three sets of twenty-five
random problems. These sets were drawn from prob-
lems with 10, 20, and 30-inputs respectively. Learning
and local search were turned off during testing. Note,
the random test problems with 30-inputs were actually
larger than example problems we were given from local
industry.

With this particular library of components, it is easy
to determine if a solution is optimal. Figure 3 plots the
average optimal value for the random 30-input problems
along with the other data. Note, SteppingStone quickly
converges on the knowledge needed to generate the op-
timal solutions for these problems. These same results
occurred with the test set of 20-input problems and 10-
input problems.

SteppingStone learned five subgoal sequences for find-
ing the optimal solution to any problem in this domain.
This is less than half the number of problem decomposi-
tion rules learned by SCALE [Tong and Franklin, 1989] in
this same domain. SCALE finds a set of rules for decom-
posing any problem into non-interacting subproblems, a
difficult and often impossible task. In contrast, Step-
pingStone learns heuristic decompositions. In addition,
unlike SCALE, the generalizations made by Stepping-
Stone could be overgeneral. Although SteppingStone's
knowledge is heuristic, it is still effective.

To demonstrate that learning greatly reduced the
amount search required to find the optimal solution, a
second test was conducted. SteppingStone was tested on
the 30-input problems with learning turned off and local
search turned on. Using only localizing search, Step-
pingStone's found the optimal solutions, but averaged

28,695 nodes expanded. The most difficult problem re-
quired 82,827 nodes expanded. The amount of search re-
quired after learning to find optimal solutions averaged
only 1,806 nodes expanded.

3.2 Real-World Circuit Design

Like most real-world domains, the specifics of a logic
synthesis task can vary. For example, the components
available to synthesize a circuit will vary depending upon
the technology chosen. These changes affect how a cir-
cuit should be synthesized. In addition, the set of con-
straints to be met or optimized can vary from problem
to problem. To demonstrate that SteppingStone could
learn to synthesize high quality circuits regardless of the
constraints or library of components chosen, we created
a second component library for experimentation.

An important performance constraint neglected from
the previous problem was the critical path delay time. It
is usually more important to optimize the critical path
delay time of a circuit then the space required. The sec-
ond set of problems were defined with the goal of first op-
timizing critical path delay time and then space (number
of gates) required. This second task demonstrates that
SteppingStone learns to optimize multiple constraints si-
multaneously. Note there were no fixed set of rules for
decomposing this new problem into non-interacting sub-
problems.

The space required for the components from the pre-
vious library were artificial. The performance charac-
teristics for this second library were taken from the
components available from the LSI Logic Corpora-
tion. The following list contains the components cho-
sen for this second library and their critical path de-
lay time/gates required: 3-input nand=A.2ns/2 gates,
2-input nanrf=2.9ns/l gate, 3-input nor=2.4ns/2 gates,
2-input 7ior=2.2ns/l gate, mi>er*er=2.9ns/l gate.

SteppingStone was trained on this second task in the
same way as used for the first task. It was given small
problems that it could solve optimally with local search.
It was then tested on the same three sets of test prob-
lems. Figure 4 shows how the average critical path delay
time of the circuits synthesized decreased as learning in-
creased for the random thirty-input problems. Figure 4
also shows how the space required for the circuits de-
creased with learning. Similar results were found for the
other test problems.

With this second library it was not possible to gener-
ate the optimal circuit. In order to judge the difficulty of
these problems and the quality of the solutions generated
by SteppingStone, we developed a custom approach for
generating solutions to these problems before beginning
any experimentation. Note that we did not hand-code
knowledge for SteppingStone, but actually wrote a cus-
tom program for solving problems in this domain.

Our best approach for finding a good design operated
by first generating a design using the components avail-
able. The program preferred to use the largest com-
ponents possible. It then used a special procedure to
improve this design. This procedure pushed inverters
through the design towards the inputs. Inverters are
pushed through components by defining rules for switch-

370

Critical Path Delay (ns)
50 n

—v o-- ~7>

SteppingStone
Our Best
Brute-Force Search

2 3 4 5

Size of Training Problems

Gates Required
70;

60-

50-

40

30-1

20

10

0
0

— SteppingStone
— Our Best

■ Brute-Force Search

Size of Training Problems

Figure 4: Average Performance on Problems of Size 30

ing from an inverter into a component to some other
component with the inverters on the inputs. These in-
verters could then be eliminated whenever two appeared
next to each other. Heuristics were used to attempt to
determine situations where pushing an inverter through
the design would not provide improvement because of
the other components that would be changed. Although
a relatively simple approach, it provided a good base for
comparison. The results of our best approach are plot-
ted in Figure 4 along with the SteppingStone results.
Note that SteppingStone quickly learns enough to pro-
duce circuits close to that of our best approach and, for
the critical path delay, eventually improves upon it.

To further estimate the difficulty of these problems
a simple brute-force approach was also tried. The best
solution found using the brute-force approach with a cut-
off of 500,000 search tree nodes was recorded for each of
the test problems. The averaged results are also plotted
in Figure 4. Note that although SteppingStone initially
produces solutions that are much worse than that pos-
sible with an exhaustive approach, it soon outperforms
exhaustive search.

With this second set of components SteppingStone did
not converge upon a set of knowledge for always gener-
ating the optimal solution. This does not seem unusual
since application systems for doing logic synthesis are
unable to generate optimal solutions to arbitrary ran-
dom problems and resort to heuristic knowledge to gen-
erate good solutions. SteppingStone generates its own
heuristic knowledge by recognizing recurring features of
impasses and using local search to learn steppingstone
for resolving the impasses.

Instead of converging upon a set of steppingstones for
this domain, SteppingStone continued to acquire new
knowledge as the size of the training problems increased.
After training on problems up to size five, 34 subgoal
sequences were acquired. Given that the number of ran-
dom Boolean functions with n inputs is 22 , or 232 for
problems of size five, the amount of learning is extremely
small. As with the tile-sliding domain [Ruby and Kibler,
1989], this small amount of learning is due to Stepping-
Stone's decision to learn only when reaching an impasse.
After learning these 34 steppingstones, the amount of

search required to find the solutions to the thirty input
problems averaged 2,841 nodes expanded. Even after ex-
panding over 30,000 nodes without learning, Stepping-
Stone was unable to generate solutions as good as those
found quickly after learning.

This set of experiments clearly demonstrates the gen-
erality of the SteppingStone approach. Learning pro-
vides the mechanism to easily adapt to changes in the
domain. This provides the system with the flexibility
needed for real-world problems.

3.3 Learning to Improve Solutions

In our final set of experiments, we tested SteppingS tone's
ability to take the solution from our best approach and
improve upon it. This experiment was designed to show
that the knowledge acquired by SteppingStone was dif-
ferent from the knowledge we encoded in our hand-coded
approach. It also demonstrates that Steppingstone can
be usefully combined with other means for generating
initial solutions.

For this second set of results we used the library of
components and goal specification from experiment two.
The problems were given to our best approach and the
solutions generated. The solutions were then given as
initial states to SteppingStone using the knowledge it
had acquired after being trained on problems with up to
five inputs. Table 1 shows the averaged performance re-
sults for the solutions generated to the test set of random
problems with thirty inputs. Note that SteppingStone
was able to improve upon both the average critical path
delay time and the amount of gates required. Improving
upon both critical path delay and space required is espe-
cially surprising since improving one often comes at the
cost of a decline in the other. This clearly demonstrates
the knowledge acquired by SteppingStone was different
from that we derived and encoded in our best approach.

Table 1 also includes the average quality of the solu-
tions generated by SteppingStone alone. Here the results
show that beginning with a good solution did allow Step-
pingStone to generate better final solutions. The im-
provement was not large for the critical path delay time,
but was more significant for the space required. Learning
space optimization was difficult for SteppingStone since

371

Critical Path Delay Gates
Our Best 23.75 43.68

SteppingStone 22.97 45.76
Best+SteppingStone 22.70 43.04

Table 1: SteppingStone Improvements on Our Best

they only occurred in larger training problems. Yet, by
beginning with a solution that was already good, the
knowledge acquired improved upon this solution.

This experiment again demonstrated the generality
and power of SteppingStone. Not only was Stepping-
Stone able to acquire knowledge and generate high qual-
ity solutions, it was able to take solutions that we gen-
erated and improve upon them. This type of flexibility
is critical to any problem solver that will operate in a
real-world setting.

4 Related Work

To better understand SteppingStone we compare it with
other learning problem solvers. Like SOAR [Laird et al.,
1986] and Prodigy [Minton, 1988], SteppingStone learns
on failure. However these systems are more dissimilar
than similar.

SOAR learns new rules, or chunks, whenever overcom-
ing an impasse. For SOAR an impasse occurs whenever it
cannot make an unambiguous decision. SteppingStone
also learns when overcoming an impasse, but its def-
inition of an impasse is different from that of SOAR.
For SteppingStone, an impasse occurs when its means-
ends analysis component is unable to solve a subgoal
while maintaining all of the previously solved subgoals.
Means-ends analysis serves to funnel large numbers of
problems states into a few impasse states. This means
that learning will occur rarely. While SOAR is an eager
learner, perhaps because it attempts to match human
learning, SteppingStone is a lazy learner, only learning
when forced to.

SOAR incorporates its learned knowledge into its prob-
lem solving rules. Consequently SOAR will try all learned
rules on every elaboration cycle, firing them whenever
appropriate. This prevents the impasse from ever occur-
ring again. SteppingStone separates its learned knowl-
edge from the rest of its problem solving knowledge. Af-
ter learning to resolve an impasse, that impasse will con-
tinue to be encountered. The system ignores its learned
knowledge until the impasse occurs. When an impasse
is encountered SteppingStone searches its learned knowl-
edge to see if it has encountered a similar impasse in the
past. If it has, it uses this knowledge to try to resolve the
current impasse. In this way, an impasse operates like an
exception for the system with the steppingstones behav-
ing as exception handlers. Since the learned knowledge
is only used when an exception is encountered, its cost
is reduced.

When SOAR encounters an impasse it changes to a
new problem space and searches for the solution to the
impasse. A new problem space is generated in response
to an impasse and SOAR uses weak-methods to search

this problem space. When SteppingStone encounters an
impasse it does not know how to solve, it does not change
its problem space. It changes its search method to a
localized forward search method. It remains in the same
state-space with the same domain operators.

SOAR learns a new rule when it solves an impasse.
This new rule generalizes the sequence of rules required
to resolve the impasse. Thus, the new rule is essentially
a macro-operator. SteppingStone learns a new sequence
of subgoals. Some of the distinctions between macro-
operators and subgoal sequences are discussed in Section
2.3. Briefly, subgoal sequences appear to allow more
flexibility than macro-operators and do not increase the
branching factor.

Korf [Korf, 1985] showed that if macros are learned
for solving each subgoal of a problem and these macros
depend only on the value of that subgoal and the pre-
viously solved subgoals, problems can be solved easily.
Unfortunately this approach only works if a complete set
of these macros can be learned. This requires that the
problem state space be operator decomposable and that
states are represented as a vector of discrete state vari-
ables. SteppingStone uses a related approach but adopts
a heuristic view. SteppingStone does not require com-
plete knowledge, since it is able to use search to bridge
the gap between the abstract form of generalized knowl-
edge and its specific application on a particular problem.
Since it uses search to determine if a piece of knowledge
is applicable, it does not need to index its knowledge on
the particular value of a subgoal. This eliminates the
need for a state consisting of a vector of discrete vari-
ables. In addition, rather than learning macro-operators,
SteppingStone learns subgoal sequences. On the nega-
tive side, by adopting a heuristic approach the strong
analytical results no longer hold.

Prodigy [Minton, 1988] learned control rules for a
STRIPS style problem solver. These control rules can
suggest differences to reduce, operators to reject, or op-
erators to try. Unfortunately, all control rules must
be tested on each problem solving cycle. In addition,
Prodigy depends upon a single search strategy, means-
ends analysis. When subgoal interactions make this a
poor strategy problem solving performance suffers. Step-
pingStone uses two different search strategies to offset
the weaknesses of each.

5 Conclusions and Future Work
The goal of this research is to develop a general learn-
ing problem solver for real-world problems. Real-world
problems are defined by both hard boolean constraints
and soft real-valued constraints. SteppingStone operates
on problems with both types of constraints by taking a
different view of problem solving. We view problem solv-
ing as successively improving upon individual problem
subgoals until they can no longer be improved. Step-
pingStone demonstrated that this approach allows it to
solve problems with both hard and soft constraints by
learning to optimize multiple constraints in the logic syn-
thesis task of VLSI design.

Operating on real-world problems also requires scaling
to large search spaces. SteppingStone derives much of its

372

power to scale by decomposing a problem into simpler
subproblems and learning to treat these subproblems as
though they were independent. Breaking a problem into
independent subproblems provides an exponential de-
crease in problem difficulty [Korf, 1987]. SteppingStone
demonstrate is ability to scale by solving large logic syn-
thesis problems with two different component libraries.

SteppingStone represents the problem solving knowl-
edge it learns as a sequence of subgoals, or stepping-
stones. These steppingstones reduce the distance be-
tween problem subgoals without increasing the branch-
ing factor of the problem. They provide a heuristic de-
composition for portions of the problem made difficult by
subgoal interactions. The steppingstones learned effec-
tively generalize the problem solving knowledge by using
a small amount of search for their application. Unlike
many learning problem solvers, SteppingStone is a lazy
learner - learning only when forced to. Moreover, the
number of situations when learning is necessary is lim-
ited by the means-end analysis problem solver.

SteppingStone derives its problem solving ability from
the integration of a problem solver that uses domain
general and domain specific problem solving knowledge
and a learner to generate the domain specific knowl-
edge. In particular, means-end analysis applies general
weak problem solving knowledge to solve the easy por-
tions of the problem. On hard portions of the prob-
lem, specialized knowledge in the form of steppingstone
are used to guide the problem solving process. Local-
ized search on problem solving impasses is used to learn
the domain-specific steppingstone knowledge. We now
plan to explore SteppingStone's ability to solve addi-
tional VLSI design tasks and other real-world domains
such as scheduling.

References

[Fikes et al, 1972] Richard E. Fikes, Peter E. Hart, and
Nils J. Nilsson. Learning and executing generalized
robot plans. Artificial Intelligence, 3:251-288, 1972.

[Korf, 1985] Richard E. Korf. Learning to Solve Prob-
lems by searching for Macro-Operators. Pitman Ad-
vanced Publishing Program, 1985.

[Korf, 1987] Richard E. Korf. Planning as search: A
quantitative approach. Artificial Intelligence, 33:65-
88, 1987.

[Laird et al, 1986] John E. Laird, Paul S. Rosenbloom,
and Allen Newell. Chunking in SOAR: The anatomy of
a general mechanism. Machine Learning, l(l):ll-46,
1986.

[Lin and Gajski, 1988] Youn-Long Lin and Daniel D.
Gajski. Les: A layout expert system. IEEE Transac-
tions on Computer-Aided Design, 7(8):868-876, Au-
gust 1988.

[Minton, 1988] Steven Minton. Learning Effective
Search Control Knowledge: An Explanation-Based
Approach. PhD thesis, Carnegie Mellon University,
Computer Science Department, Pittsburgh, Pennsyl-
vania, 1988.

[Ow et al., 1988] Peng Si Ow, Stephen F. Smith, and
Alfred Thiriez. Reactive plan revision. In Proceed-
ings of the Seventh National Conference on Artificial
Intelligence, pages 77-82. Morgan Kaufmann, 1988.

[Porter and Kibler, 1986] Bruce W. Porter and Dennis
Kibler. Experimental goal regression: A method for
learning problem solving heuristics. Machine Learn-
ing, l(3):249-285, 1986.

[Rosenschein, 1981] Stanley J. Rosenschein. Plan syn-
thesis: A logical perspective. In Proceedings of the
Seventh International Joint Conference on Artificial
Intelligence, pages 331-337, Vancover, BC, 1981.

[Ruby and Kibler, 1988] David Ruby and Dennis Ki-
bler. Exploration of case-based problem solving. In
Proceedings of the Case-Based Reasoning Workshop,
pages 345-356, Clearwater Beach, Florida, 1988.

[Ruby and Kibler, 1989] David Ruby and Dennis Ki-
bler. Learning subgoal sequences for planning. In
Proceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence, pages 609-614, De-
troit, Michigan, 1989. Morgan Kaufmann.

[Sacerdoti, 1974] Earl D. Sacerdoti. Planning in a hi-
erarchy of abstraction spaces. Artificial Intelligence,
5:115-135, 1974.

[Sacerdoti, 1977] E.D. Sacerdoti. A Structure for Plans
and Behavior. Elsevier North-Holland, New York,
1977.

[Stefik, 1981] Mark Stefik. Planning with constraints
(molgen: Parti). Artificial Intelligence, 16:111-139,
1981.

[Täte, 1977] Austin Täte. Generating project networks.
In Proceedings of the Fifth International Joint Confer-
ence on Artificial Intelligence, pages 888-893, Cam-
bridge, MA, 1977.

[Tong and Franklin, 1989] Chris Tong
and Phil Franklin. Learning a satisficing compiler for
circuit design. In submitted to Proceedings of the Thir-
teenth International Joint Conference on Artificial In-
telligence, pages 1439-1445. Morgan Kaufmann, 1989.

[Vere, 1983] Stephen A. Vere. Planning in time: Win-
dows and durations for activities and goals. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, PAMI-5(3):246-267, May 1983.

[Wilkins, 1984] David E. Wilkins. Domain-independent
planning: Representation and plan generation. Arti-
ficial Intelligence, 22:269-301, 1984.

[Zanden and Gajski, 1988] Nels Vander Zanden and
Daniel Gajski. Milo: A microarchitecture and logic
optimizer. In Proceedings of the 25th ACM/IEEE De-
sign Automation Conference, pages 403-408, 1988.

373

DARPA PI REPORTS

The Quest for Architectures for Integrated Intelligent Systems
Extended Abstract

Allen Newell1

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Artificial intelligence (AI) is dedicated to the search for the
nature of intelligence. As with all sciences, it starts not with
definitions but with phenomena, clues and hunches. And the
end result will not be a single thing or principle, but a rich
body of scientific knowledge that will join with the rest of our
scientific knowledge of the universe. Thus, the science
comprises many searches, not just one.

The quest of interest to me here is for the nature of a single
system capable of general intelligence. The phenomena that
gives shape to that quest arises from ourselves. We both
observe and experience ourselves to be capable of performing
a vast and unfolding array of tasks, continuously acquiring
further knowledge from our experiences, and operating
autonomously without some other seemingly more intelligent
oracle at hand to do our intelligence work for us.
Scientifically, such knowledge, even about ourselves, serves
only as clues and hunches. We also know our intellectual
powers to be limited, the world of tasks we encounter to be
restricted, and our dependence on our social milieu and
education to be pervasive. Withal, our autonomously
exercised intelligence delimits for AI a central scientific
phenomena. To discover the nature of such systems is one
central quest within AI. This quest does not gainsay the many
other quests that comprise our science. Indeed, it is important
not to make this one quest co-extensive with the field, for
there are many other paths that must be followed if we are to
fully understand intelligence. But this is the quest that
beckons me.

To pin down somewhat the sort of system we seek, it helps
to list some of our own capacities:

1. Behave flexibly re the environment

2. Exhibit adaptive (rational) behavior

3. Operate in real time

4. Operate in a rich environment:

Perceive immense changing detail
Use vast amounts of knowledge
Control multiple-freedom movement

5. Use symbols and abstractions

6. Use language (natural and artificial)

7. Learn from environment and experience

8. Acquire capabilities by development

9. Live autonomously in a social world

10. Have self awareness and sense of self

These are not all distinct capabilities — coverage is more
important than partition. Further, these are capabilities, not
mechanisms. To believe a truly intelligent agent should be
able to exhibit these characteristics, is not to understand how.
A few may be so uniquely human that we might consider
abstracting away from them. Development, social
dependence and self awareness are candidates. However, we
should not be too hasty to avoid any of them.

This particular quest is not new, neither for the field nor
myself. Its roots go back to the late fifties, where it emerged
as soon as indications began accumulating that the digital
computer had opened a brand new approach to intelligence.
Thus, the quest has a thirty year history. That history presents
two faces. One is a waxing and waning of the quest itself, as
AI uncovered one aspect after another of intelligent
phenomena, so that various quests vied with each other for
attention. From this face, each major development in AI
increased or decreased interest in the quest for a general
intelligent agent. The other face is a steady accumulation of
the knowledge necessary to advance the question. From this
face, all the major developments, whether their rhetoric aided
or denigrated the quest for a general intelligence, have added
to what we know about the mechanisms and component
functions required for such an agent.

Thirty years of science have given substantial shape to the
quest. We have good bets about the nature of a general
intelligent agent, backed by substantial empirical explorations
and discoveries, and with some supporting theory. Principal
among these is that such an agent will be a symbol system,
hence its structure will be that of an architecture with
memories that contain encoded representations of the task
environment and the agent's own operations. This
specification narrows the quest to discovering the nature of
the architecture of a general intelligent agent. Indeed, the

JThis is the abstract of my talk on receiving the IJCAI Award for Excellence in Research at the 1991 Conference.
Inadvertantly, it was not published in the IJCAI Proceedings. Though brief, it seems useful to publish it here, since it
indicates an important direction for research. Over the years my research has been supported by the Defense Advanced
Research Projects Agency (DOD).

377

quest has generally been formulated in these terms in recent
years. Substantial progress has been made in understanding
the basic mechanisms that go into such an architecture,
although as yet there is no convergence to a single structure.

However, the quest is not just for the architecture, although
it might seem that way to those of us engaged in trying to get
the architecture right. Indeed, the rhetoric of expert systems
takes the inference engine to be relatively unimportant
compared to the knowledge base it services. But given
candidate architectures that have some promise and stability,
it is important to raise our sights to the goal of obtaining the
total system that such architectures are to support. Let us call
this ultimate target an integrated intelligent system. We need
to inquire exactly what such a target system should comprise.
In any event, only when we have such target systems will we
find out many of the essential characteristics of the candidate
architectures. Only then will we find out whether our
proposed architectures have their requisite capabilities.

The current state in the quest in mid 1989 presents us with
an interesting collection of candidate architectures, with
enough experience and understanding of them so they are
indeed candidates. But even though we talk of the many
things we have done with these architectures, none of them
has yet been put at the center of a genuine integrated
intelligent system. Thus, I take the appropriate current
characterization of the quest to be that of attempting to
discover whether we have architectures capable of supporting
integrated intelligent systems. Several years ago, the focus
was almost entirely on discovering the architectures
themselves. Some years hence, the emphasis may shift to
being entirely on integrated intelligent systems — on how
powerful or capable they are or fail to be, and on questions of
scale. Our present point is poised between the two. I have
selected my title accordingly.

My objective here is to characterize our present moment in
this quest and to set the task that seems to me the interesting
next step to attempt. The starting place, as always, is with the
AI systems that capture this present moment. I will focus on
three: Soar, developed by John Laird, Paul Rosenbloom,
myself and our colleagues, Prodigy, developed by Jaime
Carbonell, Steve Minton and their colleagues, and Theo,
developed by Tom Mitchell and his colleagues. These
systems, all centered or with substantial presence at CMU, are
the ones I judge most ready for this next step. In part, this is
objective judgment, biased somewhat by familiarity and
participation. But it is also that these systems, by being
located together, are developing a symbiotic relation that
augers well for the next step. It is a form of close-in
cooperation-competition that promises to drive these systems
forward at a rapid pace, expose their limitations mercilessly,
and foster the borrowing of good solutions.

Other systems are also important for defining our current
position, for instance, BB* by Barbara Hayes-Roth, CYC by
Doug Lenat and Icarus by Pat Langley (all with colleagues,
since all such efforts involve cooperative teams). All these
systems embody lessons of the last thirty years, though in
different combinations and ways. This cumulation of existing
science is important, and it is worthwhile to be sure we
understand it. The ways these architectures formulate tasks
and structure data and control to bring knowledge to bear are
all late-generation versions of much-studied mechanisms.
Also, these architectures (especially Prodigy, Soar and Theo)
are part of the recent intensive concentration in AI on

learning. In fact, the incorporation of learning as a pervasive
characteristic of these architectures is what makes putting
together integrated intelligent systems the right next
challenge.

We need to set out what the step to integrated intelligent
systems involves. In one sense, it is easy to do so, since we
have the list above for guidance. But we must be guided also
by what we know of the difficulty of attaining various
subgoals, given the current AI art. Some difficulties we must
insist upon, for to avoid them is tantamount to avoiding to
attempt the next step. Other difficulties we must essentially
dodge because the time is not yet ripe to confront them.

The first major concern, then, is autonomy — getting the
system to live in the world, interacting with it by conventional
channels, which means both robotically and linguistically, and
for the latter, via natural languages, graphic figures and
formal specification languages. More functionally, autonomy
means the ability to acquire tasks and knowledge from the
external world while interacting with it, whether via guidance,
instruction, observation or experimentation. The second
major concern is to be able to employ a rich repertoire of
methods, both general and specialized to the occasion. It is
not necessary that a system perform all methods, only those
congenial to it, so to speak; but certainly method flexibility is
necessary, as is the acquisition of methods from the external
world, as well as tasks. The third major concern is that such a
system have a substantial body of competence with respect to
its world. It should know a lot about its place of interaction
and what it contains, it should have number and reading
skills, and it should have much experience with its world.
Which actual tasks should be accomplished is less important
than that there be diversity and that the tasks reflect the scale
and complexity of the natural world. However, some tasks
need to involve the use of external devices and facilities, such
as computational simulators, and cooperative activity with
other intelligent agents. It goes without saying that routine
and continual learning from experience should occur.

The above paragraph of specifications is unremarkable, in
being simply one way of casting what we know of our own
competence, though with some priorities about what should
be attained first. However, many of these specifications occur
as independent items on AI's current research agenda. A
standard argument says that research should occur bottom up
— components should be understood before systems of
components are attempted. It is certainly easy to enumerate
difficulties, uncertainties and prematurities. Clearly the
argument for attempting the step is not that we know we are
ready to succeed. Rather, it is my assessment that we are
ready to find out about the difficulties experimentally. In the
world of integrated systems, we only find out about many key
difficulties by forcing ourselves to put together experimental
systems. But possibly more than that is at stake. At some
point the total system wins from the synergy of its
mechanisms, rather than just getting tangled up in itself. In
part that is what it means to have an integrated system.

378

Merging Strategic and Tactical Planning In
Dynamic, Uncertain Environments*

Piero Bonissone
General Electric CRD
Schenectady, NY 1230
bonissone@crd.ge.com

Soumitra Dutta
INSEAD
Fontainebleau, France 77305
dutta@freiba51 .bitnet

ABSTRACT

This paper presents a new approach to
planning in dynamic and uncertain
environments. Planning is viewed as a
process in which an agent's long term
goals are transformed into short term
tasks and objectives, given the context
of planning. The developed model
allows for a dynamic balance between
long term strategic planning and short
term tactical planning. A combination
of rules and scripts is used. Rules are
used for reasoning about long term
strategic choices. Scripts are used for
representing short term tasks and
objectives. The uncertainty calculi of
RUM/PRIMO [3,4] are used for
supporting reasoning under
uncertainty. In the proposed model, it
is also possible to achieve a seamless
integration of case-based reasoning
into the planning process. These ideas
have been implemented in a system
called MARS, which plans in the
financial domain of mergers and
acquisitions.

1. Planning in Dynamic and Uncertain
Domains

In this section, we motivate the need for
dynamic planning, describe relevant prior
research, emphasize the contributions of
this research and outline the structure of
the paper.

1.1 Introduction and Prior Research

Most of the early research in planning

*This work was partially supported by the Defense
Advanced Research Projects Agency (DARPA) under
USAF/Rome Air Development Center contract
F30602-85-C-0033.Views and conclusions contained
in this paper are those of the authors and should not
be interpreted as representing the official opinion or
policy of DARPA or the U.S. Government.

considered static domains, in which the
state of the world was given at any instant
and the emphasis was on devising plans
(provably correct sequence of actions) to
achieve certain goals. Two assumptions
were common during the planning phase:
the environment was static and the effects
of various actions on the world were fully
predictable. These assumptions ensured
that the devised plan sequences could be
executed successfully in the idealized
world. However, such planners often
generated plans that were not executable in
the real world. Usually, this failure was
caused by the plan's dependencies on states
whose values were changed before the plans
execution. In the planning literature, this
planning process is usually referred to as
strategic planning. However, within the scope
of this paper, we will refer to it as static
planning, since we want to use the term
strategy in the typical military or business
connotation.

Many researchers [1,19,24] have noted the
limited capabilities of early planning
systems [14,22] and have proposed models
for planning in dynamic and uncertain
environments. Such models have adopted
different approaches for dealing with these
environments. Some researchers [8,13]
have interleaved plan formation and
execution. Brooks [7] has proposed the
decomposition of the problem into task-
achieving units realizing distinct
behaviors. Georgeff and Lansky [18] have
emphasized the need for a rich vocabulary
for reasoning about the intentions of the
planner during reactive reasoning.
Rosenchien, Kaelbling and Pack [23] have
adopted a formal approach to describing
reactive planning, based on the
compilation of situated automata from
specifications of the knowledge of these
automata. Firby [17] has proposed a
reactive planning model based on the
concept of independent entities (RAPS)
pursuing goals in competition with many
others in execution time. Bresina and
Drummond [6] have investigated the

379

Entropy Reduction Engine Architecture,
composed of a reactor (to produce reactive
behavior), a projector (to explore possible
future states and to advise the reactor) and
a reductor (to reason about behavioral
constraints and to advise the projector).
Yang et. al. [30] have proposed a conceptual
clustering of "similar" operators and plans
to reduce replanning costs in real time.

Agre and Chapman [1], Schoppers [26] and
Nilsson [21] have adopted different, but
related approaches to reactive planning.
Agre and Chapman use combinational logic
(a "table look-up" mapping from
"situations" to "actions") to select the
action to take depending on the situation
on hand [2]. Schoppers has introduced the
notion of universal plans for reactive
planning. A universal plan is "equivalent to
a decision tree whose outcomes are names
of effector actions and whose decision
nodes are labeled with environmental
conditions" [2]. Planning is achieved by
repeatedly cycling through the decision
tree. Nilsson [21] has proposed the concept
of action networks for reactive planning.
Action networks are based on
combinational logic and can be
represented by decision trees (as in
universal planning). Action networks differ
from universal plans in that they allow the
formation of action hierarchies.
References [2,10,22] further elaborate on
these recent approaches to planning in
dynamic and uncertain environments.

1.2 Highlights and Contributions of the
Paper

In this paper, we view planning as the
process by which the long term goals and
aspirations of an intelligent agent are
translated into short term tasks, given the
constraints imposed by the context of
planning. This process must consider both
the strategic and tactical aspects of
planning. Strategic planning focuses on
the selection of strategies for achieving
long term goals, i.e., on reasoning about
alternative paths to achieve long term
goals. Tactical or incremental planning
emphasizes tasks/actions which achieve
short term goals. Both aspects are critical
for successful planning. Pure tactical
planning would increase reactivity at the
expense of strategic goal directed behavior.
Pure strategic planning would lead to
inadequate flexibility in reacting to a
changing world. While tactical planning
can (and should) react quickly to a dynamic

environment, strategic planning should in
general be more stable and change only
when required by a drastically altered
environment or long term goals. This
behavior ensures that an intelligent
planner will be able to move steadily
towards a strategic goal. This paper
addresses the important issue of how a
planner can balance strategic and tactical
planning in an uncertain and dynamic
environment.

The notion of a strategy hierarchy is
introduced to represent the varying
strategic and tactical aspects of planning. A
strategy hierarchy is similar to a decision
tree. However, the decision tree does not
represent base level situation-action pairs
(as in universal plans) or a hierarchy of plan
representations (as in hierarchical
planning [9]). Rather, the tree represents a
continuum of decision points, ranging from
the strategic to the tactical/incremental.
The nodes close to the root node are highest
in "strategic intent", while the nodes
closest to the leaf nodes have maximum
"tactical details". The higher nodes
represent various strategic choices, while
the leaf nodes represent plan details in the
form of scripts or skeletal plans. In our
approach we use a production rule system.
However, unlike the systems of Chapman
and Agre, Schoppers and Nilsson, where the
plans themselves are represented by
production rule like structures, we use
rules for encoding the complex reasoning
associated with each node in the strategy
hierarchy. This gives us a greater degree of
flexibility to account for the dynamic world
and the changing context of planning (see
section 3 for more details).

Most models use Boolean matches for
taking planning decisions (e.g., testing
pre-conditions of plans). This restriction
limits the capability of the system to
handle uncertainty in domain knowledge.
Usually, these systems have no capability
for representing varying degrees of
confirmation, refutation and ignorance about
a given decision variable. It is also the case
that these systems cannot usually
aggregate the contributions of different
proof paths for a single decision variable.
This feature, essential to exploit the
redundancy in the knowledge base, allows
the reasoner to use multiple deductive
paths to obtain a distribution of values
(with their associated uncertainty
qualification) for a given decision variable.
The planning mechanism described in this

380

paper uses the uncertainty calculi of
RUM/PRIMO [3,4] to support such a
representation of uncertainty and an
aggregation of multiple proof paths (see
section 3.1).

Another important issue addressed in this
paper is the integration of case-based
reasoning into the planner. Case-based
planning is a relatively new but important
planning methodology that considers the
effect of prior experiences while
formulating new plans. In our approach,
fragments of cases are interpreted and
represented by rule templates. The same
mechanism used to aggregate multiple
deductive paths provides a seamless
integration of case-based with rule-based
reasoning [14] (see section 3.6).

We have highlighted the important aspects
of our research and have identified our
contribution to the field of planning in
dynamic and uncertain environments. The
domain chosen to illustrate our ideas is the
financial domain of mergers and
acquisitions (M&A). M&A is a rich and
interesting domain and is of high
importance to businesses today. The
planning scenario chosen is that of the
various players [raider, target and
arbitrageur - see section 2.1) in the context
of a hostile merger attempt. Our ideas have
been implemented in a prototype system
called MARS (see section 2.2).

1.3 Structure of Paper

The paper contains three additional
sections. The next section describes the
domain of M&A and introduces the MARS
system. Details of the planning
mechanisms in MARS are given in section 3.
Section 4 summarizes the characteristics
of our planning methodology and describes
our future work.

2. Mergers and Acquisitions

This section introduces the domain of
mergers and acquisitions (M&A) and gives a
brief overview of the MARS system.

2.1 M&A: An Introduction

The structure of corporate USA has been
changed dramatically by the flood of
mergers and acquisitions witnessed over
the past decades. Annually, these deals
total tens of billions of US dollars. To lend
some useful conceptual abstraction, we can

consider two players of interest in simple
M&A deals: the raider (who usually
initiates a take-over attempt) and the
target (which is the company of interest to
the raider). Another player of interest who
is outside the structure of the actual M&A
deal, but has a keen interest in the entire
process is the professional arbitrageur (who
tries to make arbitrage profit by wisely
shifting his investments during the merger
process). While the actions of each of these
players vary from deal to deal, it is possible
to identify certain basic actions associated
with their individual roles. For example,
some of the representative actions of a
raider are target monitoring, target
evaluation and selection, merger strategy
selection, target response evaluation and
attack strategy modification. Sophisticated
planning and reasoning is required by every
player in the M&A domain. Even in simple
M&A deals, other complicating factors,
such as multiple bidders and legal
complications, often arise. Although each
M&A deal is special and uniquely complex,
we can still identify two types of M&A deals:
friendly (agreed to by friendly companies for
mutual benefit) and hostile (involving
forcible takeovers). In this paper, we focus
on hostile takeover attempts, as the
planning and reasoning requirements for
such M&A are much more interesting (from
a computational perspective). The reader
may consult references [15,20] for more
details on various aspects of M&A.

2.2 Overview of MARS

MARS (A Mergers and Acquisitions
Reasoning System) is a prototype AI
reasoning system that both simulates and
provides expert advice regarding the
actions of the raider, the target and the
arbitrageur. There are four independent
simulators in MARS. The global simulator
generates the values and changes of the
macro-economic variables affecting the
M&A deal (e.g., the interest rate and the
price of Treasury Bills). The other three
simulators generated and execute the
reasoning and planning of the raider, the
target and the arbitrageur respectively.
There is a fusion of different reasoning
techniques in all four simulators. Each of
them is capable of integrated reasoning
and planning with uncertain, incomplete
and time varying information. MARS is
implemented in Common LISP using
RUM/PRIMO, and runs on the Symbolics.
More details on the structure,

381

implementation and use of MARS can be
found in reference [5].

3. MARS: Planning Details

This section provides details on the
planning mechanisms implemented in
MARS. As MARS is implemented using
RUM/PRIMO [3,4], the section begins with
a short summary of the relevant features of
RUM/PRIMO.

3.1 Uncertainty Calculi & Belief Revision
in RUM/PRIMO

Both facts and rules in RUM/PRIMO can
represent uncertainty. Facts are qualified
by a degree of confirmation and a degree of
refutation. For a fact A, the lower bound of
the confirmation and the lower bound of
the refutation are denoted by L(A) and
L(—iA) respectively. As in the case of
Dempster's [12] lower and upper
probability bounds, the following identity
holds: L(-iA) = 1 - U(A), where U(A) denotes
the upper bound of the uncertainty in A and
is interpreted as the amount of failure to
refute A. Note that L(A) + L(-iA) need not
necessarily be equal to 1, as there maybe
some ignorance about A which is given by (1 -
L(A) -L(—iA)). The degree of confirmation
and refutation for the proposition A can be
written as the interval [L(A), U(A)].

RUM/PRIMO provides a natural
representation for plausible rules. Rules are
discounted by sufficiency (s), indicating the
strength with which the antecedent implies
the consequent and necessity (n), indicating
the degree to which a failed antecedent
implies a negated consequent. Note that
conventional strict implication rules are
special cases of plausible rules with s = 1
and n = 0. Each rule has an associated
context which represents the set of
preconditions determining the rule's
applicability to a given situation. This
mechanism provides an efficient screening
of the knowledge base by focussing the
inference process on small rule subsets.

RUM/PRIMO provides an uncertainty
calculus based on a set of five Triangular
norms (T-norms) [4] for inference in the
rule graph. Each T-norm Ti(a, b) lies within
the interval [Ti (a, b),T3(a, b)], where
Ti(a,b)=max(0,a+b-l)and T3(a,b)=min(a,b)
respectively. Their corresponding
DeMorgan dual T-conorms, denoted by Si
(a,b), are defined as:

Si(a.b) = 1 - Ti(l-a, 1-b).

For each calculus (represented by the five
T-norms), the following four operations
have been defined in RUM/PRIMO:

Antecedent Evaluation: To determine the
aggregated certainty range [b, B] of the n
clauses in the antecedent of a rule, when
the certainty range of the ith clause is given
by [bi.Bil:

[b,B] = [Ti(bi,b2, ... ,bn). Ti(Bi,B2, ,Bn)l

Conclusion Detachment (Modus Ponens):
To determine the certainty range, [c, C] of
the conclusion of a rule, given the
aggregated certainty range, [b,B] of the
rule premise and the rule sufficiency, s,
and rule necessity, n:

[c, C] = [Ti(s,b), 1 - (Ti(n, (1-B)))]

Conclusion Aggregation: To determine the
consolidated certainty range [d, D], of a
conclusion when it is supported by m (m> 1)
paths in the rule deduction graph, i.e.,
by m rule instances, each with the same
conclusion aggregation T-conorm
operator. If [ci,Ci] represents the certainty
range of the same conclusion inferred by
the ith proof path (rule instance), then

[d, D] = [Si(ci,c2, ... cm), Si(Ci,C2, ... ,Cm)]

Source Consensus: To determine the
certainty range, [Ltot(A), Utot(A)] of the
same evidence. A, obtained by fusing the
certainty ranges, [Li(A), Ui(A)], of the ith
information source out of a total of n
different possible information sources:

[LtotlA), Utot (A)] =
[Maxi=i,... ,n Li(A), Mini=1 n Ui(A)]

The theory of RUM/PRIMO is anchored on
the semantics of many-valued logics and is
possibilistic in nature. References [3,4]
describe a comparison of RUM/PRIMO with
other uncertainty systems, such as
Modified Bayesian, Certainty Factors,
Dempster-Shafer, and Fuzzy logic.

RUM/PRIMO supports a belief revision
mechanism to support reasoning under
dynamic environments. The belief revision
mechanism detects changes in the input,
keeps track of the dependency of the
intermediate and final conclusions on
these inputs, and maintains the validity of
these inferences. For any conclusion made
by a rule, the mechanism monitors the
changes in the certainty measures that

382

Toe-Hold

Raider Strategies

attack
(0.8, 0.9)
[0.75, 0.9]

Retreat
(0.7, 0.9)

J0.8, 0.91

Tender Offer

Market
buy Two tier

Figure 1: Simplified Strategy Hierarchy for the Raider

constitute the conclusion's support.
Validity flags are used to reflect the state of
the certainty. For example, a flag can
indicate that the uncertainty measure is
valid, unreliable (because of a change in
support), too ignorant to be useful, or
inconsistent with respect to the other
evidence. A lazy evaluation is performed on
the changes propagated by changes in the
environment.

3.2 Aims & Goals of Planning

We define dynamic planning as the process
by which long term goals are transformed into
short term objectives and tasks. The planner
has to continuously select and fine-tune
the most desirable short-term objectives
and tasks, given the long term goals, the
past history of actions, the current world
state and the predicted future course of
events. Such a description of planning has
its similarities and differences with the
models considered by other researchers. It
is similar to the models of Agre [1],
Schoppers [26], and Nilsson [21] in
stressing the need to continuously react to a
changing environment. It is different in
emphasizing the importance of strategy
formulation in the planning process.
Strategy formulation refers to something
more than the mere determination of a goal
hierarchy; it refers to the process of
determining the best way to achieve a long
term goal. The emphasis is not just on
finding the sequence of steps on a path to a
goal, but on choosing between different
paths by reasoning about the various
attributes of each solution path given the
context of planning (goals, resource
constraints, etc.)

The process of strategy formulation is, in
general, a hierarchical process. Choices
made at a given level influence subsequent
strategic choices and the selection of
tactical tasks. For example, a raider can
adopt many different strategies in taking
over a target company. His choice of a
general attack strategy will influence his
choice of sub-strategies for subsequent
actions in the takeover attempt, as his
strategy gets translated into shorter term
(tactical) objectives and tasks.

3.3 Representation of Plans

The planning model developed in this paper
provides for an explicit representation of
various strategic choices and tactical
tasks. The underlying representation is
that of a strategy hierarchy. A strategy
hierarchy is a decision tree like structure.
At each node of the decision tree, certain
choices have to be made relative to the
context, i.e., the current goals of planning
and the state of the dynamic world. These
choices vary in their strategic vs. tactical
content depending upon the level in the
strategy hierarchy. The strategic content
is highest in decisions closer to the root
node and gradually decreases to the leaf
nodes where the tactical content is the
highest. Complex reasoning is required for
evaluating the desirability of alternative
strategic choices at a node. This reasoning
is encoded by rules. Planning scripts
represent tactical tasks or task sequences
necessary to be executed once certain
strategic choices have been made. Most
scripts are located closer to the leaf nodes
as they represent the tactical aspects of
planning and are dependent on the
strategic choices made higher up in the

383

Raider Strategies CONTEXT

Attack
Goals

PriorCases

Constraints J

Figure 2: Strategic Choice at Node

decision tree. These concepts are explained
below with the aid of an example.

Figure 1 depicts the simplified conceptual
structure of the partial strategy hierarchy
for the raider in MARS. At the top level, the
raider can only adopt one of the two possible
strategies: attack the target or retreat and
concede defeat. Assuming that the raider
chooses the attack strategy, there are
several different sub-strategies available:
toe-hold (slowly acquiring stock in the
target), bear-hug (making a private merger
offer to the company), or tender-offer
(making a public merger offer). After this
choice is made, the raider must select
among further options. For example, the
bear hug sub-strategy leads to two options:
to contact the target management either
directly or indirectly (through intermediate
contacts). Based on his choice of
appropriate strategies, the raider has to
execute certain actions to achieve short
term goals in consonance with his long term
strategy and goals. These actions are
represented by plan scripts (shown as
rectangles at the leaf nodes in Figure 1).

The strategy hierarchy in Figure 1 depicts
the hierarchical process of strategy
formulation. Each dark circle in the
decision tree indicates a point at which
certain strategic choices must be made by
reasoning about the current state, the
goals and constraints, the known history
and the predicted future states. This
reasoning process has to include expert
domain knowledge, constraints (on
resources, goals and actions), uncertainty
(in knowledge of current and predicted
states of the world) and analogical
knowledge (comparisons with other similar
situations). This has been depicted in
Figure 2 where the enclosed box to the right
of the decision node shows the context in
which the decision is made.

We represent the reasoning processes at
each node by RUM/PRIMO rules as shown in
Figure 2. The evaluation of these rules
yields (on applying the uncertainty calculi

of PRIMO) an interval valued measure of the
desirability of the various strategic choices
at that node (shown numerically in Figure 1
and graphically in Figure 2). Thus the
choice at each node of the decision tree is
no longer a simple YES/NO decision, but is
decided by the degrees of "desirability"
and "undesirability" of various strategies
as given by PRIMO rules. Fairly complex
reasoning mechanisms can be incorporated
into this architecture.

The concept of a strategy hierarchy
described here is different from that of a
goal/sub-goal decomposition or a
plan/sub-plan hierarchy as typically
described in the planning literature [9].
The decision nodes in Figure 1 do not
specify an order of goals and sub-goals or a
hierarchical abstraction of plans/sub-
plans. Rather they specify choices about
how to plan and react so as to achieve the
long term goals, given the context of
problem solution.

The level of abstraction of strategy
formulation is highest at the level of the
root node and is incrementally refined as
one moves towards the leaf nodes. Close to
the leaf nodes, strategic choices have been
refined down to a level at which they
directly impact short term goals and
actions. These short term goals and tasks
are represented by scripts. For example, let
us assume that the raider has decided to
attack a particular target and has opted for
a direct bear hug strategy. After this
strategy selection, the raider must perform
certain atomic actions in accordance with
his choice: he must determine the details
of an offer (based on his evaluation of the
company's assets and management) and he
must choose how to approach the target
management with the offer. These actions
are included in the script associated with
the choice of the direct bear hug strategy.

Each script box (of Figure 1) has three
parts: begin strategy script (actions
executed when a strategy is initially
chosen), continue strategy script (actions

384

executed in current planning cycle when
the strategy has already been chosen), and
end strategy script (actions executed when
the strategy is closed, either successfully
or unsuccessfully). The begin and end
strategy scripts are selected for execution
only once, while the continue strategy
script can be selected for many contiguous
planning cycles. Each script contains a
sequence of steps or tasks which are
executed once the script is selected for
execution. There is no required ordering on
the tasks within a script. The only
requirement is that the script report back
to the planner any failure in executing a
particular task or task sequence. In the
event of such a failure, it is the planner's
responsibility to replan to avoid the failed
state. The scripts that encode the tactical
task details are similar to skeletal plans
and scripts, as described in the planning
literature [25,27].

3.4 Simulation Cycle

We have tested our planning approach
within the simulation facilities of the
MARS system. The MARS simulation cycle
begins with an initialization phase in which
attributes of the various players are
entered (e.g., the assets and goals of the
raider). After this initialization phase, the
simulation cycle in the autonomous mode of
operation consists of four steps:

1) the raider makes a move;
2) the target responds to the raider's move;
3) the arbitrageur shifts assets in response

to the observed raider and target actions;
4) the global simulator modifies the macro-

economic parameters appropriately.

This cycle is repeated continuously until
the raider is either successful or concedes
defeat. Each simulator plans and executes
one or more tasks/actions during each
simulation cycle.

MARS can operate in three different modes,
all of which can be arbitrarily interleaved:
autonomous (in which all simulators plan
and operate autonomously), I am target (in
which the user plays against the raider) and
I am raider (in which the user plays against
the target). Variable values and planning
choices can be changed interactively by the
user at any time. These three modes of
operation produce a rich variety of planning
behaviors and reactions on the part of the
raider, the target and the arbitrageur.

3.5 Strategic Planning Process

The planning and execution of actions is
done in a dynamic environment. The
process of strategic planning requires the
selection of the most desirable strategies,
by moving down the strategy hierarchy (as
illustrated in Figure 1), and the execution
of the scripts associated with the chosen
strategies. The complexity arises from the
fact that the choice of various strategies
must account for various goals, resources,
constraints, and other features of the
domain, such as uncertainty and prior
cases. As the world is dynamic, the planner
must also ensure that, at every stage of
planning, its choices are in agreement with
the current evaluation of the world. The
dynamic nature of the world may
necessitate the change of earlier choices,
making the ability to replan a necessary
feature. In the example below, the raider
simulator is used to explain this process.

Various factors affect the choice between
the attack and retreat strategies for the
raider. RULE 1 is a PRIMO rule that reflects
the importance of the financial strength of
the raider on this decision. Leaving aside
details of PRIMO's syntax (see [3,4]), RULE
1 states that, given a highly desirable
target, if the raider is financially stable
and has adequate financing, he should
choose the -.attack strategy to take over
such a target. Lines 3 and 4 describe the
context, i.e., the prerequisite for
evaluating this rule. In this example, the
context is the identification of a target
company that is highly desirable to the
raider. Line 5 represents the premise.
"Adequate-financing" and "financial-
stability" are two user-defined functions
returning interval valued qualifications of
the degree to which the raider has adequate
financing and is financially stable,
respectively. Lines 6 & 7 represent the
conclusion. The contribution of RULE 1 to
the desirability or undesirability of the
•.attack strategy is computed using the T2
T-norm operator in accordance with
PRIMO's uncertainty calculi. The degree of
importance of the premises for the
conclusion is expressed by the sufficiency
and necessity measures (*extremely-likely*
and *likely* respectively - line 7) and by
the choice of the appropriate T-Norm
operator (T2 in this case).

Consider the decision node in Figure 1 at
which the raider must decide whether to
attack or retreat. RULE 1 is one rule

385

;;; RULE 1

(def-rule (adequate-financing-available company-data ;;; line #1
(raider-strategies.rules)) (?raider ?target) ;;; line #2

(lb-pass-threshold ;;; line #3
(most-desirable-target ?raider ?target) 1000) ;;; line #4

(t2 (adequate-financing ?raider) (financial-stability ?raider)) ;;; line #5
((raider-strategy ?raider) ;;; line #6
 ((:attack (d2 *extremely-likely* *likely*)) intersect))) ;;; line #7

contributing to the degree of
confirmation/refutation of the desirability
of the strategy -.attack. In general, there
may be other PRIMO rules contributing to
the desirability of the strategy -.attack.
These rules yield, on the application of
PRIMO's uncertainty calculus (section
3.1), a net interval valued measure of
desirability of the -.attack strategy for the
raider. Similarly another set of rules (such
as RULE 2 below) yield an interval valued
measure of the desirability of the -.retreat
strategy for the raider. These desirability
measures are represented graphically in
Figure 2 (the black band delimits the lower
and upper bounds on the desirability
measures). The strategic choice made by
the raider depends on the chosen selection
mode. The default mode in MARS is to
choose the strategy with the highest degree
of confirmed desirability (i.e., with the
highest lower bound).

3.6 Integrating Case-Based Reasoning in
the Planning Process

The presence of adequate financing is one
feature that is considered by the raider
while deciding whether or not to attack the
target. The possibility of a successful anti-
trust move is another relevant factor,
specially if the raider and target are in
similar industry sectors. The relevance of
this factor is represented by RULE 2. An
important factor in the determination of
the success of an anti-trust move is the
presence of similar prior situations (cases),
in which the merger move either succeeded
or was blocked. The relevance of prior cases
is represented by Rule 3.

When the premise of RULE 3 is evaluated,
the planner accesses the case library of
MARS to determine the presence or
absence of similar precedents. Cases are
stored in the MARS case library by rule
templates (of the same form as RULEs 1, 2
and 3) and hence when accessed by the
premise of RULE 3, yield an interval valued
answer expressing the degree of
confirmation/refutation of the presence of

a similar precedent. RULE 3 expresses the
degree of relevance of the presence of prior
cases to the conclusion of whether an anti-
trust move shall succeed (i.e., to the
premise of RULE 2). In general, other rules
will also contribute to the estimation of the
the premise of RULE 2. RULE 2 in turn,
contributes (along with other rules) to the
evaluation of the desirability of the
strategy -.retreat for the raider simulator.
The inference engine of the planner
remains unaffected by the use of or lack of
use of case-based reasoning. Whenever,
rules (such as RULE 3) explicitly mention
the importance of prior cases for the
current conclusion, the planner accesses
the case library and evaluates the rule
graph corresponding to the relevant
instantiated case templates. This process
makes it possible to seamlessly integrate
case based reasoning into the planning
process. More details on case based
reasoning as implemented in MARS and its
integration with rule based reasoning are
given in reference [14].

3.7 Tactical Planning Process

The scripts associated with nodes in the
strategy hierarchy represent the tactical
details of planning. As the external world is
assumed to be dynamic and uncertain, the
ability to detect failures and to replan is
crucial. Replanning may be necessary due
to two reasons: scripts may fail (one or more
script actions may be non-executable) or
chosen strategies may be sub-optimal
(choices made higher up in the strategy
hierarchy are no longer optimal). In the
first situation, it is fairly simple to detect
the need for replanning. Since each script
associated with a selected decision node in
the strategy hierarchy is executed before
exploring any other decision nodes, the
planner waits for the successful completion
of the script before making any more
strategic choices. If the script fails, then
the planner selects the next best
alternative path at the same level and
continues. If there are no other alternative

386

;;; RULE 2 (Abridged version)
(def-rule (anti-trust-possibility

(t2 (value (anti-trust-success ?raider) :yes))
((raider-strategy ?raider)

((rretreat (d2 *very-likely* *likely*)) intersect)))

;;; RULE 3 (Abridged version)
(def-rule (precedent-anti-trust

(t2 (successful-precedent ?raider ?target))
((anti-trust-success ?raider)

((:yes (d2 *very-likely* *likely*)) :intersect)))

;; rule details omitted
;; premise

;; conclusion

;; rule details omitted
;; premise

;; conclusion

paths at that level, the planner moves one
level up in the strategy hierarchy and picks
the next best alternative (i.e., relative to
the alternatives already seen) at that level.
There is no explicit repair mechanism
which is invoked when a script fails. Each
script contains the information to explore
different methods to achieve a certain
short term goal and any necessary
knowledge for repairing possible failures. A
script fails only if all methods and repair
procedures are exhausted (similar to RAPS
[17]).

The second cause of plan failure occurs due
to dynamic changes in the world. Certain
strategies chosen earlier (higher up in the
strategy hierarchy) may no longer be the
best strategy (i.e., the strategy with the
highest degree of desirability) at a later time
(when the planner has reached lower levels
in the strategy hierarchy) due to a changed
environment. The planner detects this
change with the help of a belief revision
mechanism supported in PRIMO (section
3.1). A strategic decision at any node in the
strategy hierarchy is made in a given
context (Figure 2). The PRIMO rules (such
as RULEs 1, 2 and 3) used for evaluating the
desirability of different alternatives at that
node form a rule-graph. The belief revision
mechanism keeps track of the
dependencies of these rules and flags any
changes in the values affecting these rules.
At every decision node, before moving down
the strategy hierarchy, the planner checks
to see if the strategic choices made until
now are still optimal, i.e., if the path from
the root node to the current node is still
optimal. This test ensures that the context
under which planning is being done is still
valid. If the world has changed causing an
earlier strategic choice to become sub-
optimal, then the planner backtracks up
the strategy hierarchy to the node where
the strategic choices have to be
reevaluated. The planner must terminate
the open strategies along the backtracking
path, i.e., it must execute the end strategy

scripts of the terminated strategies.
Replanning can then proceed from that
node.

The planner balances the strategic vs.
tactical aspects of planning by introducing
thresholds for changing strategies which
vary according to the strategic importance
of the choice. These thresholds are higher
for strategically important choices (closer
to the root node in Figure 2) than for
choices more intimately related to tactical
planning (closer to the leaf nodes in Figure
2). For example, consider the desirabilities
of certain strategic choices during a
particular execution cycle as shown by the
numbers in parentheses (e.g., (.8, .9)) in
Figure 1. Based on the depicted measures
of desirabilities, the script for the indirect
bear hug attack strategy has been selected
and is in progress (the begin indirect bear hug
strategy script has been executed). Assume
that during the next execution cycle the
desirability of various strategic choices for
the raider has changed to the numbers
shown in squared brackets (e.g., [0.8, 0.9])
in Figure 1. The degree of desirability of
the direct bear hug strategy is now higher
than the currently chosen indirect bear hug
strategy (0.85 > 0.8). Thus the indirect bear
hug script should be closed and the direct
bear hug script should be started. At this
point, the degree of desirability of the
■.retreat strategy is also greater than that of
the '.attack strategy. However, we may
decide not to change to the -.retreat strategy
as this decision is intimately related to the
long term goals of the raider and the
difference in the desirabilities (0.05) is
perhaps not large enough to warrant a
change during this cycle. This allows the
planner to achieve a balance between
strategic and tactical planning. The
change thresholds can either be fixed or
dynamic. In the latter case, the planner can
dynamically vary the strategic and tactical
contents of its actions. In this example, the
magnitude of change in the desirability of
the two changes has been deliberately

387

chosen to be the same (0.05) to emphasize
that different change thresholds can be
adopted at different levels in the strategy
hierarchy to account for varying impacts of
strategic vs. tactical planning.

4 Conclusion

In this paper, we have described an
approach to merging the strategic and
tactical aspects of planning. We view
planning as the process by which the long
term goals of an agent are translated into
short term objectives and tasks. We have
used the term strategic planning to refer to
reasoning about and choosing between
alternative means to achieve the long term
goals, given the context of planning (goals,
constraints, etc.). This interpretation
differs from the one common in the
planning literature, in which strategic
planning is often viewed as planning in a
static, predictable world. Our
interpretation of strategic planning
reflects the use of the term in the military
and business domains. The concept of a
strategy hierarchy has been introduced to
explicitly represent the varying strategic
and tactical aspects of planning. The
identification, selection and structuring of
possible strategic choices is a domain
dependent task. A rule based approach is
used for reasoning about and evaluating the
degrees of desirabilities of the various
strategic choices at different nodes in the
strategy hierarchy. PRIMO's uncertainty
calculus provides a thorough treatment of
uncertainty in the domain, which is
reflected in the execution of such rules.
The tactical details of planning are
represented by scripts, which are usually
found close to the leaf nodes of the strategy
hierarchy. We have also demonstrated a
methodology for incorporating case based
reasoning into the strategic planning
process. Our planning model emphasizes a
dynamic balance between the strategic vs.
tactical aspects of planning. This balance
is achieved by introducing dynamic and
flexible thresholds in the strategy
hierarchy. These thresholds vary with the
amount of strategic vs. tactical content of
the planning choices. Such a balance is
important for achieving coherent goal
directed behavior.

We have successfully tested our planning
approach in the domain of Mergers and
Acquisitions (M&A), and we have
implemented it in the MARS system. A
characteristic of the M&A domain is the

competitive nature of planning under
partial and imprecise information. The
raider and the management of the target
company can be seen as two players in a
multi-player game. Each player has a set of
strategies, which are determined and
conditioned by the player's assets
(constraints), high level goals, attitude,
and the current macro-economic
environment. These strategies may be
altered when drastic changes occur to the
environment or to the high level goals.

The implementation of the strategies is
determined by the selection of sub-
strategies and by their refinements until
specific tactics are executed. Because of
the competitive nature of the domain,
planning is followed by counter-planning,
whose effects may cause the modification,
interruption, or termination of the adopted
tactic. These tactical changes occur much
more frequently than the strategic ones.

The planning requirements described
above are similar to those of many military
applications. Our next experiment will be
the testing and validation of our planning
approach in the domain of military
transportation planning, within the
context of crisis management.

References

[1] Agre, P. and D. Chapman, Pengi: An
Implementation of a Theory of Activity, in
Proceedings of the 6th AAAI, Morgan Kaufmann
Publishers, 1987, pp. 268-272.

[2] AIMagazine, vol. 9, no. 2, Summer 1988.

[3] Aragones, J. & P.P. Bonissone, PRIMO: A Tool for
Reasoning with Incomplete and Uncertain
Information, in the Proceedings of the 3rd
International Conference on Information
Processing & Management of Uncertainty in
Knowledge-Based Systems, Paris, July, 1990, pp.
891-898.

[4] Bonissone, P.P., S. Gans, and K.S. Decker, RUM: A
Layered Architecture for Reasoning with
Uncertainty, in the Proceedings of the lOthUCAI,
1987.

[5] Bonissone, P.P. & S. Dutta, MARS: A Mergers &
Acquisitions Reasoning System, Forthcoming in
Computer Science in Economics & Management,
Kluwer Academic.

[6] Bresina, J. & M. Drummond, Integrating Planning
and Reaction: A preliminary report, in Proc. of the
AAAI Spring Symposium on Planning in Uncertain,

388

Unpredictable or Changing Environments,
Stanford, 1990, pp. 24-28.

[7] Brooks, R. A., A Robust Layered Control System
for a Mobile Robot, AI Memo # 864, AI Laboratory,
MIT, 1985.

[8] Chien, R.T., & S. Weissman, Planning and
Execution in Incompletely specified
Environments, in the Proceedings of the 4thIJCAI,
1975, pp. 169-174.

[9] Cohen, P. & E. A. Feigenbaum, The Handbook of
AI, Vol. Ill, Addison Wesley, 1982

[10] Computational Intelligence, Special Issue on
Planning, vol. 4, no. 4, Nov. 1988.

[11] Dean, T. & M. Boddy, An Analysis of Time -
Dependent Planning, in the Proceedings of the 7th
AAAI, 1988, pp. 103-113.

[12] Dempster, A.P., Upper and Lower Probabilities
Induced by a Multi-valued Mapping, Annals of
Mathematical Statistics, 38, pp. 325-339, 1967.

[13] Durfee, E., & V. Lesser, Incremental Planning to
Control a Blackboard-Based Problem Solver, in
the Proceedings of the 5th AAAI, 1986, pp. 58-64.

[14] Dutta, S. & P.P. Bonissone, Integrating Case
Based and Rule Based Reasoning: The
Possibilistic Connection, in the Proceedings of 6th
Conference on Uncertainty in AI, Cambridge, MA
1990, pp. 290-300.

[15] Ferrara, R. C, Mergers and Acquisitions in the
1980s: Attack and Survival, Practising Law
Institute, New York, 1987

[22] Proceedings of the AAAI Spring Symposium on
Planning in Uncertain, Unpredictable or Changing
Environments, Stanford, March 1990.

[23] Rosenschien S., J. Kaelbling & L. Pack, The
Synthesis of Digital Machines with Provable
Epistemic Properties, in the Proceedings of the
Conference on Theoretical Aspects of Reasoning
about Knowledge, 1986, pp. 83-98.

[24] Sacerdoti, E., A Structure for Plans and
Behavior, American Elsevier, 1977.

[25] Schänk, R.C., Scripts, Plans, Goals and
Understanding, Lawrence Erlbaum, 1977.

[26] Schoppers, M.J., Universal Plans for Reactive
Robots in Unpredictable Domains, in the
Proceedings of the 10th IJCAI, 1987, pp. 1039-
1046.

[27] Stefik, M.J., Planning with Constraints, Report
no. 80-784, Ph.D. dissertation, Stanford
University, 1980.

[28] Swartout, W., DARPA Workshop on Planning, the
AI Magazine, vol. 9, no. 2, 1988, pp. 115-130.

[29] Wilkins, D., Practical Planning, Morgan
Kaufmann Publishers, 1988.

[30] Yang, H., D.H. Fisher, & H. Franke, Planning,
Replanning, and Learning with an Abstraction
Hierarchy, in the Proceedings of the AAAI Spring
Symposium on Planning in Uncertain,
Unpredictable or Changing Environments,
Stanford, 1990, pp. 151-155.

[16] Fikes, R.E., & N.J. Nilsson, STRIPS: A new
approach to the application of theorem proving to
problem solving, Artificial Intelligence, 2, 1971,
pp. 189-208.

[17] Firby, R., An Investigation into Reactive Planning
in Complex Domains, in the Proceedings of the
6thAAAI, 1987, pp. 202-206.

[18] Georgeff, M. and A. Lansky, Reactive Planning
and Reasoning, in the Proceedings of the 6th
AAAI, 1987, pp. 677-682.

[19] Hendler, J. and J. Sanborn, A Model of Reaction
for Planning in Dynamic Environments, in the
Proceedings of the DARPA Knowledge-Based
Planning Workshop, 1987, pp. 24-1-24-10.

[20] Kuhn, R. L., Mergers, Acquisitions and
Leveraged Buyouts, Vol. IV, Dow-Jones Irwin,
1990.

[21] Nilsson, N.J., Action Networks, in the
Proceedings of the Rochester Planning Workshop,
Oct. 1988, pp. 21-52.

389

Planning Under Uncertainty and Time Pressure

Thomas Dean*
Department of Computer Science

Brown University, Box 1910, Providence, RI 02912

Abstract
We are interested in the role of prediction in planning
and control. Our research has focussed on the prob-
lems involved in making predictions under uncertainty
and time pressure. In this paper, we consider two ideas
from related disciplines that have had an important in-
fluence on our work. The first idea is from estimation
and control theory and is concerned with integrating
observation and prediction. The second idea is from de-
cision theory and experimental design and is concerned
with computing the expected value of information. We
provide brief introductions to each of these ideas, and
attempt to provide some insight into their utility for ar-
tificial intelligence applications by supplying examples
from our recent research.

Introduction
Prediction and modeling are important in building
planning systems. Indeed, one informal characteriza-
tion of planning is in terms of predicting possible fu-
tures so as to select among them by performing certain
actions. Much of our research is aimed at improving the
technology available for predicting possible futures. We
have developed techniques for reasoning about causal
relationships and metric time [Dean and McDermott,
1987, Dean, 1988, Dean, 1989], dealing with uncertainty
in the order of events [Dean and Boddy, 1988b] and the
persistence of propositions [Dean and Kanazawa, 1989],
and reasoning about continuously changing quantities
[Dean and Siegle, 1990].

Recently, we have begun to pay greater attention
to two issues that are critical in applying such tech-
niques to real-world planning problems. The first issue
concerns controlling the computational costs associated
with prediction. In many applications, it is important
to carefully control the time spent performing inference

*This work was supported in part by a National Sci-
ence Foundation Presidential Young Investigator Award
IRI-8957601 with matching funds from IBM, and by the
Advanced Research Projects Agency of the Department of
Defense and was monitored by the Air Force Office of Sci-
entific Research under Contract No. F49620-88-C-0132.

in order to ensure that the system responds to its envi-
ronment in a timely manner. This control of inference
can be compiled into the system by making tradeoffs
at design time to guarantee a specific response time.
Alternatively, control of inference can be made part of
the run-time system to enable the system to allocate
computational resources based on current demands.

The second issue concerns the role of observation and
sensing in designing useful predictive systems. Predic-
tive models are generally poor at making long-term pre-
dictions. In addition, the accuracy of both near- and
long-term predictions are critically dependent on the
system's estimate of the current conditions. By making
frequent measurements, a predictive system can main-
tain an accurate estimate of the current conditions in
order to make more accurate predictions. For the most
part, research in planning has focussed on open-loop
feedforward techniques that rely on precise models and
accurate information regarding initial conditions. For
many applications, closed-loop feedback techniques ap-
pear to be more appropriate.

In the following, we consider some ideas drawn from
other disciplines and show how they bear on the two
issues mentioned above. In particular, we look at the
theory of Kalman-Bucy filters in control theory for ideas
about how to treat observations that differ from current
expectations. From decision theory and experimental
design, we consider how to assign value to various infor-
mation sources, including observations we might make
and computations we might perform. In each case, the
goal is to show how these ideas from other disciplines
can inform research on planning in artificial intelligence.

Observation and Prediction
We begin with a very brief introduction to Kaiman fil-
tering to illustrate how observation and prediction can
be combined to complement one another. We then
show how to apply the basic intuitions underlying the
Kaiman filter to problems in mobile robotics.

In the following, we assume a discrete-time, dynamic
system. Let x(k) be a vector representing the state of
the system at time k. Let u(k) be the known input (or

390

control action) to the system at time k. The state of
the system at time k + 1 is determined by

x(A + l) = /(x(*)Iu(*)) + v(A)>

where / models the response of the dynamic system to
a given input, and v(fc) is a vector of Gaussian-process
noise, modeling the input disturbance or process noise.

Let z(k) represent the (observable) output of the sys-
tem at time k, so that

z(k) = h(x(k)) + w(jfe),

where h models the physics of the measurement process
and w(Äj) is a vector of Gaussian-process noise, model-
ing the measurement errors.

The objective is to maintain an accurate estimate of
the current state of the system. The estimate of the
system state at time k given all the measurements up
until time j is denoted x{k\j). At each time k, all of
the past measurements are summarized by an estimate,
X(äI|&) and an associated covariance matrix.

There are three basic steps performed in updating the
estimate of the system state to reflect the measurement
made at k -+- 1. In the first step, called the prediction
step, we compute what we expect to observe at k + 1.
This involves first computing an estimate of the state
at k + 1 given all the measurements up until k:

x(fc+l|fc) = /(x(Jb|Jb),u(ib)).

We then use this estimate to compute the predicted
measurement:

z(k + l\k) = h(x(k + l\k)).

In the second step, called the observation step, we make
the observation and compare the resulting measurement
with what we expected. The difference between the ex-
pected and actual measurement is called the innovation:

u(k + 1) = z(k + 1) - z(k + l\k).

In the third and final step, called the estimation step, we
take x(& + 11Ä; + 1) to be the vector sum of our estimate
given the measurements up until k and a correction
factor g(v(k + 1)) which reflects our confidence in the
measurement at k + 1:

x(/t + l|jfe + 1) = x(k + l\k) + g(u(k + 1).

The details concerning g are not important.1 What is
important is how the information from prediction and
observation are combined.

lWe have sketched here the basic ideas involved in
Kaiman filtering. In general, the information regarding the
estimated state of the system is summarized by the first two
moments of a statistical distribution: the mean vector and
the covariance matrix for the state variables. The correction
function g takes into account of the covariance information
to discount measurements that deviate significantly from ex-
pectations. See Bar-Shalom [1988] or Brammer and Siming
[1989] for introductions to the theory of Kaiman filters.

First, note that we have models for predicting not
only the current and future states of the system, but
also the current and future measurements made in ob-
serving the system. These models account for uncer-
tainty in the underlying process by incorporating prob-
abilistic noise models for disturbances in the dynamical
system and errors in measurement. At each point in
time, we compare what we expect to observe with what
we actually observe in order to determine how much
weight we want to attribute to each, based on what
sort of errors we expect from the noise models. In the
following, we provide some examples to illustrate how
we are applying this basic idea.

The mobile robots in our lab use sonar as the primary
means of sensing the surfaces of objects for naviga-
tion purposes. A sonar sensor consists of an ultrasonic
transducer, a receiver, and some signal-processing hard-
ware. Information about the distance from the sensor
to nearby surfaces is obtained by measuring the round-
trip time of flight of an ultrasonic pulse that is emitted
by the transducer, bounces off an object surface, and
returns to the receiver.

If the transducer is pointed along a line perpendic-
ular to a nearby planar surface, then the sensor can
be modeled as the actual distance to the surface cor-
rupted by zero-mean Gaussian noise. However, if the
transducer is not pointed perpendicular to the near-
est object surface, then there is some chance that not
enough of the energy from the ultrasonic pulse will be
returned to the receiver to determine the true time of
flight to the nearest surface. Instead, the pulse may be
reflected, bouncing off possibly several objects before a
signal with enough energy is detected by the receiver. In
this case, the information returned by the sensor may
deviate significantly from the distance to the nearest
object.

Kaiman filtering techniques can be used to maintain
estimates of the distance separating a mobile robot from
nearby walls, corners, and other environmental features
that exhibit well-behaved sonar signatures [Leonard
and Durrant-Whyte, 1989]. We use these estimates to
update the robot's position with respect to a global
map, and to track walls in negotiating corridors in the
computer science building [Lee, 1990]. The navigation
system identifies features and then tracks them over
time using the Kaiman filtering equations to discount
misleading sonar measurements due to multiple reflec-
tions.

The basic Kaiman filtering equations are also cen-
tral to the stochastic geometric modeling techniques de-
veloped by Smith and Cheeseman [1986] and Durrant-
Whyte [1988]. In [Hayahsi and Dean, 1988], we describe
a method for locating an autonomous mobile robot us-
ing local observations and a global satellite map. The
satellite map provides approximate elevation data for
an area within which the robot is known to be located.
The map consists of a coarse grid of rectangular regions

391

(V) (\

Figure 1: The probabilistic model for map learning

annotated with upper and lower bounds on the eleva-
tion within the region. In exploring its environment,
the robot makes measurements to extract information
about the relative position and orientation of local land-
marks. These landmarks are integrated into a stochas-
tic map which is then matched with the satellite map
to obtain an estimate of the robot's current location.

We employ the Kaiman filtering equations directly
in a number of our navigation routines, but the basic
intuitions underlying the Kaiman filter are applicable
to wide variety of problems including problems that do
not involve reasoning about continuous quantities.

In our research on learning representations of large-
scale space, we have adopted Kuipers' [1978] approach
to map learning as inducing a graph that captures cer-
tain qualitative features of the environment [Basye et
al., 1989]. In recent work, we have cast the problem of
combining measurements to support hypotheses con-
cerning the configuration of such qualitative features in
terms of Bayesian inference [Dean et al., 1990a]. Our
methods involve encoding the underlying decision prob-
lem as a Bayesian probabilistic network.2

We assume that the robot trying to learn the map
can enumerate the set, M = {Mi, M2,. -., Mm}, of all
possible maps, where each Mi is just a labeled graph.
Since the size of M is potentially quite large, we re-
strict it in a number of ways. In particular, we assume
that the system of junctions and corridors that make
up our robot's environment can be registered on a grid,
so that every corridor is aligned with a grid line and
every junction is coincident with the intersection of two
grid lines.

The Bayesian network is defined as follows. Let H
be a random variable corresponding to the actual con-
figuration of the environment; H takes on values from

M. Let JXjy be a random variable corresponding to the
label of the intersection at the coordinates, (x,y), in
the grid; Jx>y can take on values from the set of possi-
ble junction types (e.g., T junctions and L junctions).
Let XfiW correspond the presence of a feature, /, at a
particular position, w. Let SXtV be a random variable
corresponding to a possible measurement taken at the
coordinates, (x,y), in the grid. The complete proba-
bilistic model is shown in Figure 1.

Even after restricting M, the model shown in Fig-
ure 1 is prohibitively expensive to evaluate.3 To ease
the computational burden, we heuristically select a sub-
set of M to use as the sample space for H. The problem
with this is that the space of possible maps chosen may
not include the map corresponding to the actual con-
figuration of the environment.

To handle the possibility of excluding the real map,
we add a special value, ±, to the sample space for H,
and make all of the PT(JXIV |_L) entries in the conditional
probability tables 1/s where s is the number of junction
types. If the posterior probability for H = _L given
the evidence ever exceeds a fixed threshold, then the
system assumes that it has excluded the real map, and
dynamically adjusts its decision model by computing a
new sample space for H guided by the results of the
exploratory actions taken thus far.

In the estimation step of the Kaiman filter, we use
the innovation to discount measurements that are un-
likely to be relevant to the current estimate. In the map
learning approach described above, we use the poste-
rior probability for _L as an indication that the current
sample space for the hypothesis is inadequate. In both
cases, we use knowledge about the accuracy of our pre-
dictive model and our ability to observe the environ-
ment to reason about the weight to attach to each in
making decisions. In Kaiman filtering, this knowledge
takes the form of the innovation and covariance. In map
learning, this knowledge is condensed in the form of the
threshold used to determine if the real map has been
excluded from the sample space for H, and the condi-
tional probabilities of the form Pi(SXiy\Xf^w) used to
quantify the dependency between observations and fea-
tures in the real world.

Value of Information
In the real world, information costs. Every time that
you get operator assistance in dialing a long-distance
number or consult an accountant about your income
tax you are paying for information. It is often useful
to be able to assess the value of information so as to
make reasonable decisions regarding whether or not to
pay for it. In this section, we consider a theory due to
Howard [1966] concerned with quantifying the value of

2 See [Dean et al., 1990b] in this volume for a brief intro-
duction to Bayesian probabilistic networks.

3See [Dean et al., 1990b] in this volume for a discus-
sion of some of the complexity issues involved in evaluating
Bayesian probabilistic networks.

392

detour route \ ■ backtracking route i
(10) \ i (12) \

i
,; i t

direct route

(6)

information as follows. Let

E(T|£) (1)

Figure 2: Alternative routes to the beach

information in decision-theoretic terms.

Suppose that you live in the city and are taking your
summer vacation at a beach some distance from the city.
Suppose further that there are two routes to the beach:
a direct route that takes six hours and roundabout route
that takes ten hours. We will call these the direct and
detour routes. The direct route requires that you cross
a bridge which, as luck would have it, is undergoing
major repairs this summer. There is a 50% chance that
the bridge will be closed at the time you wish to cross
it. If you attempt the direct route and find the bridge
closed, you will have to backtrack to the detour route,
and your total transit time will be twelve hours.

You decision involves choosing whether to try the di-
rect or detour route first. Figure 2 shows the three
possible outcomes of your decision. If you choose the
detour route, the trip will take ten hours. If you choose
the direct route, the trip will take either six hours or
twelve hours depending on whether or not the bridge is
closed. We need to assign a value or cost to each of the
possible outcomes, and, in this case, a natural measure
of cost is time spent in transit. A decision-theoretic
analysis would conclude that the optimal decision (one
that minimizes cost) is to take the direct route with an
expected transit time of 9 hours.

Now we extend the example to consider issues in-
volving the value of information. Suppose there is a
state police station located near the highway prior to
the point at which we have to decide between the direct
and detour routes. We will assume that the state police
can provide us with information about the current sta-
tus of the bridge. Suppose that stopping at the police
station requires getting off the highway and traveling
to a nearby town, and that the total time spent in ac-
quiring the information about the bridge is estimated
to be 30 minutes.

In this extended example, we have an additional deci-
sion to make besides simply whether to take the direct
or detour route. You can think of the trip to the po-
lice station as particular type of test with two possible
findings: the bridge is open or the bridge is closed. We
can reason about the expected value of obtaining this

be the expected travel time, T, for the optimal course
of action based on the background information, £. In
reasoning about whether or not to stop at the state po-
lice station, we compute the expected travel time given
the additional information obtained from the police:

E(T|Js,£), (2)

where Is represents the event of obtaining information
from the police regarding the status, S, of the bridge,
either open or closed. The expected value of the infor-
mation obtained from stopping at the police station is
just the difference between Equations 2 and 1

E(Val(Is)|£) = E(T|/S, S) - E(T\£),

where

E(T\IS,£) = E(T\S = closed, £)Pi(S = closed\£) +

E(T\S = open, £) Pr(5 = open\£).

In the example, E(Val(Js)|£) = 1.0, implying that we
should be willing to spend up to one hour to obtain the
information regarding the status of the bridge.

More generally, let E(V|f) be the expected value of
carrying out your present plan or policy. Suppose that,
prior to carrying out your present policy, someone offers
to sell you information pertaining to some variable, X,
used in calculating E(y|£). To be more specific, sup-
pose that the informant is clairvoyant and knows the
actual value of X. Let Ix correspond to the event of
obtaining the information regarding X.

The expected value of obtaining this information is
given by

E(Val(/x)IO = E{V\IX, £) - E{V\£). (3)

To compute E(V\Ix,£), we evaluate the expectation
given knowledge about X for each possible value of X
provided by the informant, summing over these expec-
tations weighted by our prior on X

E(V\IX,£)= Y, V(V\X = x,S)Pi{X = x\£). (4)
xenx

It is important to note, as did Howard in the 1966 pa-
per [Howard, 1966] in which he introduced Equations 3
and 4, that we use the prior distribution Pr(_X"|£) for X
because, until the informant provides the information
about X, our knowledge of X is based entirely on our
background knowledge £.

In the map learning problem described earlier, at
each point in time, the robot has to decide between
two alternatives, PK and Pu, corresponding to taking
paths through known and unknown territory. It is as-
sumed that at all times the robot has some current task
(e.g., to take a parcel from one office to another). The
robot has to balance the demands of its current task

393

against the demands of future tasks. In the case of the
path through unknown territory, the robot will learn
something new about its environment; it may end up
taking longer to complete its current task, but it may
also learn something that will enable it expedite future
tasks. In [Dean et al., 1990a], we describe how to com-
pute the expected value of exploration, in order to guide
the actions of the robot in exploring its environment
and carrying out its tasks.

In [Dean et al., 1990b] in this volume, we describe
how a robot might take into account the expected value
of perceptual actions in tracking moving objects. In the
tracking problem, the robot has to consider sequences
of actions, and the prediction and modeling issues are
more complicated than in the map learning problem.

In the map learning and tracking problems, the robot
reasons about the value of performing physical actions,
including perceptual actions, that provide valuable in-
formation, but there is a hidden cost associated with
acquiring such information: the cost of processing the
information once you have it. In fact, inference is never
without cost, and in time-critical applications it is im-
portant that we are careful not to squander precious
computational resources.

In recent years, there has been considerable in-
terest in reasoning about the costs and benefits of
computation4 [Boddy and Dean, 1989, Horvitz et al.,
1989, Russell and Wefald, 1989]. In particular, re-
searchers have focussed on the properties of algorithms
and decision procedures. For instance, in time-critical
applications, it is useful to build decision procedures
that can be interrupted at any time to return an answer
such that the answer returned gets better, in some de-
cision theoretic sense, the more time allowed. This sort
of behavior is a fundamental property of the anytime
algorithms of Dean and Boddy [l988a] and the flexible
computations of Horvitz [1988].

While it is important to design decision procedures
that are better suited to interacting with the real world,
we believe that the more interesting and important is-
sues involve devising better ways of allocating scarce
computational resources to decision making in time-
stressed situations.

In [Dean and Boddy, 1988a], we define the notion
of deliberation scheduling in terms of scheduling any-
time decision procedures on a uniprocessor. The key
idea is that, given a set of anytime decision procedures
and expectations about their performance as a func-
tion of time spent in computation, it is possible to op-
timally allocate resources to those procedures in some
well-defined decision-theoretic sense.

If the time spent in deliberation scheduling is neg-
ligible in comparison with the time spent in delibera-
tion, then the cost of deliberation scheduling can be

See Dean [1990] for an overview of decision-theoretic
techniques for controlling inference in time critical
applications.

ignored. In some cases, however, the decision prob-
lem of optimally allocating computation is itself com-
putationally complex and hence the cost of deliberation
scheduling cannot be ignored. In this case, if the de-
liberation scheduling algorithm can also be cast as an
anytime algorithm, it is still possible in certain cases to
optimally allocate computational resources to both the
meta-level deliberation scheduling procedure and the
base-level decision procedures.

These basic methods have been applied to dynamic
planning problems in which the planning system has
to continually reevaluate its computational commit-
ments as new information becomes available [Boddy,
Forthcoming].

Conclusion

In this paper, we have considered two basic ideas re-
garding planning in uncertain domains. The first idea
concerns reasoning about how to combine information
from predictive and perceptive modules given expecta-
tions about the performance of each. You should not be
overly influenced by what you expect to see, but neither
should you always believe what you think you see. The
Kaiman filter provides an elegant tool for combining
observation and prediction.

The second idea concerns reasoning about the value
of information, including both perceptual and compu-
tational information sources. In time-critical applica-
tions in which the time and effort involved in gathering
and processing information are significant, one has to
make decisions regarding what to look at and what to
think about. Bayesian decision theory provides a ba-
sis for making such decisions, and Howard's value-of-
information theory provides insight into computing the
value of such information sources.

It should be noted that Bayesian methods do not
themselves provide the solutions to the problems we are
interested in. We view the invocation of Bayesian deci-
sion theory as a basis for posing problems, and the use
of Bayesian networks as a convenient means of analyz-
ing the complexity issues involved in applying Bayesian
decision theory. The Bayesian methods require that we
enumerate and assign values to a set of possible states
of affairs and that we quantify certain dependencies
involving state variables. In satisfying these require-
ments, the combinatorial issues and potential problems
involved in gathering the necessary statistics become
apparent. The underlying decision method is quite sim-
ple algorithmically, as it involves exhaustively evaluat-
ing a potentially large set of possible states of affairs.
The real contributions are concerned with the repre-
sentations used for characterizing the possible states of
affairs. In an important sense, Bayesian methods pro-
vide a discipline for systematically exploring represen-
tational issues.

394

References

[Bar-Shalom and Fortmann, 1988] Yaakov Bar-Shalom
and Thomas E. Fortmann. Tracking and Data Asso-
ciation. Academic Press, New York, 1988.

[Basye et ah, 1989] Kenneth Basye, Thomas Dean, and
Jeffrey Scott Vitter. Coping with uncertainty in map
learning. In Proceedings IJCAI 11, pages 663-668.
IJCAI, 1989.

[Boddy and Dean, 1989] Mark Boddy and Thomas
Dean. Solving time-dependent planning problems. In
Proceedings IJCAI 11, pages 979-984. IJCAI, 1989.

[Boddy, Forthcoming] Mark Boddy. A Framework for
Time-Dependent Planning. PhD thesis, Brown Uni-
versity, Providence,RI, Forthcoming.

[Brammer and Siffling, 1989] Karl Brammer and Ger-
hard Siffling. Kalman-Bucy Filters. Artech House,
Norwood, Massachusetts, 1989.

[Dean and Boddy, 1988a] Thomas Dean and Mark
Boddy. An analysis of time-dependent planning. In
Proceedings AAAI-88, pages 49-54. AAAI, 1988.

[Dean and Boddy, 1988b] Thomas Dean and Mark
Boddy. Reasoning about partially ordered events.
Artificial Intelligence, 36(3):375-399, 1988.

[Dean and Kanazawa, 1989] Thomas Dean and Keiji
Kanazawa. A model for reasoning about persistence
and causation. Computational Intelligence, 5(3):142-
150, 1989.

[Dean and McDermott, 1987] Thomas Dean
and Drew V. McDermott. Temporal data base man-
agement. Artificial Intelligence, 32(l):l-55, 1987.

[Dean and Siegle, 1990] Thomas Dean and Greg Siegle.
An approach to reasoning about continuous change
for applications in planning. In Proceedings AAAI-
90, pages 132-137. AAAI, 1990.

[Dean et al., 1990a] Thomas Dean, Kenneth Basye,
Robert Chekaluk, Seungseok Hyun, Moises Lejter,
and Margaret Randazza. Coping with uncertainty in
a control system for navigation and exploration. In
Proceedings AAAI-90, pages 1010-1015. AAAI, 1990.

[Dean et al., 1990b] Thomas Dean, Kenneth Basye,
and Moises Lejter. Planning and active perception.
In Proceedings of the DARPA Workshop on Innova-
tive Approaches to Planning, Scheduling, and Con-
trol. DARPA, 1990.

[Dean, 1988] Thomas Dean. An approach to reasoning
about the effects of actions for automated planning
systems. Annals of Operations Research, 12:147-167,
1988.

[Dean, 1989] Thomas Dean. Using temporal hierar-
chies to efficiently maintain large temporal databases.
Journal of the ACM, 36(4):687-718, 1989.

[Dean, 1990] Thomas Dean. Decision-theoretic control
of inference for time-critical applications. Technical
Report CS-90-44, Brown University Department of
Computer Science, 1990.

[Durrant-Whyte, 1988] Hugh F. Durrant-Whyte. Inte-
gration, Coordination and Control of Multi-Sensor

Robot Systems. Kluwer Academic Publishers,
Boston, Massachusetts, 1988.

[Hayahsi and Dean, 1988] Akira Hayahsi and Thomas
Dean. Locating a mobile robot using local observa-
tions and a global satellite map. In Proceedings of
Third IEEE International Symposium on Intelligent
Control, pages 135-140. IEEE, 1988.

[Horvitz et al., 1989] Eric J. Horvitz, Gregory F.
Cooper, and David E. Heckerman. Reflection and
action under scarce resources: Theoretical principles
and empirical study. In Proceedings IJCAI 11, pages
1121-1127. IJCAI, 1989.

[Horvitz, 1988] Eric J. Horvitz. Reasoning under vary-
ing and uncertain resource constraints. In Proceed-
ings AAAI-88, pages 111-116. AAAI, 1988.

[Howard, 1966] Ronald A. Howard. Information value
theory. IEEE Transactions on Systems Science and
Cybernetics, 2(l):22-26, 1966.

[Kuipers, 1978] Benjamin Kuipers. Modeling spatial
knowledge. Cognitive Science, 2:129-153, 1978.

[Lee, 1990] Jin Joo Lee. Localization with kalman fil-
tering. M.Sc. Thesis, Brown University, 1990.

[Leonard and Durrant-Whyte, 1989] John J. Leonard
and Hugh F. Durrant-Whyte. Active sensor
control for mobile robotics. Technical Report
OUEL-1756/89, Oxford University Robotics Re-
search Group, 1989.

[Russell and Wefald, 1989]
Stuart J. Russell and Eric H. Wefald. On optimal
game-tree search using rational meta-reasoning. In
Proceedings IJCAI 11, pages 334-340. IJCAI, 1989.

[Smith and Cheeseman, 1986] Randall Smith and Pe-
ter Cheeseman. On the representation and estima-
tion of spatial uncertainty. The International Journal
of Robotics Research, 5:56-68, 1986.

395

Extending the Partial Global Planning Framework for Cooperative
Distributed Problem Solving Network Control *

Keith Decker and Victor Lesser
Department of Computer and Information Science

University of Massachusetts
Amherst, MA 01002

Abstract
Generalized Partial Global Planning is an
attempt to extend Partial Global Planning
(PGP) to other domains and provide a frame-
work for new coordination algorithms. It is
based on the observation that the relation-
ships the PGP mechanism uses to measure
increased network coordination can be de-
fined for, and detected in, arbitrary cooper-
ating systems. This paper describes several
issues that will be important in extending
the PGP mechanism to heterogeneous, dy-
namic, and "real-time" agents, and in devel-
oping new mechanisms such as negotiation.
A scenario is described that illustrates these
issues and which can be used as a basis
for experimenting with solutions to them.
The approach taken emphasizes the detec-
tion and classification of goal relationships
between agents.

1 Introduction
The partial global planning (PGP) approach to dis-
tributed network control increased the coordination
of agents in the network by avoiding redundant ac-
tivities, shifting tasks to idle nodes, and providing
predictive results that reduced overall problem solv-
ing time by estimating the duration of tasks to allow
schedules to be built from interleaved plans [Durfee
and Lesser, 1987b]. Generic Partial Global Planning
tries to extend this approach by communicating more
abstract information (goals, capabilities) and detect-
ing the relationships that are needed by the par-
tial global planning mechanisms. In the same way
that contract nets [Davis and Smith, 1983] provide a
domain-independent task allocation mechanism, we
are proposing to build a generic network control sys-
tem that will provide support for: modeling agents'
capabilities, desires, and intentions; modeling the
relationships between these; and building network
controllers based on these models.

'This wqrk was supported by DARPA contract N00014-
89-J-1877, and partly by the Office of Naval Research under
a University Research Initiative grant, number N00014-86-
K-0764, NSF-CER contract DCR-8500332.

The global coherence problems we would like to
address occur in many systems, such as the Pilot's
Associate system [Smith and Broadwell, 1987], where
situations occur that cause potentially complex and
dynamically changing goal relationships to appear
in goals that are spread over several agents. Each
agent in the Pilot's Associate system has subgoals
that other agents must fulfill, and receives subgoals
from other agents that only it can fulfill.

For example, assume that we are in a tactical sit-
uation, so the tactical planner is in control (see Fig-
ure 1). It has two ordered subgoals: turn on the active
sensors (request to situation assessment), and get a
detailed route of the plane's movements during the
tactical maneuver (request to the mission planner).
Turning on active sensors causes a plane to become
a transmitter, and thus become easily detected (most
of the time the plane uses passive sensors). Since
this is dangerous, the situation assessment agent
will ask the pilot-vehicle interface (PVI) to ask for
pilot confirmation of the use of active sensors. The
pilot, upon seeing the request, asks the PVI to plot
the escape route of the plane on the screen in case
things go wrong. The PVI passes this goal to the
mission planner.

Meanwhile, the tactical planner has asked the mis-
sion planner to produce the detailed route for the
tactical maneuver. Which task does the mission
planner act on first? From a local view, it may per-
haps do the tactical planner request first because the
tactical planner goals are a high priority. But from
a global perspective, we see that unless the mission
planner plans the escape route, which is needed by
the pilot in order to authorize turning on the active
sensors, which is needed for the tactical planner to do
its job, the whole system goal of handling the tactical
situation is in jeopardy. Hence the mission planner
should do the escape route plan first.

To handle these interactions, we are developing
a set of generic relationships among goals that fall
into four general categories: domain relations, graph
relations, temporal relations, and non-computational
resource constraints. By communicating goals at dif-
ferent levels of abstraction we can reduce the amount
of communication required between agents by com-
municating detail only when necessary.

396

Turn on
active
sensors

Sii
As

'uation
sessment

Mission
Planner

Tactical
Planner

<3
Plan escape
route

Plan new
tactical route

Respond to
tactical
situations

PILOT

N
\j Show pilot

escape route

~Z_

Get pilot
confirmation

Pilot-Vehicle
Interface

Figure 1: Dynamic Situations in Pilot's Associate

Section 2 briefly reviews the existing PGP mech-
anisms and why they work. However, we want not
only to apply the PGP approach to other areas, but
also to extend it. In developing a complete approach
to distributed coordination, we found several other
areas in which we would like to extend the PGP
mechanisms. These issues include heterogeneous
agents (which may have different problem solving cri-
teria), dynamic agents (which have several different
strategies available for problem solving and several
different methods for accomplishing goals), real-time
agents (which have hard goal deadlines), and negoti-
ating agents (which are a consequence of the conflicts
inherent in any and all of the other issues). Section 3
discusses these issues in greater detail, defining them
and how they relate to the original PGP mechanisms.
A scenario is presented in Section 4 that illustrates
these issues in the Distributed Vehicle Monitoring
Testbed (DVMT). Finally, an initial approach is out-
lined in Section 5 that describes how we intend to
integrate the goal relationship mechanisms into the
DVMT and how to use them to achieve a more flexible
PGP mechanism.

2 Partial Global Planning
Partial global planning [Durfee and Lesser, 1987b,
Durfee and Lesser, 1989] was developed as a dis-
tributed control technique to insure coherent network
problem solving behavior. It is a flexible approach
to coordination that does not assume any particular
distribution of subproblems, expertise, or other re-
sources, but instead lets nodes coordinate in response
to the current situation. Each node can represent and
reason about the actions and interactions of groups of
nodes and how they affect local activities. These rep-
resentations are called partial global plans (PGPs)
because they specify how different parts of the net-

work plan to achieve more global goals. Each node
can maintain its own set of PGPs that it may use
independently and asynchronously to coordinate its
activities.

A PGP contains an objective, a plan-activity-map,
a solution-construction-graph and a status:

• The objective contains information about why
the PGP exists, including its eventual goal (the
larger solution being formed) and its importance
(a priority rating or reasons for pursuing it).

• The plan-activity-map represents what the
nodes are doing, including the major plan steps
the nodes are concurrently taking, their costs,
and expected results.

• The solution-construction-graph contains in-
formation about how the nodes should interact,
including specifications about what partial re-
sults to exchange and when to exchange them.

• The status contains bookkeeping information for
the PGP, including pointers to relevant informa-
tion received from other nodes and when that
information was received.

A PGP is a general structure for representing coordi-
nated activity in terms of goals, actions, interactions
and relationships.

When in operation, a node's PGPlanner scans its
current network model (a node's representation of
the goals, actions and plans of other nodes in the
system) to identify when several nodes are work-
ing on goals that are pieces of some larger network
goal (partial global goal). By combining information
from its own plans and those of other nodes, a PG-
Planner builds PGPs to achieve the partial global
goals. A PGPlanner forms a plan-activity-map from
the separate plans by interleaving the plans' ma-
jor steps using the predictions about when those

397

steps will take place. Thus, the plan-activity-map
represents concurrent node activities. To improve
coordination, a PGPlanner reorders the activities in
the plan-activity-map using expectations or predic-
tions about their costs, results, and utilities. Rather
than examining all possible orderings, a PGPlan-
ner uses a hill-climbing procedure to cheaply find a
better (though not always optimal) ordering. From
the reordered plan-activity-map, a PGPlanner modi-
fies the local plans to pursue their major plan steps
in a more coordinated fashion. A PGPlanner also
builds a solution-construction-graph that represents
the interactions between nodes. By examining the
plan-activity-map, a PGPlanner identifies when and
where partial results should be exchanged in order
for the nodes to integrate them into a complete so-
lution, and this information is represented in the
solution-construction-graph.

The PGPlanner, as it was used for coordination in
the distributed vehicle monitoring task, relied on the
fact that the level of abstraction at which the node
plans were communicated was a sequential sequence
of intermediate goals (times and locations in which to
extend a vehicle track). Each intermediate goal was
an abstraction of the processing and integration work
that each node planned for locally. These interme-
diate goals were ordered by the local node planners
based on several criteria [Durfee and Lesser, 1988],
but these relationships are not transmitted in the
node plans. There was no representation of temporal
relationships between intermediate goals. The PG-
Planner reorders node activities by hill-climbing in
the space of costs of the present ordering of activities.
The cost of an ordering is computed from relation-
ships like redundancy, reliability, predictiveness, and
independence of the activities.

Why does partial global planning work well in the
DVMT? It is because:

• It avoids redundant work among nodes by notic-
ing interactions among the different local plans.
Specifically, it notices when two node plans have
identical intermediate goals, i.e., when they are
working on the same time region. This occurs in
the DVMT because in the interests of reliability
nodes have overlapping sensors.

• It schedules the generation of partial results so
that they are transmitted to other nodes and
assist them at the correct time. To do this it
uses the estimates of the times that activities
will take and the inferred relation that if node
A estimates that it will take less time than node
B to complete an intermediate goal, and the
goals are spatially near, that node A can provide
predictive information to node B.

• It allocates excess tasks from overloaded nodes to
idle nodes. Node plans provide the information
needed to determine if a node is overburdened
or underutilized. A node is underutilized if it
is either idle or participates in only low-rated
PGPs. A node is overburdened if its estimated

completion time of a subgoal of goal G is much
later than the completion time of all the other
subgoals of G [Durfee and Lesser, 1989].

• It assumes that a goal is more likely to be correct
if it is compatible with goals at other nodes. In
the DVMT task, a goal represented a processing
task to ascertain whether a vehicle was moving
in a region r at time t. This goal could, in fact, be
wrong — based on noise or errorful sensor data
that was the basis for the preliminary task anal-
ysis that generated the goal. Nodes choose local
plans to work on based on the highly rated PGPs
they have received. Thus, if the intermediate
goals of a node become part of a PGP, then they
are worked on before other intermediate goals in
other local plans the node may have (even though
the node may have rated those local plans higher
in its local view).

To control how they exchange and reason about
their possibly different PGPs, nodes rely on a meta-
level organization that specifies the coordination roles
of each node. If organized one way, the nodes might
depend on a single coordinator to form and distribute
PGPs for the network, while if organized differently,
the nodes might individually form PGPs using what-
ever information they have locally. The partial global
planning framework lets nodes converge on common
PGPs in a stable environment (where plans do not
change because of new data, failed actions, or unex-
pected effects of their actions). When network, data,
and problem-solving characteristics change and com-
munication channels have delay and limited capac-
ity, nodes can locally respond to new situations, still
cooperating but with potentially less effectiveness be-
cause they have somewhat inconsistent PGPs [Durfee
and Lesser, 1987a]. The PGP framework does not,
however, deal with conflicts in non-computational
(physical) resources.

3 Issues in Extending the PGP
Mechanisms

3.1 Heterogeneous Agents

How can the PGP mechanisms be extended to han-
dle agents that have different local problem solving
criteria? This can arise in several ways:

• Some agents in the system are humans with
local (personal) decision criteria that cannot be
adequately or fully modeled.

• Some agents in the system have different exper-
tise, and hence different local decision criteria
(cooperative design problems [Lander and Lesser,
1989], pilot's associate-style problems [Smith and
Broadwell, 1987]). The PA scenario in Section 1
is a classic example of heterogeneous agents with
shared global goals and differing local expertise.

The PGP mechanism assumes a shared local and
global decision evaluation function (so that all agents,
given the same information and enough time, will ar-
rive at the same decisions). Conflict between agents

398

comes about because some agents lack data or have
out-of-date data. Agents do not have to exchange or
negotiate about decision criteria. While this well-
documented assumption simplified the PGP mecha-
nism, a homogeneous agent assumption (where the
local decision criteria are shared) is not always ap-
propriate. The PGP mechanism also assumes that
the agents will pursue one goal at a time — the goals
are ordered, and if an agent has excess capacity it
can fill it with tasks from lower-rated goals. Planning
for the simultaneous achievement of multiple goals is
not supported.

The modularity of the PGP mechanism (which sep-
arates the local agent's incremental planner [Durfee
and Lesser, 1988] from the PGPlanner) comes close to
permitting heterogeneous local decision criteria. The
only problem arises when the PGPlanner reorders
the node plan for another agent. The PGP plan eval-
uation function that was used to develop a global
schedule contains terms to avoid upsetting the order
of another agent's plan (independence measured the
distance of the current ordering from the original
node plan ordering, locally-predicted measured the
distance of the current ordering from regular time
order). In some domains a portion of this ordering
may be fixed. We have suggested marking temporal
goal relationships as hard, negotiable, and soft (see
Section 5.2). This allows the plan evaluator to rule
out certain impossible orderings (hard constraints),
and to avoid those that may cause replanning at the
target node (negotiable constraints).

3.2 Dynamic Agents

How can the mechanisms be extended to handle
agents that have a great deal of latitude in the meth-
ods that they use to solve problems? Each method
may have a different effect on the characteristics of
the solution, such as completion time or certainty.
These agents can appear in human systems and sys-
tems where agents use approximate processing tech-
niques [Decker et al., 1990b]. In the PA scenario
in Section 1, the mission planner might solve its
dilemma by using different algorithms to respond to
each plan request. A fast but inaccurate algorithm
may suffice to give the pilot an idea of a corridor of
escape, while a more complex and precise algorithm
can be given the bulk of the computational resources
with which to plan the near-term tactical maneuver.

Because only one method existed for accomplish-
ing a goal (and no set of different criteria existed for
determining what would be considered an acceptable
solution), the PGP mechanism could equivalently ex-
change goals and the plans to accomplish those goals,
at a single level of detail. The node plans that were
exchanged indicated the goal of an agent to produce
a track with certain characteristics (classes, sensed
times, and regions) and a plan consisting of the or-
dering of the sensed times at which the agent would
work (called i-goals), expected i-goal durations, and a
mapping of the i-goal start and end times with respect
to node problem solving time.

Two extensions need to be made. First, commu-
nicating goals at a single level of detail is inap-
propriate in more complex domains; certainly the
detection of the interactions of two goals ("partial
global goals") will not always be simple [Robinson
and Fickas, 1990]. Secondly, many different meth-
ods may exist for accomplishing a goal, each with
its own effects on duration, precision, and other goal
characteristics. This makes the existing PGP node
plan structure change rapidly when problem solving
methods are changing dynamically (as an agent re-
acts to the problem being solved). The node plan
structure can be modified to hold ranges as well as a
best current estimate for a value, but it is also likely
that agents will have to reason and perhaps negotiate
about predictability versus reliability issues as well
[Durfee and Lesser, 1987a]. The node plan structure
could also be expanded with contingency plans for
"routine expectation failures" [Dean, 1987] to allow
for predictability in the face of a changing environ-
ment.

3.3 Real-time Agents

What happens when time becomes an integral part
of local and shared goals? Dynamic agents will be
able to modify both task durations (perhaps trading
them off for other goal characteristics) and the goal
deadlines themselves. In the PA scenario in Section 1,
the mission planner's dilemma arises from the fact
that it is under real-time constraints — if there were
no impending deadlines for the pilot and tactical
planner, the mission planner would have little reason
to prefer one allocation of its computational resources
over another.

While the PGP mechanism estimated the times for
tasks or goals to be completed in order to spot idle
processing resources, it did not handle deadlines. I-
goals had expected durations; node-plans anchored
(mapped) the completion of the various i-goals to a
plan activity map. Experiments were conducted with
the local incremental planner that did indicate the
ability to plan to meet deadlines in a single agent
[Lesser et al, 1988, Decker et al, 1990b].

In extending the architecture to so-called "real-
time" problem-solving, agents may have goals with
hard deadlines, which add constraints to the con-
struction of a plan activity map. Furthermore, the ad-
dition of hard deadlines or other domain constraints
changes the nature of the interaction between a node's
local problem solving mechanism and the PGP mech-
anism — some of the local ordering will remain local
preference but some may be due to hard constraints,
as discussed in Section 3.1 above. From the classi-
cal perspective, real-time network control also means
scheduling both periodic and non-periodic tasks to
deadlines; the original PGP mechanism did not deal
with periodic tasks. The existing hill-climbing algo-
rithm for scheduling may no longer be appropriate.

Often in real time situations planning is reactive,
where the current situation mostly controls an agent's
actions (where the "current situation" may include

399

both local and global information), rather than re-
flective, where a sequence of actions is planned out
in some detail before execution. This is because the
agent must respond quickly, but more importantly,
the agent may be too uncertain of the outcomes of
its actions and of the changing world state to plan
too far into the future. However, an intelligent agent
will make use of periodic tasks, which occur in a
predictable fashion, and known non-periodic tasks,
to build a opportunistic planning framework that
can keep an agent from painting itself into a corner
with purely reactive planning techniques, or from
exhaustively planning uncertain future details with
reflective planning techniques.

Many new mechanisms are being put into place in
the DVMT to allow the control of real-time problem
solving (with hard deadlines); many of these mecha-
nisms should integrate easily with the ones described
here. For example, the original PGP mechanism
had to have its own time estimation routines. We
envision that the real-time mechanisms being devel-
oped for a single agent will be able to provide such
services to the new coordination mechanisms we are
also developing.

3.4 Negotiating Agents

A direct consequence of heterogeneous, dynamic, and
real-time agents is the need for negotiation to solve
conflicts. Even with a known global decision evalu-
ation function, conflicting decisions of equal global
value may have very different local value to the
agents. Often the character of an early partial solu-
tion will have an impact on what style of coordination
is needed. For example, if early partial results show
poor data and low beliefs, the coordination mecha-
nism may want to encourage redundant derivations
of results in areas shared by more than one agent, or
the parallel derivation of a result by two agents using
different algorithms. The PA scenario in Section 1
probably occurs in too short a time-frame to allow ne-
gotiation between the agents, but other PA scenarios
might profitably use negotiation techniques1.

The PGP mechanism uses a shared global plan
evaluation function that is parameterized. One ex-
tension is to allow the parameters (such as redun-
dancy and reliability) to vary during problem solving.
A negotiation facility could be developed to allow
agents to usefully alter the global (or perhaps only
semi-local — we are interested in agents that may
develop only a partial view of what other agents are
working on) decision criteria. Where the PGP mecha-
nisms exchanged all local information, our extensions
would allow for a multi-stage process [Kuwabara
and Lesser, 1989] where agents would communicate
only the information believed relevant to the issue at

1For example, a sensor may overheat and be shut down
by the system status module, even though it is a projected
resource requirement for some tactical situation. The
tactical planner and system status may negotiate over the
amount of time that the damaged sensor can be used if the
situation arises.

hand. Agents could ask for more contextual informa-
tion when it is needed to resolve a conflict between
agents. Agents would not automatically acquire in-
formation from other agents performing non-related
problem solving activities.

In order to examine all of the above issues more
closely, a scenario is described below which exhibits
the issues mentioned above.

4 Scenario
The scenario is based on the basic task of the DVMT:
to track vehicles moving through an area via their
acoustic signatures. To describe the scenario we will
describe the tasks involved, the agents who will carry
out those tasks, the environment within which they
are acting, and the desired interactions.

The "vehicles" in the scenario are various aquatic
creatures and waterfowl. One of the tasks involves
protecting fish from fish-eating ducks. This includes
detecting both fish and ducks and notifying the fish of
potential duck attacks in time for the fish to escape.
Another task involves simply tracking any pigeons in
the area and displaying the tracks accurate to within
certain spatial and temporal guidelines. These tasks
are specified by "system goals" (see Section 5.1).

The scenario demonstrates the issues described
earlier in Section 3. Fish-protectors and pigeon-
trackers are heterogeneous agents that have differ-
ent utilities for the same data (see Section 5.1.1). The
hard time deadlines will allow us to experiment with
real-time performance and use approximate process-
ing methods to give each dynamic agent a choice of
different problem solving methods to choose from.
The environmental data for the scenario will give
the agents just cause for altering their plans during
problem solving. Finally, the distribution and timing
of the scenario provides several opportunities for the
agents to negotiate. These issues are revisited in
Section 4.4 after the scenario itself.

4.1 The Agents

There are 4 standard DVMT tracking agents with
identical domain knowledge. Agents 1 and 3 are fish-
protectors, and agents 2 and 4 are pigeon-trackers.
Agent 3 has a faulty sensor, which will produce a large
amount of noisy data. The four agents are shown
pictorially in Figure 2. We will omit the definition
of the agent's sensors and their precise coordinates.
Also note that we can expand the scenario to more
agents by tiling pigeon- and fish-agents in a natural
way.

4.2 The Environment

We will describe the environment by describing the
patterns and vehicle tracks that are given to the
environment simulator. These tracks can be seen
visually in Figure 3.

At times 1-10 a fish Fx travels through the area
seen only by agent 1. The fish is initially meandering.

At times 1-10 a pigeon Pi travels through the area
of agent 2. It begins in the non-shared area and

400

<^> ■&>

■ AgM-4 ^ ^

^ ^ 4 4

"^ «4 %<& %•& ^^ "^4* :^"

■£> <3 ■ ^.v^ ^ *> *f s£> ^v ^ S&
^ ^

4*Q<i&

■>&■' §>&■' Ci£>' l^^1

•^..-as <?.-& 4..^ ^. Ss .%s'

4 ^ 4
-f 4 4 4
' 2 4 4

<$> <*&■

v§!> >i&

IP Pigeon Tracking Agent

JJ?" Fish Protection Agent

Figure 2: Four DVMT Agents: Two fish-protectors
and two pigeon-trackers

crosses into the area shared by agents 2 and 3 at time
6. The pigeon is in a meandering pattern.

At times 1-10 a duck D\ travels through the area of
agent 3. It begins in the non shared area and crosses
into the area shared by agents 3 and 4 at time 3, and
into the area shared by agents 1 and 4 at time 9. The
duck is meandering.

At times 4-10 a duck Di travels through the areas
of agents 4 and 1. It begins in agent 4's area only from
times 4—5, then in the shared area of agent 4 and 1
at time 6 and 7, and then into agent l's non-shared
area. Duck £>2 is in an attack pattern with fish F\ as
the potential victim.

At times 6—10 a pigeon P% travels through the area
of agent 1 and 4. It remains in the area covered by
agent 1.

\gent 4

JD2

n t Fi

\ (T6 \~1

Agent 1 ?{

Di

Agent 3 s ttsssi Pigeon
■*****« Duck
****** Fish AgerU 2

Figure 3: The CDPS scenario environment

The actual grammar specifying the characteristics
of these vehicles has been omitted. Several other
things have been left deliberately unspecified, most
notably the mapping from "real-world time" to proces-
sor time (so that we can experiment with how tightly
pressed for time the agents are).

4.3 The Intended Interactions

There are four major interactions that are brought
about by this environment. These interactions also

show up clearly in the goal relationship example in
Figure 4, page 10.

1. Agent 4 can help agent 3 disambiguate the data
from its faulty sensor by tracking the duck D\.

2. Agent 4 can notify agent 1 about the impending
duck Z>2- It might provide other predictive data,
for example, it might try to track the duck pre-
cisely even though it is a pigeon tracking agent.
This can be accomplished through negotiation
between agents 1, 3, and 4.

3. Agent 2 can help agent 3 by taking care of the
pigeon data in the shared area (thus reducing
the load on agent 3 and its faulty sensor).

4. Agent 1 can notify agents 4 and 2 about the im-
pending pigeon, providing predictive information
(but note that agent 1 will be under severe time
pressure).

4.4 Revisiting the important issues

The scenario above expresses the issues that were
listed earlier:

Heterogeneous Agents: Having two different sys-
tem goals cause the agents' local views of "what
is important to do next" to change. Given the
same data, Agent 1 and Agent 4 would treat it
differently, in isolation, because they have differ-
ent local decision functions (because Agent 1 is
a fish-protector and Agent 4 is a pigeon-tracker).
If it were not for the communication of the goals
of Agent 1 to track ducks, Agent 4 might pay
little attention to the duck it detects. The atten-
tion and effort that Agent 4 puts into the duck
must come from some pre-specified or dynam-
ically constructed global decision function that
describes how Agent 4 should cooperate with
Agent 1. Hence the scenario forces us to deal
with the issues of different local views, of ex-
changing views, and of dynamically constructing
global views. See also Negotiating Agents below.

Dynamic Agents: The agents have a set of adapt-
able methods for reaching their goals, each of
which have different characteristics. Agent 3
will be using methods very different from those
used by agent 1, even though both agents have
the same system goal. An agent such as agent
4 might change the processing method on some
data (say duck D{) when new data (duck D2)
appears. The overloaded Agent 1 is also likely
to switch strategies as it becomes overloaded.
Hence the scenario allows us the opportunity to
use agents with various problem solving methods
and agents that change strategies during prob-
lem solving (with the commensurate difficulties
in coordination).

Negotiating Agents: Agents 1 and 3, for example,
may have different initial ideas of what agent 4
should be processing (given agent 4 has nothing
to do on its own), and certainly different from
that of agent 4 itself. Agent 4 must develop some

401

partially global view in relation to Agents 1 and
3 and all of their local goals. Agents 2 and 3
also have data in their overlapping areas. The
scenario presents the opportunity to dynamically
modify the global view of coordination, changing
parameters to fit the situations that develop be-
tween Agents 4 and 3, then 4, 1 and 3, and finally
2 and 3. The scenario also presents conflicts be-
tween local views and the developed global views
— see Real-time, below.

Real-time: Both of the system goals require solu-
tions by a deadline. Agent 1 must forego helping
agent 4 when pigeon P2 appears — it is too busy.
If a pigeon pops up in agent 2's sensed region,
it may not be able to keep its commitments to
agents 1 and 3. Thus the scenario provides goals
with deadlines and conflicts between local and
global views.

5 Approach

The approach we will take is a refinement and exten-
sion of that used in the PGP mechanism. The basic
mechanism remains the exchange of information that
allows each agent to independently affirm (in the case
of anticipated domain relationships or "settled ques-
tions" tGasser et al., 1989]) or discover (in the case
of unanticipated "open system" interactions [Hewitt,
1986]) its relationship to other agents in the system.

Rather than exchange node plans, we exchange
agent goals of various types and levels of detail. By
detecting the relationships between its own goals
and the goals of other agents it may interact with,
an agent may locally schedule actions while taking
into account non-local goals. When domain problem
solving requires multi-agent interactions, node plans
may still be exchanged, as well as agent capabilities,
which describe an agent's potential long-term goals.
By using hierarchical goal structures and not always
exchanging plans we can reduce the amount of com-
munication required and focus what communication
does take place to reduce the number of global views
developed under the PGP mechanism — we can pro-
duce (partially global) schedules rather than partial
(global schedules).

5.1 Goals

In extending the PGP mechanism, a major difficulty
we encounter is in how goals should be specified for
the agents. Most AI programs represent goals as
either satisfiable logical formulae or ad hoc symbols.
How can agents understand each others' goals, and
to what extent do they need to?

We require the ability to recognize goal relation-
ships, and the ability to recognize to what degree a
goal has been satisfied. These two abilities are suffi-
cient for "scheduling" coordination (reordering tasks
locally), but not for multi-agent domain problem solv-
ing (where we may exchange or share tasks between
nodes). For the latter, goals (and plans) must be rec-
ognizable (able to be acted upon) by the underlying

agent problem solving structure, or the coordination
mechanism must be able to translate them as such.

In the DVMT the agents do have a shared language
for domain goals, and a language for control goals is
under development. The new coordination mecha-
nism, in order to remain aloof from the specifics of
the DVMT, should not take too much advantage of
the shared language. Rather, it should rely on the
detection of goal relationships and degree of satisfia-
bility directly, where these will be easy to implement
because of the existence of a shared goal language.
The highest goal specification for an agent is called a
system goal.

5.LI System Goals
A system goal is a high-level goal describing the de-

sired solution characteristics for an agents' problem
solution. It includes:

Completeness: What parts of a full solution are the
most important? To what degree does a partial
solution fulfill a goal? In the DVMT, complete-
ness specifies the level at which a hypothesis is
a solution, its length, and its event classes.

Precision: How specific must be the data contained
in the solution? DVMT hypotheses have a well-
defined precision measure.

Certainty: How certain must an agent be that the
hypothesis it is putting forth is a solution? Since
DVMT belief uses a 4-tuple, this is a bit more
complex than it sounds.

Deadline: By what time must the solution be pro-
duced?

These desired solution characteristics must be con-
sidered along with their interactions — to allow
agents to trade off characteristics in a controllable
manner. For example, is a solution with twice the
precision and half the certainty as good as one half as
precise and twice as certain? A simple way to specify
this is to use an evaluation function to rate the solu-
tion, but this may not allow explicit reasoning about
tradeoffs between solution characteristics.

5.2 Goal Relationships

Four classes of goal relationships have been iden-
tified that will be useful; a small subset of these
relationships have been used to improve the schedul-
ing of tasks in a single agent blackboard system
where tasks can be executed in parallel [Decker et
al., 1990a]:

Domain Relations: This set of relations is generic
in that they apply to multiple domains, and do-
main dependent in the sense that they can be
evaluated only with respect to a particular do-
main — inhibits, cancels, constrains, predicts,
causes, enables, and supergoal/subgoal (from
which many useful graph relations can be com-
puted). These relations provide task ordering
constraints, represented by temporal relations
on the goals (see below).

402

Graph Relations: Some generic goal relations can
be derived from the supergoal/subgoal graphi-
cal structure of goals and subgoals, for exam-
ple, overlaps, necessary, sufficient, extends, sub-
sumes, competes. The competes relation is used
to produce task invalidation constraints.

Temporal Relations: These depend on the timing
of goals — their start and finish times, estimates
of these, and real and estimated durations. From
Allen [Allen, 1984], these include before, equal,
meets, overlaps, during, starts, finishes, and
their inverses.

Non-computational Resource Constraints: A fi-
nal type of relation is the use of physical, non-
computational resources. This is the major rela-
tion in some domains, such as factory scheduling
and office automation [Sadeh and Fox, 1989,
Martial, 1989].

5.2.1 Domain Dependent Relations
This set of relations are generic, in that they apply

to multiple domains, but domain dependent in that
they can be evaluated only with respect to a particular
domain.

supergoal/subgoal: Goal B is a subgoal of goal A if
B is required for some method of achieving A.

inhibits: Goal A inhibits goal B if when goal A is ac-
complished goal B cannot be accomplished. This
definition ignores the time component. A might
either permanently or temporarily inhibit B.

cancels: Goal A cancels B if when goal A is achieved,
goal B is no longer achieved. Notice that this is
subtly different from A inhibiting B; Inhibition
implies that B cannot be accomplished, canceling
implies B is no longer achieved, but not that it
cannot be achieved.
If B cancels B then B is a recurring goal, one that
undoes itself. Of course any set of goals may be
placed in a recurring relationship if they cancel
each other in sequence.

constrains: Goal A constrains goal B if the two goals
are related somehow at the domain level by the
need to exchange information from A to B in or-
der to solve B. This may or may not be a time
constraint. This is necessary information. If A
constrains B then A [>,m,o,oi,d,di] B (A is be-
fore, meets, overlaps, is overlapped by, is during,
or surrounds B [Allen, 1984]). Note that the
"constraint relation" does not tell you what the
constraint is, but that one exists. It means that
the two subgoals are interacting subproblems.

predicts: Goal Apredicts goal B if information about
the solution of A is useful for the solution of B but
not necessary. This could be information used to
reduce uncertainty, or to guide search.

causes: Goal A causes B if the completion of goal
A physically entails the occurrence/completion of
B.

enables: Goal A enables B if the completion of goal A
must occur before goal B can be satisfied. Obvi-
ously this implies a strong temporal constraint.

5.2.2 Graph Relations
The generic graph relations can be derived simply

from the subgoal/supergoal structure of the goal hier-
archy, without using any internal information about
a goal or any domain-dependent information. We can
view the goal hierarchy as an acyclic AND/OR graph.
Two nodes are equivalent if they have equivalent sub-
goals, or consist of identical primitive actions. We
may also want to assume algorithmically that equiv-
alent nodes are only represented once in the goal tree
(which will then be a goal acyclic graph).

Just because a goal relation can be derived from a
graph does not mean that it is trivial; when adding
a new goal node to the graph a great deal of com-
putation may need to go on to see how that goal
really relates to the others. Part of this computation
comes in recognizing repeated goals (that occur mul-
tiple times in the graph), so that you cannot blindly
expand a goal into a set of subgoals.

overlap: Goal A overlaps B if there exists a goal
G such that A is a supergoal of G and B is a
supergoal of G.

necessary: Goal B is necessary for goal A if goal A
cannot be accomplished without accomplishing
goal B (B is an AND subgoal in an AND/OR tree).

sufficient: Goal B is sufficient for goal A if accom-
plishing goal B accomplishes goal A (goal B is
either an OR subgoal or A, or is sufficient for an
OR subgoal of A).

extends: Goal A extends B if there exists a supergoal
G such that A and B are both necessary for G.

subsume: Goal A subsumes B if B is a subgoal of A
or if B is obviated by A. B is obviated by A if A is
sufficient for the parent of B.

competing: A competes with B if A and B are n-
competing for some n. Inductively, A and B
are O-competing if A and B are in different dis-
juncts for each of their parents. A and B are
n-competing if every pair of parents of A and B
are i-competing for 0 < i < n — 1. This captures
the intuitive idea that two goals compete if there
is no possible way that both goals must be ful-
filled. This does not mean that they cannot both
be fulfilled, or that they interfere with one an-
other in any way. The concept is graph-theoretic,
not domain dependent.

5.2.3 Time Based Relations
A third set of relations are not strictly domain

dependent, but do depend on the timing of goals.
There are several possible features of goals that are
applicable to timing: actual start and finish times,
estimated start and finish, deadlines, and (estimated,
actual) lengths. Any one of these numbers alone will
allow at least some limitation of the possible temporal
relations between two goals. Furthermore, temporal

403

relations may be preferences (soft constraints) as
well as absolute relations. We envision three levels
of temporal constraints:

Hard: Hard constraints cannot be violated. Inability
to satisfy hard constraints means that the prob-
lem is overconstrained. Overconstrained prob-
lems may result in negotiation, for example, in
real-time problems where a node may have an
alternate solution path that takes less time but
is also less certain (approximate processing).

Negotiable: Negotiable constraints are preferences
that a local node does not want violated need-
lessly. Inability to satisfy a negotiable constraint
means that the constraining node must be part
of the decision to modify the constraint.

Soft: Soft constraints are preferences that a node
has but do not require negotiation in order to
violate. For example, local orderings of interme-
diate goals in the DVMT are soft constraints.

Temporal relations have been studied before, and
very precise definitions have been put forward by
James Allen [Allen, 1984]. We give the graphical
suggestion of a definition as presented by Allen in
lieu of the formal definitions to be found in Allen's
papers. Remember that each relation has an inverse
and that in the presence of limited information a set
of these relations may hold between any two timed
goals:
Y\afr\T-a- x x xx 56789 ueiure. nUhyyyy

temporally equal: 123zzxx89
123yyyy89

meets: 12xzxi7890
1234562/ yyy

overlaps: 123xxxxS90
12U5yyyyO

A-i-iw-nff' 123zzzz890

starts:

12347/1/7890

123xzz789
VZiyyyyyy

finishes: ff—

5.2.4 Using Goals
The new DVMT control architecture [Decker et al.,

1990b] uses the specification of the system goal(s) to
choose a strategy for satisfying the goal. The strategy
posts a set of goals whose specification in turn allows
the choice of an appropriate substrategy, etc. At some
point a goal can trigger the creation of a focus (the
lowest leaf in an expanded control plan) which spec-
ifies a set of low-level control parameters and rating
heuristics. These focus parameters and heuristics
are associated with a channel in the low-level domain
problem solving system, existing concurrently with
other active foci and their associated channels.

It is this hierarchical set of control goals, starting
with the system goal, that are communicated in our
approach. Goal relationships detected between local
goals and the goals received from other agents allow
us to coordinate scheduling. Figure 4 shows all
four agents in the scenario, and all of their control

goals. Note that not all of these goals are active
simultaneously, in particular, the identify goal for
a hypothetical vehicle always comes strictly before
the tracking goal for the newly identified vehicle.
The example in Section 5.4 shows how Figure 4 is
constructed for Agents 1 and 4.

5.3 Coordination Rules

The last item that we need to specify in our approach
is the PGP algorithm itself. Initially both a PGP-like
scheduling algorithm and the organizational infor-
mation needed to use it will be encoded as a special
set of control knowledge sources that handle when to
send and receive goals and hypotheses and how to
modify the local schedule given this information.

Some of these rules are generic (like "don't do
redundant work") but as in the original PGP mecha-
nism, they must be operationalized for the particular
domain. Each rule should also be considered a "tem-
porarily settled question," subject to being reopened
in the domain setting [Gasser et al, 1989].

The PGP algorithm orders intermediate goals ac-
cording to their cost as computed from the cross-
product of a vector of computable factors (such as
redundancy, reliability, etc.) and global cooperation
parameters that give a weight to the corresponding
term in the calculation. These factors were the fol-
lowing:

Redundancy: The number of nodes that can per-
form this goal. The GPGP scheduler can use the
equality and subgoal relationships to examine
redundancy.

Reliability: The number of nodes that cannot per-
form this goal. This is the inverse of redundancy.

Duration: The duration of the goal. This measure
can be used by the GPGP scheduler as well.

Predictiveness: Any goal with a duration of x can
provide predictive information for a goal of dura-
tion y if x < y. The predictiveness measure was
then the minimum activity distance (minimum
number of sensed times) between the two goals.
GPGP considers the predictiveness relation to be
a domain-dependent relation.

Locally-predicted: The minimum activity distance
between a goal and any goal to be executed be-
fore it. The effect of this measure was to keep
a node from jumping around between times in
constructing a track; extending an existing par-
tial solution was preferred. The GPGP scheduler
can use the hierarchical construction of the goal
hierarchy to avoid reordering the steps in con-
structing a track.

Independence: how many goals occur before a given
goal in the initial local node plan. This measure
was intended to keep the PGPlanner from stray-
ing too far from the original local node plan
ordering. The independence measure for each
goal is constant, because it depends only on the
initial local node plan, not on the position of the

404

Protect fish 1

find new identify track
vehicles 1 vehicle Fl fish Fl

Agent 1

Track Pigeons 2

find new
vehicles 3'

Agent 3 Agent 4

Figure 4: Goal overlaps relationships (dotted lines) between agents in the CDPS scenario

goal in the re-ordered plan. Goals later in the
initial ordering have higher independence mea-
sures. Because the PGP algorithm used a swap-
ping procedure to create a new ordering from the
old, the higher independence measure made later
goals harder to swap. The GPGP scheduler re-
ceives local ordering preferences, and so it knows
what local orderings were necessary, which may
be negotiated, and which are only preferences.
Thus this relationship is not directly needed.

Diversity: The diversity value of a goal is 0 if it
does not derive redundant information, or if all
goals following it derive redundant information.
Otherwise, the diversity of a goal is measured by
the minimum activity distance between the goal
and the later non-redundant goals. The effect
is to plan to do non-redundant work before re-
dundant work, and a GPGP scheduler can detect
redundancy through goal relationships.

General coordination rules:

1. Broadcast system goals (establish long term re-
lationships among nodes).

2. Broadcast capabilities (establish basic node ca-
pabilities).

3. Send any goal that overlaps another agent's goal
to that agent (notify nodes of potential interac-
tions based on perceived roles).

4. Send hyps that satisfy (partially satisfy?) an-
other agent's goals to that agent.

PGP-like rules:

1. Avoid useless redundancy with other nodes.

2. Build reliable solutions. It is OK to be redundant
in order to increase certainty in a solution. Two
nodes with the same system goal might both
analyze the data in an overlapping area, whereas
agents with different system goals might let one
or the other handle it. The PGP mechanism
never really did this.

3. Minimize durations. In the case where more
than one agent has an equivalent goal, then let
the one with the shorter predicted duration do it.

4. Provide predictive information to other nodes.

5. Perform regular problem solving (follow the local
control plan).

The following PGP relations are handled by the
local control plan: keep local order if possible (in-
dependence), extend tracks in time order (locally-
predicted), avoid intra-node redundancy (diversity).
These deal with reordering local plans — but we are
not constructing plans, but merely exchanging goals.

Finally, there is still the question of how to inte-
grate the goals of other agents into an agent's local
problem solving; when to accept goals that will cause
work at the local node, and when to split goals to
allow them to be shared between agents. We are
pursuing these questions using the PGP mechanisms
as an initial starting point.

405

5.4 Example 1

These coordination rules will only go part way toward
our goals, but will serve for an illustrative example.
This brief example shows Agent 4 providing predic-
tive information to Agent 1 (a track hypothesis for
duck D2).

The four agents have the same domain knowledge
and the same meta-control knowledge. This meta-
control knowledge consists of two basic strategies: a
goal-directed strategy and a clustering strategy. The
goal-directed strategy consists of substrategies to find
new vehicles, identify vehicles, track a vehicle, and
'ignore' a vehicle. The clustering strategy consists
of substrategies for finding new areas, clustering
data, tracking, and analyzing the tracks. All of the
substrategies have one or more foci that implement
them, and these foci may differ by the amount of time
they take and the precision or certainty of their result.
For example, find-new-vehicles can use a threshold
on signal strength to ignore weakly sensed vehicles,
identify-vehicle can do more or less work in making
an identification, and so on.

First all agents broadcast their system goals and
capabilities to the other agents. Each agent will
begin in the default (goal-directed) strategy to satisfy
its system goal, and will post a find-new-vehicles
goal. Since find-new-vehicles can potentially output
any type of vehicle, this goal overlaps the system
goals of the other agents (indicating the potential
for coordinated scheduling) and is broadcast to them.
The agents also recognize that the find-new-vehicles
goals overlap in the shared sensed areas. If this goal
were made up of smaller ones, then the smaller ones
would be exchanged, but in this case this goal is the
lowest level. Actually reasoning about and splitting
goals that overlap like this is an area for future work.

For this example we will just look at the interaction
of Agents 1 and 4.

Agent 1 soon detects a vehicle (F\) and starts a new
goal to identify it. While Agent 1 has not identified
the vehicle yet, it does have enough information to
predict that the vehicle is not a pigeon (the fish
signals do not overlap very much with bird sounds)
and so it does not transmit the identification goal to
Agent 4 (it could change its mind about this later).
The find-new-vehicles goal is not retransmitted and
it remains active.

When Agent 1 identifies the fish F\, it begins track-
ing it. The tracking goal is not transmitted.

Later (time 4), while Agent 1 is tracking the fish,
Agent 4 detects a new vehicle (D2). When Agent 4
starts up a new goal to identify this vehicle, it sends
the goal to Agent 1, for the goal is potentially a duck,
which Agent 1 is interested in. At this point Agent 1
can only believe that Agent 4 has detected something
that may be a duck, and it knows where it is and how
strongly Agent 4 believes that it is a duck.

While Agent 4 is identifying the duck, the duck
crosses into the shared sensor area of agents 1 and
4. Agent 1 detects the data as a new vehicle, and
creates a goal to identify it. This goal is transmitted

to Agent 4, since it could be a pigeon. Agent 4 realizes
that Agent l's identification goal overlaps its own as
it specifies an area coincident with the identification
track being developed at Agent 4. Thus redundant
work is occurring. In this case having both agents
work on the data should increase certainty in their
conclusions, because neither agent is using a prov-
ably dominated algorithm (in fact, the algorithms
are the same, the data arise from independent sen-
sor readings). Thus the identification goals become
equivalent, and this recognition is communicated to
Agent 1. Agent 4 will complete its identification
before Agent 1, because it started earlier.

When Agent 4 completes its identification, the re-
sulting hypothesis (that there is a duck on a track
extending from times 4 - 7) is transmitted to Agent
1. This hypothesis satisfies Agent l's identification
goal.

6 Future Work

We are currently building the initial implementation
of the approach above, including the scenario. When
this is complete we can provide details of our imple-
mentation, and we will have a testbed with which
to experiment with other coordination algorithms,
with negotiation algorithms, and with the interac-
tion of our coordination mechanisms and the new
hard real-time problem solving mechanisms we are
also building.

References

[Allen, 1984] James F. Allen. Towards a general
theory of action and time. Artificial Intelligence,
23:123-154, 1984.

[Davis and Smith, 1983] R. Davis and R. G. Smith.
Negotiation as a metaphor for distributed prob-
lem solving. Artificial Intelligence, 20(1):63-109,
January 1983.

[Dean, 1987] Thomas Dean. Planning, execution,
and control. In Proceedings of the DARPA
Knowledge-based Planning Workshop, December
1987.

[Decker etal, 1990a] Keith S. Decker, Alan J. Gar-
vey, Marty A. Humphrey, and Victor R. Lesser. Ef-
fects of parallelism on blackboard system schedul-
ing. In Proceedings of the Fourth Annual AAAI
Workshop on Blackboard Systems, Boston, August
1990.

[Decker et al, 1990b] Keith S. Decker, Victor R.
Lesser, and Robert C. Whitehair. Extending a
blackboard architecture for approximate process-
ing. The Journal of Real-Time Systems, 2(l/2):47-
79, 1990. Also COINS TR-89-115.

[Durfee and Lesser, 1987a] Edmund H. Durfee and
Victor R. Lesser. Planning coordinated actions in
dynamic domains. In Proceedings of the DARPA
Knowledge-Based Planning Workshop, pages 18.1-
18.10, December 1987. Also COINS-TR-87-130.

406

[Durfee and Lesser, 1987b] Edmund H. Durfee and
"Victor R. Lesser. Using partial global plans to coor-
dinate distributed problem solvers. In Proceedings
of the Tenth International Joint Conference on Ar-
tificial Intelligence, August 1987.

[Durfee and Lesser, 1988] Edmund H. Durfee and
Victor R. Lesser. Incremental planning to con-
trol a time-constrained, blackboard-based problem
solver. IEEE Transactions on Aerospace and Elec-
tronic Systems, 24(5), September 1988.

[Durfee and Lesser, 1989] Edmund H. Durfee and
Victor R. Lesser. Negotiating task decomposition
and allocation using partial global planning. In
M. N. Huhns and L. Gasser, editors, Distributed
Artificial Intelligence, Vol. II. Pitman Publishing
Ltd., 1989.

[Gasser et al., 1989] Les Gasser, N. F. Rouquette,
R. W. Hill, and J. Lieb. Representing and using or-
ganizational knowledge in distributed AI systems.
In M. N. Huhns and L. Gasser, editors, Distributed
Artificial Intelligence, Vol. II. Pitman Publishing
Ltd., 1989.

[Hewitt, 1986] Carl Hewitt. Offices are open sys-
tems. ACM Transactions on Office Information
Systems, 4(3):271-287, July 1986.

[Kuwabara and Lesser, 1989] K. Kuwabara and V. R.
Lesser. Extended protocol for multi-stage negoti-
ation. In Proceedings of the Ninth Workshop on
Distributed AI, September 1989.

[Lander and Lesser, 1989] Susan Lander and Vic-
tor R. Lesser. A framework for the integration
of cooperative knowledge-based systems. In Pro-
ceedings of the 4th IEEE International Symposium
on Intelligent Control, pages 472-477, September
1989.

[Lesser et al., 1988] Victor R. Lesser, Jasmina
Pavlin, and Edmund Durfee. Approximate pro-
cessing in real-time problem solving. AI Magazine,
9(1):49-61, Spring 1988.

[Martial, 1989] Frank V. Martial. Multiagent plan
relationships. In Proceedings of the Ninth Work-
shop on Distributed AI, September 1989.

[Robinson and Fickas, 1990] William N. Robinson
and Stephen Fickas. Negotiation freedoms for re-
quirements engineering. Technical Report CIS-TR-
90-04, Department of Computer and Information
Science, University of Oregon, April 1990.

[Sadeh and Fox, 1989] N. Sadeh and M. S. Fox.
Preference propagation in temporal/capacity con-
straint graphs. Technical report CMU-RI-TR-89-
2, Robotics Institute, Carnegie Mellon University,
January 1989.

[Smith and Broadwell, 1987] David Smith and Mar-
tin Broadwell. Plan coordination in support of
expert systems integration. In Proceedings of
the DARPA Knowledge-Based Planning Workshop,
pages 12.1-12.6, December 1987.

407

Integrated Agent Architectures:
Benchmark Tasks and Evaluation Metrics

Mark E. Drummond
Sterling Federal Systems

NASA Ames Research Center
MS: 244-17, Moffett Field, CA 94035

Leslie Pack Kaelbling
Teleos Research

576 Middlefield Road
Palo Alto, CA 94301

1 Introduction

An integrated agent architecture is a theory or
paradigm by which one may design and program in-
telligent agents. An intelligent agent is a collection of
sensors, computers, and effectors, structured in such
a way that the sensors can measure conditions in the
world, the computers can process the sensor informa-
tion, and the effectors can take action in the world.
Changes in the world realized by the effectors close
the loop to the agent's sensors, necessitating further
sensing, computation, and action by the agent.

In recent years there has been a proliferation of pro-
posals in the AI literature for integrated-agent archi-
tectures. Each architecture offers an approach to the
general problem of constructing an integrated agent.
Unfortunately, the ways in which one architecture
might be considered better than another are not al-
ways clear.

For instance, Nilsson's (1988) action nets provide
a means for structuring actions in terms of the indi-
vidual goals they are to achieve in the environment.
Rosenschein and Kaelbling's (1986, 1989) situated au-
tomata theory provides a new view on the role of logic,
complexity, and information in situated agents, and
has resulted in a new generation of software tools for
building complex systems (Kaelbling, 1987a,b, 1988).
Schoppers (1987) has suggested an approach to plan
generation and execution based on the idea of uni-
versal plans. Georgeff and Lansky's (1985) Procedural
Reasoning System provides a graphical programming
environment based on the theory of augmented tran-
sition networks. Plan nets (Drummond, 1989; Drum-
mond k Bresina, 1990) act as generators of possible
behaviors and help explain the relationship between
planned and unplanned action. Recent work on the
SOAR architecture has studied the problems that arise
when an integrated learning and problem-solving sys-
tem interacts with an external environment (Laird &
Rosenbloom, 1990).

But so what? What can systems based on these
architectures really do? What can one do that another
cannot?

'This work was supported by the Defense Advanced Re-
search Projects Agency through NASA-Ames under con-
tract NAS2-13229.

There has been a growing realization that many of
the positive and negative aspects of an architecture
become apparent only when experimental evaluation
is performed and that to progress as a discipline, we
must develop rigorous experimental methods. In addi-
tion to the intrinsic intellectual interest of experimen-
tation, rigorous performance evaluation of systems is
also a crucial practical concern to our research spon-
sors. DARPA, NASA, and AFOSR (among others) are
all actively searching for better ways of experimentally
evaluating alternative approaches to building intelli-
gent agents.

One tool for experimental evaluation involves test-
ing systems on benchmark tasks in order to assess
their relative performance. As part of a joint DARPA-
and NASA-funded project, NASA-Ames and Teleos
Research are carrying out a research effort to estab-
lish a set of benchmark tasks and evaluation metrics
by which the performance of agent architectures may
be determined. This paper is a short report on the
project's general aims and proposed methods. Possible
points of debate are addressed by looking back over the
transcripts of the Benchmarks and Metrics Workshop,
held at NASA-Ames in June, 1990 (referred to here-
after as the BMW-I). This paper does not reproduce
any statements from the BMW-I in verbatim form,
but instead attempts to communicate the essence of
the participants' comments.

2 Roles of Benchmark Tasks in the
Research Community

Consider the following representative definition of
"benchmark."

Benchmark n - surveyor's reference mark
for determining further heights and dis-
tances. (Garmonsway, 1965)

A benchmark is a reference point; a tool for deter-
mining where one stands. In this sense, a benchmark
does not uniquely determine how data obtained from
the study of that benchmark will be used. Data ob-
tained from the study of benchmarks can be used in
a variety of ways, and some of these are presented in
this section. In summary, we feel that in order to cor-
rectly determine 'Turther heights and distances" in the

408

integrated agent research community, we must have
a common language for describing agent architecture
performance. One way to do this is by establishing a
common set of benchmark tasks and evaluation met-
rics.

A suite of carefully-designed benchmark tasks would
serve two primary roles in the research community.

From experiments to principles. The first, and
most important, role would be to provide a common
frame of reference for researchers. In the literature,
a wide variety of incommensurable vocabularies are
used to describe intelligent systems. Someone faced
with the task of understanding the relative strengths
and weaknesses of different architectures must, cur-
rently, be able to grasp the relationship between "pro-
ductions," "wires," "operator descriptions," "problem
spaces," and many other such concepts. A set of
benchmark tasks would allow the performance of sys-
tems to be directly compared; in addition, it would
allow the designers of agent architectures to relate the
internal characteristics of their architectures to exter-
nally observable properties of instances of those archi-
tectures. A researcher would be able to say things like
"System X performs as it does on benchmark A be-
cause its representation of time is so flexible but its
algorithm for Y is too slow."

The understanding gained from such experiments is
critical. Consistent success or consistent failure on a
specific set of benchmark problems should lead one
to consider what features the given set of benchmarks
share. If some particular problem feature can be im-
plicated in the necessary success or failure of a given
architecture then this source of knowledge can be fed
back into the architecture's design. Without this sort
of "closed-loop" experimental evaluation, corrections
to any given architecture can be motivated only by
abstract mathematical and computational aesthetics.
The space of possible architectures is huge, and most
notions of formal aesthetics are ill-defined. It makes
more sense to explore the space of possible architec-
tures driven by success and failure on particular rep-
resentative benchmark problems.

Enabling technology transfer. The occasional
practical application of integrated agent technology
would not hurt the field. A wide variety of practi-
cal industry and government problems would benefit
from better technology transfer. Technology transfer
would be facilitated by benchmark problems that are
representative of the intrinsic difficulty of practical ap-
plications. As it stands, a person with a practical ap-
plication task in mind is given no easy access into the
relevant set of technologies. For instance, given the
problem of controlling a particular device in a factory,
under particular constraints and resources, which ar-
chitecture would be more appropriate: PRS (Georgeff
& Lansky, 1985) or O-Plan (Currie k Täte, 1985)?
Which system is better suited for the application at
hand? Both PRS and O-Plan have been tested on
representative tasks: PRS has been applied to the
Space Shuttle reaction control system and O-Plan has

been applied to spacecraft mission sequencing. How-
ever, not all architectures have been applied in this
way, and even PRS and O-Plan must be further ap-
plied to other problems to better understand their in-
dividual strengths and weaknesses. The existence of a
common set of benchmark tasks will make such com-
parisons possible across the entire integrated-agent re-
search community.

As well as facilitating technology transfer to prob-
lems of practical interest, a common set of benchmarks
can make new research ideas available to researchers
in other fields. For instance, one might expect that re-
search in the area of real-time operating systems would
benefit from an understanding of the latest ideas in in-
tegrated agent architectures. Representative tasks of
common merit would facilitate communication among
various fields.

3 What Benchmarks Are Not
There are some obvious and some non-obvious worries
associated with the establishment of a common set of
benchmark tasks and evaluation metrics. This section
briefly addresses some worries that were articulated by
participants of the BMW-I.

Benchmarks will necessarily force us to worry
only about numbers. A benchmark simply pro-
vides system performance indicators, perhaps ex-
pressed as numbers, perhaps not. These performance
indicators can be used in a variety of ways. A partic-
ularly pedestrian use of performance indicators would
be simple comparison; for instance, a question such as
"which system got the highest score on task A?" with
no further scrutiny as to why is deeply uninteresting.
As mentioned above, the availability of performance
indicators derived from the application of a particular
architecture to a particular benchmark is a starting
point for understanding the principles underlying the
architecture's performance.

The benchmarks will not include all theoret-
ically interesting problems and will also not
be representative of practical, real-world prob-
lems. What if the benchmarks are so badly chosen
that the performance data they engender is totally
meaningless, both theoretically and practically? This
is a legitimate worry, and due care must be taken when
selecting benchmark tasks. Of course, it is inevitable
that tasks judged inappropriate by some will be in-
cluded in the common set, but each research group is
free to choose those benchmark tasks that address is-
sues of concern to them. If the set of common bench-
mark tasks does not provide a task of interest, then
an appropriate task may be added. Community ac-
ceptance of a proposed task will come in the form of
other research groups publishing performance results
on that task.

An architecture can't be evaluated by a single
benchmark. We do not propose to directly evaluate
architectures through performance on an individual
benchmark problem, but instead propose to evaluate

409

the performance of a specific system that is an instance
of an architecture. Formal evaluation of the process by
which an architecture is used to produce a solution to
a specific benchmark problem is beyond the scope of
this first effort. An architecture might include, but
would not be limited to: design principles, program-
ming languages, programming lore, user's manuals, ex-
isting code, etc. We cannot directly control for these
architecture-related features, so the true worth of any
given architecture cannot be directly evaluated by the
method of benchmarks and metrics. Instead, an ar-
chitecture will be evaluated in a "second-order" way:
consistent success by the users of an architecture in
applying that architecture to a widely-ranging set of
benchmark problems will indicate the architecture's
general utility.

4 Benchmark Tasks and Evaluation
Metrics

4.1 Possible Task Attributes

Benchmark tasks can seen as varying across a num-
ber of dimensions. Placement in the space of possible
task attributes will, in some sense, determine "task
difficulty". As tasks are added to the evolving set
of benchmarks, the importance of particular task at-
tributes will become apparent.

It would be practically useful to have some fami-
lies of tasks in which stress on selected task attributes
could be systematically varied. This would allow re-
searchers to experiment with a set of problems of
graded difficulty and perhaps allow insight into how
agent performance scales with task difficulty.

The following is an initial subset of possible task
attributes.

Resource Management. Does the task have prop-
erties pertaining to metric time and continuous
quantities? If so, the problem may take on the
character of a classical optimization problem.

Geometric and Temporal Reasoning. Does the
task involve extensive geometry or reasoning
about activities over time? These kinds of rea-
soning may require specialized representations.

Deadlines. Does the task impose absolute deadlines
for goal satisfaction, or does the utility of goal
satisfaction vary continuously with time?

Opportunity for Learning. Is the task specifica-
tion complete at the beginning of the agent's exe-
cution? If not, the agent must be able to acquire
knowledge about its environment.

Multiple Agency. Does the task require the defini-
tion of a community of interacting agents? Such
tasks might require complex communication pro-
tocols or reasoning about the internal states of
other agents.

Informability. Can the agent be presented with ex-
plicit goals and facts about the world during the
course of its execution?

Dynamic Environment. Does the agent's world
change over time independent of the actions the
agent takes? How predictable are the dynamics
of the world?

Amount of Knowledge. How much a priori knowl-
edge is available to be used by the agent? Some
domains, such as medical diagnosis, require the
assimilation of a large amount of domain knowl-
edge.

Reliability of Sensors and Effectors.
In some task domains, sensors and effectors are
completely reliable; in others, the main difficulty
lies in accurately integrating data from a number
of highly unreliable sensors and achieving robust
overall behavior through the use of unreliable ef-
fectors.

4.2 Task Specifications

There are a broad range of possible methods for spec-
ifying tasks, ranging from informal to physical. Each
of these methods has associated pros and cons; for
instance, natural language task descriptions, simula-
tors, and formal specifications are all easily transmit-
ted electronically, but physical environments are less
easily duplicated.

Natural Language Task Descriptions.
Natural language descriptions can be too vague
for use in focused, comparative studies, but they
are easy to generate, which makes them useful in
certain situations. An example might be "Pick up
cups using a simple mobile robot with a manipu-
lator and an overhead vision system."

Simulators. Simulators provide a precise computa-
tional task description, which facilitates direct
comparison between solutions. In addition, it is
often possible to instrument a simulation to sim-
plify debugging and evaluation.

Formal Specifications. Tasks may specified using a
logical or mathematical description of the environ-
ment, its sensor and effector interfaces with the
agent, and the goals of the agent. Formal speci-
fications may allow prior analysis and provide in-
sight into the underlying problem complexity. It
is very difficult, however, to specify formally the
majority of complex tasks.

Physical Environments. Some tasks are most eas-
ily specified by providing a physically embodied
environment. Such specifications have the disad-
vantage of being difficult to replicate, because it
is hard to control all aspects of the environment,
such as lighting and RF interference.

A useful suite of benchmarks might include a variety
of specification types for a particular general task; the
resulting specifications would describe slightly differ-
ent but closely related tasks. A useful example would
be to have both simulation and physical specifications
of a robotic control task. This would allow researchers
to debug their ideas in simulation before trying them
out in the real world. Although success in a simulation

410

is no guarantee of success in the real world, failure on
a simulation will often entail real-world failure as well.

4.3 Modes of Evaluation

Part of the specification of benchmark tasks is the se-
lection of particular evaluation metrics. Suitable met-
rics will become more obvious as the work progresses—
some metrics will be applicable to all benchmark tasks
and others will be task-specific. At this early stage
however, two classes of metrics are of clear importance.

Agent Performance. How well does the agent per-
form? Performance will be measured using
domain-specific performance metrics that are sup-
plied in conjunction with each benchmark task.

Agent Construction. An important aspect of an in-
tegrated agent architecture is the ease with which
it can be applied to a range of tasks. While it is
difficult to formally measure the time to build a
system, it can be informally reported in conjunc-
tion with agent performance results.

5 Conclusions
The development of a set of benchmark tasks and
performance metrics for integrated agent architec-
tures will foster both scientific progress and technology
transfer. Broad coverage of the space of task attributes
by the benchmark tasks will be required in order to
ensure scientific and practical relevance of the bench-
marks.

It is important to understand that no single research
group will be able to determine a community-wide set
of benchmarks by fiat. For a set of benchmarks to be
accepted by a community, they must be designed by
that community. The process presented in this paper,
namely, that of a developing set of benchmarks that
can be augmented by anyone willing to define a bench-
mark task, is one way to achieve such acceptance. The
resulting set of benchmark tasks should be viewed as
a resource that will foster progress, not as an exam for
members of the community to pass or fail.

Acknowledgments
Thanks to Stan Rosenschein for help in organizing
BMW-I and for insightful comments on drafts of this
paper. Thanks also to all of those participated in
BMW-I.

References
[1] K. Currie k A. Täte, 1985. O-Plan: Control in

the open planning architecture. In Proceedings of
BCS Expert Systems '85. Warwick, U.K. Cam-
bridge University Press, pp. 225-240.

[2] M. Drummond, 1989. "Situated Control Rules,"
Proceedings of the Conference on Principles
of Knowledge Representation and Reasoning,
Toronto, Canada.

[3] M. Drummond and J. Bresina, 1990. "Anytime
Synthetic Projection: Maximizing the Proba-
bility of Goal Satisfaction," Proceedings of the
Eighth National Conference on Artificial Intelli-
gence, Boston, Massachusetts, pp. 138-144.

[4] N. Garmonsway, 1965. The Penguin English Dic-
tionary. Penguin Books Ltd, Harmondsworth,
Middlesex, England.

[5] M. Georgeff and A. Lansky, 1985. "A Procedural
Logic", Proceedings IJCAI-85, Los Angeles, Calif.

[6] L.P. Kaelbling, 1987a. "An Architecture for In-
telligent Reactive Systems," Reasoning About Ac-
tions and Plans, M. Georgeff and A. Lansky, Eds.,
Morgan Kaufmann

[7] L.P. Kaelbling, 1987b. "Rex: A Symbolic Lan-
guage for the Design and Parallel Implementa-
tion of Embedded Systems," Proceedings ofAIAA
Conference on Computers in Aerospace, Wake-
field, Massachusetts.

[8] L.P. Kaelbling, 1988. "Goals as Parallel Program
Specifications" Proceedings of the Seventh Na-
tional Conference on Artificial Intelligence, St.
Paul, Minnesota.

[9] J.E. Laird and P.S. Rosenbloom, 1990. "Integrat-
ing Execution, Planning, and Learning in Soar for
External Environments," Proceedings of Eighth
National Conference on Artificial Intelligence, pp.
1022-1029.

[10] N.J. Nilsson, R. Moore, and M. Torrance, 1990.
ACTNET: An Action Network Language and its
Interpreter. Draft paper, Stanford Computer Sci-
ence Department.

[11] S.J. Rosenschein, k L.P. Kaelbling, 1986. "The
Synthesis of Digital Machines with Provable Epis-
temic Properties," Proceedings of Workshop on
Theoretical Aspects of Knowledge, Monterey, CA
(March 13-14).

[12] S.J. Rosenschein k L.P. Kaelbling, 1989. "Inte-
grating Planning and Reactive Control", Proceed-
ings of NASA Telerobotics Conference, Pasadena
CA.

[13] M.J. Schoppers, 1987. Universal Plans for Reac-
tive Robots in Unpredictable Environments. In
Proceedings of IJCAI-87. Milan, Italy, pp. 1039-
1046.

411

The CORTES Project: A Unified Framework for
Planning, Scheduling and Control

Mark S. Fox and Katia P. Sycara

Center for Integrated Manufacturing Decision Systems
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

We present an overview of CORTES, an integrated
framework for production planning, scheduling and control
(PSC). CORTES's approach to PSC problems departs
from others in the hypotheses it explores: Generality
Hypothesis: There exists a single approach that can
optimize decision making across a wide variety of PSC
problems. Flexibility Hypothesis: The same approach can
be used for both planning, predictive scheduling and
reactive control. Uncertainty Hypothesis: In order to
provide the appropriate level of precision in PSC, reasoning
about uncertainty must be an integral part of the PSC
approach. Scale Hypothesis: Large PSC problems, that
contain thousands of activities, resources and constraints,
must be solved in a qualitatively different manner than
small PSC problems. CORTES uses Constrained Heuristic
Search to make PSC decisions. In this paper, we describe
CORTES, its architecture, problem solving method, and
functions including modeling, planning, scheduling,
distributed scheduling, dispatching, and uncertainty
management.

1. Introduction
Our research explores the role of constraints in solving

planning, scheduling and control (PSC) problems. It is
generally believed that to efficiently construct optimizing
solutions to large PSC problems, a fundamental
understanding of problem structure and properties is
required. It is our conjecture that knowledge of domain
constraints will lead to this understanding. The goal of the
CORTES project is to operationalize this conjecture.

CORTES is a distributed system for production
planning, scheduling and control. CORTES is designed to
be composed of an integrated set of modules distributed
across many workstations and connected by a
communication network. The overall architecture is shown
in Figure 1-1.

CORTES represents a departure from previous

Figure 1-1: The CORTES Architecture

approaches to solving PSC problems in the hypotheses it
explores:

1. Generality Hypothesis: There exists a single
approach that can optimize decision making
across a wide variety of PSC problems.
Previously, PSC approaches were tailored to
the particular production environment, with
the "common wisdom" being that there does
not exist a single approach, short of
enumeration, that applies to all PSC
problems. We believe that there does exist a
single approach that may be generally applied
to PSC problems, that also provides very
good results and is computationally efficient.

2. Flexibility Hypothesis: The same approach
can be used for both planning, predictive
scheduling and reactive control.
Traditionally, planning, scheduling and
control approaches have tended to be separate
and unrelated in approach. For example, in
actual production
environments,Manufacturing Resource
Planning (MRP) tends to be used for

412

planning, scheduling approaches can range
from dispatch approaches to knowledge based
scheduling, and control tends to be ignored.
In AI, planning algorithms tend to be
generative, scheduling is constraint directed,
and control is reactive.

3. Uncertainty Hypothesis: In order to provide
the appropriate level of precision in PSC,
reasoning about uncertainty must be an
integral part of the PSC approach.
Production environments contain a plethora
of stochastic events that increase the
uncertainty with which a schedule may be
executed. For example, unexpected events
such as personnel not showing up for work,
machine failures, failure of resources, etc,
may quickly invalidate a schedule.
Consequently, PSC approachs must take a
pro-active approach in mitigating the effects
of uncertainty.

4. Scale Hypothesis: Large PSC problems, that
contain thousands of activities, resources and
constraints, must be solved in a qualitatively
different manner than small PSC problems.
The point is that in large PSCs, the aggregate
behavior of the system be optimized, as
opposed to any individual entity or job.
Optimizing each decision is computationally
expensive. Instead, many decisions must be
made at the aggregate level using statistical
summaries of underlying requirements.

CORTES is evolutionary in its approach in that it can be
viewed as a continuation of the line of constraint directed
scheduling systems developed at Carnegie Mellon
University [Fox & Smith 84, Smith et al. 86, Fox 90]. It
departs from the approach of these previous systems in its
use of Constrained Heuristic Search (CHS) as its
underlying problem solving paradigm [Fox 89].

In the reminder of the paper, we first review the
Constrained Heuristic Search (CHS) problem solving
paradigm. We then describe the functionality of each of
the modules in figure 1-1 and how this is provided using
CHS.

2. Constrained Heuristic Search
Our approach to both planning and scheduling is based

upon a problem solving paradigm we call Constrained
Heuristic Search (CHS)1 CHS views problem solving as a
constraint optimization activity. CHS combines the

'This section is a composed of excerpts from [Fox 89].

process of constraint satisfaction (CSP) [Mackworth
87] with heuristic search (HS). CHS retains heuristic
search's synthetic capabilities and extends it by adding the
structural characteristics of constraint satisfaction
techniques. In particular, our model adds to the definition
of a problem space [Newell & Simon 76], composed of
states, operators and an evaluation function, by refining a
state to include:

1. Problem Topology: Provides a structural
characterization of a problem.

2. Problem Textures: Provide measures of a
problem topology that allows search to be
focused in a way that reduces backtracking.

3. Problem Objective: Defines an objective
function for rating alternative solutions that
satisfy a goal description.

This model allows us to (1) view problem solving as
constraint optimization, thus taking advantage of these
techniques, (2), incorporate the synthetic capabilities of
heuristic search, thus allowing the dynamic modification of
the constraint model, and (3) extend constraint satisfaction
to the larger class of optimization problems. In the
following, problem topology and textures are defined.

2.1. Problem Topology
We define problem topology as a constraint graph G,

composed of variables V and constraints C:

V is a set of variables {vj, v2,..., vm}
C is a set of constraints {Cj, c2,..., cn}

Each variable in N may be a vector of variables whose
domains may be finite/infinite and continuous/discrete.
Constraints are n-ary predicates over variables vertices.

We extend the topology to allow constraints to be
grouped into a modified conjunctive normal form:

[st AND S2 AND ... AND sj

where each Sj denotes a set of constraints where either only
one or at least one constraint must be satisfied.

We distinguish between two types of problem
topologies:

Definition 1: A completely structured problem
is one in which all non-redundant vertices and
edges are known a priori.

This is true of all CSP formulations and in this case CHS
reduces to either a CSP or a COP (i.e., optimization
problem).

Definition 2: A partially structured problem is
one in which not all non-redundant vertices and

413

edges are known prior to problem solving.

This definition tends to be true of problems in which
synthesis is performed resulting in new variables and
constraints (e.g. the generation of new subgoals during the
planning process).

Operators in CHS have many roles: refining the problem
by adding new variable and constraint vertices, reducing
the number of solutions by reducing the domains of
variables (e.g., assigning a value to a variable vertex), or
reformulating the problem by relaxing constraints or
omitting constraints and/or variables.

Our intent is to distinguish topologies that lead to
significant changes in problem solving quality and
efficiency. Examples include:

• The decomposability of constraint graphs into
unconnected or lossely connected subgraphs,
allowing the problem solver to focus on one
set of variables and constraints before
attending to another.

• Graph width which combined with arc-
consistency will guarantee backtrack free
search [Freuder 82].

• Contention graphs which identify the degree of
contention that exists among variables for the
same values.

2.2. Problem Textures
Focus of attention in search is concerned with the ability

of the search algorithm to opportunistically decide where
the next decision is to be made [Erman et al. 80]. In CHS,
for search to be well focused, that is to decide where in the
problem topology an operator is to be applied, there must
be features of the topology that differentiate one subgraph
from another, and these features must be related to the
goals of the problem. We have identified and are
experimenting with seven such features that we call
problem textures [Sadeh & Fox 88]. Below we define these
textures for CHSs where all solutions are equally preferred,
i.e., the Problem Objective rates all solutions to the
constraints equally acceptable.

(Variable) Value Goodness: the probability that the
assignment of that value to the variable
leads to an overall solution to the CHS
(i.e. to a fully consistent set of
assignments). This texture is related to
the value ordering heuristics [Haralick
& Elliott 80] which look for the least
constraining values. Value ordering
heuristics are meant to reduce the
chance of backtracking. In the case of
discrete variables, the goodness of a

value is the ratio of complete
assignments that are solutions to the
CHS and have that value for the
variable over the total number of
possible assignments.

Constraint Tightness: Constraint tightness refers to the
contention between one constraint or a
subset of constraints with all the other
problem constraints. Consider a CHS A
and a subset C of constraints in A. Let
B be the CHS obtained by omitting C's
constraints in A. The constraint
tightness induced by C on A is defined
as the probability that a solution to B is
not a solution to A. In the case of
discrete variables, this is the ratio of
solutions to B that are not solutions to
A over the total number of solutions to
B.

Variable Tightness with respect to a set of constraints:
Again consider a CHS A, a subset C of
constraints, and the CHS B obtained by
omitting C in A. A variable V's
tightness with respect to the set of
constraints C is defined as the
probability that the value of V in a
solution to B does not violate C\ In the
case of discrete variables, this is simply
the ratio of solutions to B in which V's
value violates C (i.e. at least one of the
constraints in C) over the total number
of solutions to B.

Constraint Reliance: This measures the the importance of
satisfying a particular constraint.
Consider a constraint Cj. We defined
CHS B as being CHS A - {Cj}. Given
that constraints can be disjunctively
defined, the reliance of CHS A on a
constraint q is the probability that a
solution to CHS B is not a solution to
A. In the case of discrete variables,
constraint reliance is defined as the
ratio of the number of solutions to CHS
B that are not a solution to CHS A to
the number of solutions to CHS B. The
larger the value, the greater the reliance
the problem has on satisfying the
particular constraint.

Variable Tightness: Consider a variable v in a CHS A. Let
C be the set of constraints involving v
and B be the CHS obtained by omitting
C* in A. v's tightness with respect to C
is simply called v's tightness. Hence
the tightness of a variable is the
probability that an assignment
consistent with all the problem
constraints that do not involve that

414

variable does not result in a solution.
Alternatively one can define variable
looseness as the probability that an
assignment that has been checked for
consistency with all the problem
constraints, except those involving that
variable, results in a fully consistent
assignment. Notice that if one uses a
variable instantiation order where v is
the last variable, v's tightness is the
backtracking probability. Variable
looseness/tightness can be identified
with variable ordering heuristics
[Haralick & Elliott 80,Freuder

82] which instantiate variables in order
of decreasing tightness.

These textures generalize the notion of constraint
satisfiability or looseness defined by [Nadel 86] and apply
to both CHSs (and CSPs) with discrete and continuous
variables. Notice that, unless one knows all the CHS's
solutions, the textures that we have just defined have to be
approximated. Textures may sometime be evaluated
analytically [Sadeh & Fox 88]. A brute force method to
evaluate any texture measure consists in the use of Monte
Carlo techniques. Such techniques may however be very
costly. In general, for a given CHS, some textures are
easier to approximate than others, and some are also more
useful than others. Usually the texture measures that
contain the most information are also the ones that are the
most difficult to evaluate. Hence there is a tradeoff. Each
domain may have its own approximation for a texture
measure.

2.3. Problem Objectives
Many problems, for example scheduling, are

optimization problems and not simply satisfaction
problems. The notion of what is best becomes important.
Rather then defining what is best in an evaluation function
or an objective function, our goal is to embed objectives
directly in the constraint graph so that it can be both
propagated and used to make local decisions. For example,

• Disjunctive constraint sets may have
preferences associated with each disjunct,

• Start times, commonly found as a variable in
scheduling constraint graphs, can have
preferences associated with each alternative
time.

In our work we have extended the textures to take into
account the Problem Objectives, using Bayesian
probabilities to approximate the likelihood that a variable
results in an optimal value [Sadeh & Fox 88].

2.4. CHS Problem Solver
The CHS model of problem solving is a combination of

constraint satisfaction and heuristic search. Search is
performed in the problem space where each state contains a
problem topology. The problem solving model we propose
contains the following elements:

• An initial state is defined composed of a
problem topology, i.e., the PSC activity, time
and capacity constraint graph,

• Constraint propagation is performed within the
state,

• Texture measures and the problem objective
are evaluated for the state's topology,

• Operators are matched against the state's
topology, and

• A variable node/operator pair is selected and
the operator is applied, i.e., a resource or start
time is assigned to an activity.

The application of an operator results in either adding
structure to the topology, further restricting the domain of a
variable, or reformulating the problem (e.g., relaxation).

It is our belief, which is supported by experimentation,
that this approach is powerful enough to solve a variety of
PSC problems. Domains in which it has been applied
include, job shop scheduling [Sadeh 90], cell scheduling
and transportation planning [Sathi et al. 90]. Secondly, the
opportunism inherent in the approach, allows the approach
to be applied to both predictive planning and scheduling,
and reactive control.

2.5. Representation
The main conceptual primitives in the CORTES

representation are activities, resources, production units,
states, and constraints [Sathi et al. 85, Fox 88]. These
primitives provide an extensible framework that can be
used to represent the relevant aspects of manufacturing
environments. In addition, these primitives are represented
at various levels of conceptual abstraction depending on the
granularity of knowledge. For example, an operation is a
specialization of an activity. An important component of
the representational framework is the relations that connect
the primitives and their instantiations. The main types of
relations are temporal and causal.

In general, there are five types of constraints that a
scheduler should take into consideration. These five types
are domain-independent and help structure constraints in
many kinds of scheduling domains (e.g., factory
scheduling, transportation scheduling).

• Physical constraints. Physical constraints
include, number of machines, fixtures, setup
and run times for each operation.

415

• Organizational constraints. Examples of
organizational constraints include meeting due
dates, reducing Work in Process, increase
machine utilization, and enhance throughput.

• Preferential constraints. Examples of
preferential constraints include preference for
using a particular machine for an operation
(perhaps because of its speed or accuracy), or
using a particular human operator (perhaps
because of his skill).

• Enablement constraints. These refer to
constraints, the fulfillment of which creates a
state that enables the execution of an activity.
For example, a process plan embodies
enablement constraints.

• Availability constraints. These constraints refer
to the availability of particular resources at
scheduling time. For example, a machine may
become unavailable because of breakdown, the
assignment of a third shift makes extra
resources available for scheduling.

In the model, we treat explicitly two types of constraints,
required constraints and preferential constraints [Fox 83].
The degree of satisfaction of a preferential constraint is
expressed by a utility function ranging between 0 and 1. A
value of 0 utility is non-admissible; a value of 1 is optimal.
Variables can be constrained by more than one constraint.
The utility value associated with a variable is calculated by
taking the weighted sum (with constraint importance as the
weight) of the utilities of all the constraints that affect the
variable.

Constraints differ in importance. A particular constraint
could have different importance depending on the context
in which it is applied. The importance of a constraint is
specified by a value between 0 and 1. An importance of 0
implies that the constraint should not be considered, and 1
signifies maximum importance. The actual level of
importance is relative to the importance of the other
constraints under consideration. The measure of
importance of a constraint may be viewed as a weight that
can be combined with a constraint's utility value to form a
weighted combination of utilities. Constraints also differ in
relevance. Depending on the context, a constraint may be
more relevant than others.

3. Scheduler
The detailed scheduler is an activity-based scheduler

[Sadeh 90], where the activities are the operations that
must be scheduled according to a process plan that
specifies a partial ordering among these operations. Each
operation requires one or several resources for each of

which there may be one or several alternatives. Scheduling
is viewed as a constrained heuristic search problem whose
solution is a schedule that satisfies the many technological,
temporal, organizational, and preference constraints that
are imposed both by the characteristics of the job shop
itself and the environment

The scheduler models a problem as a constraint graph,
where there are two types of nodes: activities and
resources. An activity is an 4-tuple defining its start time,
duration, and resources it is to use. With each activity, we
associate utility functions that map each possible start time
and each possible resource alternatives onto a utility value
(i.e. preference). These utilities [Fox 83, Sadeh & Fox
88] arise from global organizational goals such as reducing
order tardiness (i.e. meeting due dates), reducing order
earliness (i.e. finished good inventory), reducing order
flowtime (i.e. in-process inventory), using accurate
machines, performing some activities during some shifts
rather than others, etc. A resource is a 3-tuple defining its
total capacity, available capacity over time, and the
activities that are scheduled to use it.

We distinguish between two types of constraints:
activity temporal constraints and capacity constraints. The
activity temporal constraints together with the order release
dates and latest acceptable completion dates restrict the set
of acceptable start times of each activity. The capacity
constraints restrict the number of activities that a resource
can be allocated to at any moment in time to the capacity of
that resource. For the sake of simplicity, we only consider
resources with unary capacity in this paper. Typically the
limited capacity of the resources induces interactions
between orders competing for the possession of the same
resource at the same time.

The schedule is built incrementally by iteratively
selecting an activity and assigning a start time and
resource(s) to it, propagating temporal and capacity
constraints and checking for constraint violations. If
constraint violations are detected the system backtracks.
Search is focused via a set of variable and value ordering
heuristics so as to minimize backtracking and optimize
schedule quality.

The variable ordering heuristic assigns a criticality
measure to each unscheduled activity; the activity with the
highest criticality is scheduled first. The value ordering
heuristic attempts to leave enough options open to the
activities that have not yet been scheduled in order to
reduce the chances of backtracking. This is done by
assigning a goodness measure to each possible reservation
of the activity to be scheduled. Both activity criticality and
value goodness are composed of texture measures. The

416

next two paragraphs briefly describe both of these
measures2.

A critical activity is one whose resource requirements
are likely to conflict with the resource requirements of
other activities. [Sadeh & Fox 88, Sadeh 90] describes a
technique to identify such activities. The technique starts
by building for each unscheduled activity and for each
appropriate time interval a probabilistic activity demand
that denotes the probability that the activity will require a
resource at that time interval. Clearly activities with many
possible start times and resource reservations tend to have
smaller demands at any moment in time, while activities
with fewer possible reservations tend to have higher ones.
In a second step, the activity demands for each resource are
aggregated over time to form a demand profile for a
resource. The demand profile expresses likely contention
for the resource over time. The percentage contribution of
an activity's demand to the aggregate demand for a
resource over a highly contended-for time interval is the
activity reliance.

To choose the next activity to schedule, the scheduler
focuses on the resource/time interval with the highest
aggregate demand. The activity with the the highest
reliance on the resource is picked to be scheduled next,
since it is the activity that is most likely to be involved in
contention for the resource.

The particular start time assigned to the chosen activity
is picked using either of two strategies:

LA Least Constraining Value Ordering
Strategy (LCV): This heuristic attempts to
select the reservation that is the least likely to
prevent other activities to be scheduled.

2. A "Greedy" Value Ordering Strategy
(GV): At the other extreme, a reservation can
be chosen that maximizes the preference of
the activity for the resource/time interval.

Experimental results have demonstrated the effectiveness
of this approach for problems where resource contention is
an issue [Sadeh 90].

4. Distributed Scheduling
As part of the CORTES project, we are investigating

how to manage scheduling when distributed across multiple
schedulers [Sycara 90]. In particular, we are investigating
how schedulers, which possess their own resources,

coordinate their decisions when they require resources
possessed by others. Due to the size of the scheduling
problem, we distinguish between coordination at the
strategic level versus the tactical level. Our approach
assumes that each scheduler develops schedules using
Constrained Heuristic Search. At the strategic level, the
coordination of large numbers of activities requiring
resources outside of a particular scheduler is performed by
communicating statistical summaries of aggregate demand
textures. These demands are used to bias a scheduler's
reservations so that it does not require another's
scheduler's resources during a period of high demand. At
the strategic level, we expect that coordination problems
will be reduced but not removed. It is the role of the
tactical level to negotiate resource allocations that could
not be handled strategically.

The textures play four important roles in distributed
search: (1) they focus the attention of an agent to globally
critical decision points in its local search space, (2) they
provide guidance in making a particular decision at a
decision point, (3) they are good predictive measures of the
impact of local decisions on system goals, and (4) they are
used to model beliefs and intentions of other agents. The
development of the presented texture measures is the result
of extensive experimentation in the single agent setting. We
have completed the implementation of a distributed testbed
and are currently performing experiments involving
multiple agents. Experimental results from the distributed
scheduling testbed are presented in [Sycara 90].

5. Planning
We are currently investigating the integration of

planning with scheduling3. In previous planners, planning
has been an end unto itself. Any feasible plan is considered
a success, with only very inflexible criteria for plan quality,
such as minimizing the total number of actions. In the
context of the CORTES project, the planner will be
producing process plans to be used by the scheduler. The
quality of these plans is defined by the quality of the
schedules that the scheduler can produce using them. Thus,
there is a strong need for a constraint language to use in
communicating with the scheduler to determine what sorts
of plans would be good.

Current state-of-the-art planners are constraint-directed,
domain-independent, hierarchical, nonlinear, and support
replanning [Wilkins 88]. We intend to include these
capabilities, and extend them where appropriate.

2For a more complete description of these measures, the reader is
referred to [Sadeh & Fox 88, Sadeh 90].

3See [Frederking & Chase 90] for more details.

417

Planners already exist that use constraints on planning
variables to increase the power of their representation and
to reduce arbitrary decisions that can lead to unnecessary
backtracking. In addition to making wider use of
constraints, we will make this planner be truly
constraint-directed by developing measures of criticality
for goal ordering and operator selection. This will provide
a domain-independent representation for the domain-
dependent heuristics that focus attention in the search for a
plan.

The planner will always support planning at different
levels of abstraction, and the re-use of plans in support of
reactive planning.

6. Uncertainty Analyzer
Uncertainty is a fact of life in most job shop scheduling

environments. Sources of uncertainty include: Demand
change (seasonal, forecast error, cancel orders, expedition),
Inventory Policy (raw material arrival pattern, safety stock
policy) Machine failure, Change of time duration (transit,
set-up, processing), Yield, and Quality (Tool wear,
precision). Uncertainty increases as the planning horizon is
extended, and its the amount and sources of uncertainty
change over time.

The presence of uncertainty means that it is very unlikely
that a detailed predictive schedule that assigns precise start
and finishing times on resources for activities is going to be
adhered to. This characteristic imposes two requirements
on schedulers: (a) A scheduler should be able to represent
and reason about degrees of uncertainty, and (b) a
scheduler should be able to react to unexpected events on
the factory floor. The inability of a scheduler to reason
about uncertainty almost always results in a schedule being
invalid at the time it is released to the production floor.

CORTES manages uncertainty in three stages. In the
first stage, the Uncertainty Analysis module monitors and
records the stochastic events. It develops over time a
model of the sources and characteristics of uncertainty.
Once a valid model is constructed, the Uncertainty
Analysis module passes the information to the Scheduler.
In the second stage, the scheduler uses the uncertainty
models to reduce the precision of its schedules. Precision
can be reduced by increasing the durations of activities,
overlapping activity temporal intervals, or assigning
activities to resource aggregates rather than to specific
resources. In the third stage, the Dispatcher control
module, is able to react more flexibly to stochastic events
by taking advantage of the imprecision inserted in the
schedule by the scheduler; it can start an activity earlier or
later or assign an activity to another resource in an

aggregate (i.e., work center). The Dispatcher's task is to
dispatch jobs to machines and monitor machine and job
execution status. The Dispatcher notes deviations from the
schedule and resource unavailability and communicates
this information to the Scheduler, Uncertainty Analyzer
and factory floor.

Two approaches have typically been utilized to address
the problem of temporal uncertainty. One approach is based
on the idea of dividing the time horizon into time zones
using progressively coarser time units to describe events in
the future. For example, a time unit of one hour may be
used to project a schedule over a one week horizon; a time
unit of a day mey be used to project a schedule from a
one-week to a one-month horizon and so on. Although this
approach recognizes the fact that events that are further int
the future are less accurately predictable, it has been
criticized [Kerr 89] as suffering from the presence of
discontinuous boundaries between time zones and the
difficulty of handling orders whose processing crosses a
zone boundary. A second approach to handling uncertainty
is the use of probability distributions to describe schedule
parameters. This approach has the disadvantage [Kerr
89] that probability is concerned with the combination and
manipulation of independent random variables whereas
many of the probabilistically described scheduling
parameters are not independent (e.g., processing times of
different jobs on a particular machine could depend on
some characteristic of the machine)4.

The CORTES uncertainty analyzer represents
uncertainty in terms of fuzzy logic [Zadeh 85, Kaufmann
85, Prade 79]. The present version [Chiang & Fox
90] focuses on uncertainty concerning machine failures.
The mean time between failure and mean duration of the
failure are assumed known. It is also assumed that once a
machine is fixed after a failure, processing resumes at the
point of interruption with no rework necessary. In other
words, machine failure causes a variation in processing
time only and not in scheduling order. The time between
machine failures and the failure duration are used to
express uncertainty in processing time. Instead of being
random variables of known distribution, the duration of
failure and time between failures may be only
approximately known. This approximate information on the
procesing time bounds is expressed in terms of fuzzy
numbers of Type-1, where a real number that is
approximately known is expressed as a confidence interval
of upper and lower bounds. Fuzzy bound values may be
ther result of subjectively known processing characteristics

Handling variable dependence through the use of conditional or joint
probability distributions poses severe estimation problems.

418

described by a shop operator, or of known distributions
described by shop statistics. An extension of type-1 fuzzy
representation of uncertainty in operation duration is
Type-2 representation where the lower and upper bounds of
a confidence interval, instead of being ordinary numbers
are fuzzy numbers that themselves have intervals of
confidence.

Uncertainty bounds work in a similar manner as earliest
start time/latest start time and earliest finish/latest finish
time. The bounds can be viewed as slack to protect against
uncertainty. The mean processing time is reserved for the
operation and the slack time is reserved for protection
against uncertainty. Once an operation is ready for
processing, a dispatcher should follow the schedule within
the prescribed bounds. We ran experiments [Chiang & Fox
90] to compare various cost measures, such as tardiness,
work-in-process, and delayed orders, under various
processing duration representation schemes (type-2 fuzzy
representation, fixed processing time given in the process
plan, mean processing time considering machine failure
duration and time between failures) and under different
cost structures and shop loads. The general result is that
type-2 bounds give sufficient protection against uncertainty
in processing time with less investment in the planned cost
(planned cost= planned tardiness+planned work-in-
process+ planned lateness)5. For a more detailed
description of the experiments, see [Chiang & Fox 90].

7. Conclusion
In this paper, we have given an overview of the

CORTES integrated framework for production planning,
scheduling and control (PSC) system. CORTES's approach
to PSC problems departs from others in the hypotheses it
explores:

1. Generality Hypothesis: There exists a single
approach that can optimize decision making
across a wide variety of PSC problems.

2. Flexibility Hypothesis: The same approach
can be used for both planning, predictive
scheduling and reactive control.

3. Uncertainty Hypothesis: In order to provide
the appropriate level of precision in PSC,
reasoning about uncertainty must be
integral part of the PSC approach.

an

4. Scale Hypothesis: Large PSC problems, that
contain thousands of activities, resources and

5To protect against uncertainty the planned operation duration is longer,
more planned work-in-process exists and orders are planned to arrive late.
Hence, the more protection we design into the bounds, the higher the
planned cost.

constraints, must be solved in a qualitatively
different manner than small PSC problems.

The CORTES project is investigating all four
assumptions in parallel. We have experimental data across
a variety of PSC problems that support the generality
assumption. The flexibility assumption is currently being
tested by our integration of PSC functions. The uncertainty
assumption is supported by the ease with which we have
adapted CHS to account for uncertainty. The Scale
assumption remains to be tested.

References
[Chiang & Fox 90]

Chiang, W-Y., and Fox, M.S.
Protection Against Uncertainty In a

Deterministic Schedule.
In Proceedings of the Fourth

International Conference on Expert
Systems in Production and
Operations Management, May,
1990.

Submitted for publication.

[Erman et al. 80] Erman, L.D., Hayes-Roth, F., Lesser,
V.R., and Reddy, D.R.
The Hearsay-II Speech Understanding

System: Integrating Knowledge to
Resolve Uncertainty.

ACM Computing Surveysl2(2):2l3-253,
1980.

[Fox 83] M. Fox.
Constraint-Directed Search: A Case

Study of Job-Shop Scheduling.
PhD thesis, Department of Computer

Science, Carnegie-Mellon
University, 1983.

[Fox 88] Fox, M., and Sycara. K.
Knowledge-Based Logistics Planning

and its Application in Manufacturing
and Strategic Planning.

Technical Report First Interim Report,
submitted to RADC, CMU Robotics
Institute,

December, 1988.

[Fox 89] Mark S. Fox, Norman Sadeh, and Can
Baykan.
Constrained Heuristic Search.
In Proceedings of the Eleventh

International Joint Conference on
Artificial Intelligence, Pages
309-315. 1989.

419

[Fox 90] Fox, M.S.
Constraint Guided Scheduling: A Short

History of Scheduling Research at
CMU.

Computers and Industry, 1990.
To Appear.

[Fox & Smith 84] Fox, M.S., and Smith, S.
ISIS: A Knoweldge-Based System for

Factory Scheduling.
International Journal of Expert

Systemsl(l):25-49,1984.

[Frederking & Chase 90]
Frederking, R.E., and Chase, L.L.
Planning in a CIM Environment:

Research Towards a Constraint-
Directed Planner.

In Proceedings of the Fourth
International Conference on Expert
Systems in Production and
Operations Management, May,
1990.

Submitted for publication.

[Freuder 82] Freuder, E.C.
A Sufficient Condition for Backtrack-

free Search.
Journal of the ACM29{\):2A-32,1982.

[Haralick & Elliott 80]
Haralick, R.M., and Elliott, G.L.
Increasing Tree Search Efficiency for

Constraint Satisfaction Problems.
Artificial Intelligencel4(3):263-313,

1980.

[Kaufmann 85] Kaufmann, A. and Gupta, M.
Introduction to Fuzzy Arithmetic-

Theory and Applications.
Van Nostrand Reinhold, New York,

N.Y., 1985.

[Kerr 89] Kerr, R.M., and Walker, R.N.
A Job Shop Scheduling System Based

on Fuzzy Arithmetic.
In Proceedings of the 2nd Interational

Conference on Expert systems and
Leading Edge in Production and
Operations Management, Pages
433-450. Hilton Head Island, S.C.,
May, 1989.

[Mackworth 87] Mackworth, A.K.
Constraint Satisfaction,
In Shapiro, S., Encyclopedia of Artificial

Intelligence. J. Wiley & Son, 1987.

[Nadel 86] Nadel, B.A.
The General Consistent Labeling (or

Constraint Satisfaction) Problem.
Technical Report DCS-TR-170,

Department of Computer Science,
Laboratory for Computer Research,
Rutgers University, New Brunswick,
NJ 08903,1986.

[Newell & Simon 76]
Newell, A., and Simon, H.A.
Computer Sciences as Empirical

Inquiry: Symbols and Search.
Communications of the

ACM19(3): 113-126,1976.

[Prade 79] Prade, H.
Using fuzzy set theory in a scheduling

problem.
Fuzzy Sets and Systems2(2):\53-165,

1979.

[Sadeh 90] Norman Sadeh, and Mark Fox.
Focusing Attention in an Activity-based

Job Shop Scheduler.
In Proceedings of the Forth

International Conference on Expert
Systems in Production and
Operations Management, 1990.

[Sadeh & Fox 88] Sadeh, N., and Fox, M.S.
Preference Propagation in Temporal

Constraints Graphs.
Technical Report, Intelligent Systems

Laboratory ,The Robotics Institute,
Carnegie Mellon University,
Pittsburgh, PA 15213,1988.

CMU-RI-TR-89-2.

[Sathi et al. 85] Sathi, A., Fox, M.S., and Greenberg, M.
Representation of Activity Knowledge

for Project Management.
IEEE Transactions on Pattern Analysis

and Machine Intelligence^AMI-7(
5): 531-552, September, 1985.

[Sathi et al. 90] Sathi, N, Fox, M.S., Goyal, R., and
Kott, A.
CORAL: An Order Configuration and

Resource Allocation System.
Technical Report, Carnegie Group Inc.,

Five PPG Place, Pittsburgh PA
15219,

1990.
In preparation.

420

[Smith et al. 86] Smith, S., Fox, M.S., and Ow, P.S.
Constructing and Maintaining Detailed

Production Plans: Investigations into
the Development of Knowledge-
Based Factory Scheduling Systems.

A/Magazme7(4):45-61,Fall, 1986.

[Sycara 90] Katia Sycara, Steve Roth, Norman
Sadeh, Mark Fox.
Managing Resource Allocation in Multi-

Agent Time-Constrained Domains.
In Proceedings of the 1990 Darpa

Workshop on Innovative Approaches
to Planning, Scheduling and
Control, 1990.

[Wilkins 88] Wilkins, D.E.
Practical Planning.
Morgan Kaufmann Publishers Inc.,

1988.

[Zadeh 85] Zadeh, L.
Fuzzy Sets.
Information and Control$(33$), 1985.

421

An Architecture for Adaptive Intelligent Systems

Barbara Hayes-Roth

Knowledge Systems Laboratory
Computer Science Department

Stanford University

A bs t r a ct

Adaptive intelligent systems perform
multiple concurrent tasks requiring knowledge-
based reasoning and interaction with dynamic
entities in real time. Because opportunities to
perceive, reason, and act typically exceed its
computational resources, an agent must
determine which operations to perform and when
to perform them so as to achieve its most
important objectives in a timely manner.
Therefore, we view real-time performance as a
problem in intelligent control. We propose
control requirements and present an architecture
to address them. We are evaluating the
architecture in several experimental
applications, one of which-the Guardian system
for intensive care monitoring~we describe here.

1. Adaptive Intelligent Systems

Adaptive intelligent systems ("agents")
perform multiple concurrent tasks requiring
both knowledge-based reasoning and interaction
with dynamic entities in real time. Tasks
requiring such agents occur in diverse domains,
such as: power plant monitoring [Touchton,
1988], process control [d'Ambrosio, et al.,
1987, Pardee, et al., 1990], experiment

This research was supported by DARPA contract
N00039-83-C-0136, with supplementary funding
from NIH contract 5P41-RR-00785, EPRI contract
RP2614-48, and AFOSR contract F49620-89-C-
0103DEF, and gifts from Rockwell International, Inc.
and FMC Corporation, Inc. Thanks to Ed Feigenbaum
for Sponsoring the work at the Knowledge Systems
Laboratory. This paper incorporates information
from earlier papers [Collinot and Hayes-Roth, 1990,
Hayes-Roth, 1990, Hayes-Roth, et al., 1989a].

monitoring [O'Neill and Mullarkey, 1989],
student tutoring [Murray, 1989], aircraft pilot
advising [Washington and Hayes-Roth, 1989],
and medical monitoring [Fagan, 1980, Hayes-
Roth, et al., 1989a]. To perform such tasks, an
agent must possess capabilities for: perception-
acquiring and interpreting sensed data to obtain
knowledge of external entities; cognition--
knowledge-based reasoning to assess situations,
solve problems, and determine actions; and
acf/on-actuating effectors to execute intended
actions and influence external entities. Because
external entities have their own temporal
dynamics, interacting with them imposes a
periodic hard and soft real-time constraints on
the agent's behavior.

In a complex environment, an agent's
opportunities for perception, action, and
cognition often exceed its computational
resources. While faster hardware or software
optimization may solve this problem for selected
applications, they will not solve the general
problem of limited resources or obviate its
concomitant resource-allocation task [Smith and
Broadwell, 1988]. For an agent of any speed, we
can define tasks whose computational
requirements exceed its resources. Moreover, we
seek more from an intelligent agent than
satisfactory performance of a predetermined task
for which it has been optimized. Rather, we seek
satisfactory performance of a range of tasks
varying in required functionality, available
knowledge, and real-time constraints. We seek
adaptation to unanticipated conditions and
requirements. Other things being equal, the
broader the range of tasks an agent can handle and
the wider the range of circumstances to which it
can adapt, the more intelligent it is. Thus, we
view real-time performance as a problem in
intelligent control. An agent must use knowledge
of its goals, constraints, resources, and
environment to determine which potential

422

operations to perform at each opportunity. When
the operations required to achieve goals exceed
available resources, the agent may have to modify
goals as well. Because it is situated in a dynamic
environment and faces a continuing stream of
events, an agent must make a continuing series of
control decisions so as to meet demands and
exploit opportunities as they occur. In general, an
agent should use intelligent control to produce the
best results it can under real-time and other
resource (e.g., information, knowledge)
constraints.

Our conception of real-time performance in
intelligent agents differs from other views. We do
not view real-time performance as a provable,
guaranteed, universal property of the agent. Nor
do we seek real-time performance through
engineering of the agent for narrowly specified
task environments. We feel that these constructs
are premature and probably unrealistic for the
versatile and highly adaptive agents we envision.
Rather, we view real-time performance as one of
an agent's several objectives, which it will
achieve to a greater or lesser degree as the result
of interactions between the environment it
encounters, the resources available to it, and the
decisions it makes. In many cases, the agent will
produce timely results for a task only at the
expense of quality of result or by compromising
the quality or timeliness of its performance of
other tasks. As the agent's competence expands, so
will its need to make such compromises.

2. Requirements for Real-Time Control in
Intelligent Agents

Following [Rosenschein, 1989], we model an
intelligent agent as a dynamic embedded system,
modeled as a time series of states.with instants of
time mapped to a state space of variable values. A
change in the value of a variable is an event, e.
The system's behavior is described with
measurements defined as functions on state
values. Because the system is dynamic, we
describe properties of both individual states and
time series of states. Descriptive measurements
represent objective properties, for example the
importance of an event e1 or the latency of event
e2 following the occurrence of e1. Utility
measurements represent valuational properties,
for example the satisfaction of particular
constraints on the latency of e2. We partition the
overall system into components representing the
intelligent agent, /, and the environment, E. Each
component has its own dynamic state, which

varies as a function of information passed among
its internal components, as well as information
received from the other component. We further
partition the agent, /, into components for
perception, P, cognition, C, and action, A, which
similarly manifest events generated internally or
by other components. To describe interactions
between components, we refer to pairs of trigger
and response events, where both events occur in
one component but presumably are mediated by
interaction with another component. For example,
a trigger-response pair in E may be mediated by
events in /. In some cases, we refer simply to a
mediated event, for example an /-mediated event
in E.

In the terms of our framework, intrinsic
characteristics of an agent's environment may be
defined as measurements on events in E, while
characteristics of the relationship between an
agent and its environment may be defined as
measurements on events in E and /. For example:
Data Glut. The agent cannot process all potentially
interesting events in the environment. The
average rate of events in E very much exceeds the
maximum rate of E-mediated events in /. Data
Distribution. Important environmental conditions
may correspond to configurations of events on
different state variables and over variable time
intervals. This can be described as particular
kinds of many-to-one mappings of events in E to
events in /. Diversity of Events. Environmental
conditions vary in importance. This can be
expressed as the variability of values on an
"importance" attribute of events in E. Real-Time
Constraints. The values of events vary, in part, as
a function of when they occur. This can be
expressed in terms of utility measurements that
incorporate the absolute or relative times of
occurrence of events in E. Multiplicity of
Conditions. We cannot enumerate all interesting
conditions the agent will encounter, the set of E-
mediated events in /that produce criterial values
on some measurement. Predictability. The
environment permits probabilistic prediction of
some future events. This can be expressed as
descriptive measurements on particular patterns
of events in E. Potential Interactions. Globally
coordinated courses of action are sometimes
superior to sequences of locally determined
actions. This can be expressed as utility
measurements on particular patterns of /-
mediated events in E. Underlying Model. Some
knowledge of the environment is available,
expressed as descriptive measurements on the
correspondence between patterns of state values

423

or events in E and /. Diverse Demands. Multiple
interacting demands for interaction with the
environment include: interpretation, diagnosis,
prediction, reaction, planning, and explanation.
These can be expressed as utility measurements
on particular types of /-mediated events in E.
Variable Stress. The environment varies in stress
over time. This can be operationalized as
descriptive measures involving particular
environmental variables, for example, the rate of
important events or the number and types of
different demands for interaction.

We define the primary objective of an agent
very generally: To maintain the utility of its
behavior within an acceptable range over time.
For a given agent in a given environment, we
could formalize this requirement as utility
measurement on /-mediated events in E and on
events in / to constrain resource management.
Although we could use this measurement to
evaluate the agent's behavior in the given context,
it would provide little guidance toward the design
of effective agents. We need a more specific set of
requirements to constrain the space of possible
agent architectures. For example:
Communications. For / to interact with E, there
must be communications involving /"s
components, with information passing from E to
P, from P to C, from C to A, and from A to E.
Asynchrony. Given data glut and real-time
constraints, the agent must function
asynchronously with the environment. Event
rates in / and E and in in P, C, and A must be
independent. Selectivity. Given data glut and event
diversity in £, the agent must determine whether
and how to perceive, reason about, and act upon
different events. Other things being equal, the
conditional probability of an /-mediated response
in E, given its trigger event, should be an
increasing function of the trigger event's
importance. The same holds for events in P, C,
and A. Recency. An agent's sensory information is
perishable, the utility of its reasoning degrades
with time, and the efficacy of its actions depends
upon synchronization with fleeting external
events. Therefore, recency is one important
selectivity criterion. This can be expressed as a
sharply decreasing conditional probability of an
/-mediated response event in E, given its trigger
event, over time. The same holds for events in P,
C, and A. Coherence. The agent should produce a
globally coordinated course of action when that is
preferable to locally determined actions. We
impose utility measurements on certain patterns
of /-mediated response events in E, as well as on

mediated response events in P, C, and A. Other
things being equal, we require a low conditional
probability of mediated response events, given
associated trigger events, when those response
events would not fit an ongoing pattern.
Flexibility. Conversely, the agent must react to
important unexpected events in a dynamic
environment. Other things being equal, we
require a high conditional probability for an /-
mediated response event in E, even if it does not
fit an ongoing pattern, given a very important
trigger event. The same holds for anomalous
response events in P, C, and A. Responsiveness.
Other things being equal, the more urgent a
situation is, the more quickly the agent should
perceive, reason, and act. That is, the latency of
an /-mediated response event in E, following its
trigger event, should decrease as the urgency of
the trigger event increases. Similar constraints
apply to response events in P, C, and A.
Timeliness. Given its dynamic environment, the
agent must meet various hard and soft real-time
constraints on the utility of its behavior. These
may be expressed as utility measurements
involving latencies within /-mediated pairs of
trigger and response events in E. Similar
measurements could be applied to events in P, C,
and A. Robustness. An agent must adapt to
resource-stressing situations by gracefully
degrading the utility of its behavior. As
environmental stress increases (e.g., as event
rates increase or maximum trigger-response
latencies decrease), the global utility of the
agent's behavior (e.g., the rate of /-mediated
response events in £, weighted by importance)
should decrease gradually, rather than
precipitously. The same holds for interactions
among P, C, and A. Scalability. In the terms of our
framework, the agent's satisfaction of the
requirements above (but perhaps not its absolute
level of performance on any one task) should be
invariant over increases in problem size.
Development. An agent must exploit new
knowledge to improve the utility of its behavior.
As relevant knowledge in / increases, we should
observe improvement in the agent's satisfaction
of some of the above requirements and, therefore,
in the global utility of its behavior.

3. Proposed Agent Architecture

The BB1 "dynamic control architecture"
(Figure 1) [Hayes-Roth, 1985, Hayes-Roth,
1989a, Hayes-Roth, 1990] has concurrent
systems for perception, action, and reasoning. A

424

Communication
Interface

MMMMtHMMMNMBiMMMMMH

IJDisplay Driverl|
Perceptual

Preprocessor llll

t
Patient,

Laboratory
Ventilator,
Simulation

Figure 1. Proposed Agent Architecture: BB1

communications interface asynchronously relays
data among their I/O buffers [Hewett and Hayes-
Roth, 1989]. Perception systems acquire
information about the environment as a basis for
reasoning and action [Boureau and Hayes-Roth,
1989, Washington and Hayes-Roth, 1989]. Each
sensor acquires signals of a certain type,
transduces them into an internal representation,
and holds the results in a limited-capacity buffer.
The preprocessor retrieves these results and then
abstracts, annotates, and filters them, according
to dynamic instructions from the reasoning
system, and places the results in its output buffer
for relay to the input buffer of the reasoning
system or an action system. For example, a

preprocessor might abstract a sequence of
numerical values of a variable into the value
class "high" and the trend "rising," annotate
these observations as "not relevant to ongoing
tasks," but "very important" and "very
urgent," and relay them to the reasoning system
immediately. BB1 also adapts the global rate at
which its preprocessor sends new observations,
given changing reasoning activities. Thus,
perception systems shield the reasoning system
from data overload and maximize its vigilance
within the available resources, providing the
most useful information available in a compact,
readily useable form. Action systems control the
execution of actions to affect the environment

425

based on perception and reasoning. Each driver
monitors its input buffer, retrieves intended
actions, translates them into executable programs
of effector commands, and controls their
execution by sending commands to its effector at
appropriate times. Each effector immediately
executes commands in its input buffer. Thus,
action systems relieve the reasoning system of
the burden of managing low-level details of action
execution. BB1 supports graduated reactions.
Very fast peripheral reactions occur within a
perception or action system, producing input-
driven attentional shifts or feedback control of
actions. Fast reflex reactions occur across
perception-action arcs, with perceptual
information directly driving action execution.
Slower cognitive reactions involve all three kinds
of systems, with cognition mediating the
performance of actions in response to perceived
information. Absolute response latencies at each
level depend on the implementation.

In the reasoning system [Hayes-Roth, 1985,
Hayes-Roth, 1990], operations occur in the
context of a global memory, which represents
perceptual inputs, factual knowledge, reasoning
knowledge, and reasoning results in a conceptual
graph formalism. For example, an agent might
have factual knowledge of the structure and
function of certain physical systems and
reasoning knowledge of the operations and
strategies involved in diagnosis, prediction,
planning, or other tasks. Reasoning results
include diagnoses, predictions, plans, etc. These
are organized in an interval-based time-line
representation, distinguishing phenomena that
have occurred, are expected, or are intended. For
example, an agent might record that "diagnosis:
kinked tube occurred at 0159" explains
"observation: rising PIP occurred during 0159-
0200" and that "action: tube straightening
occurred at 0201" will cause "observation:
falling PIP expected by 0202." The global
memory also contains input buffers for data sent
by perception systems and output buffers for
intended actions sent to action systems. Finally, it
contains information regarding the agent's
cognitive behavior: cognitive events, agenda,
control plan, and next operation, discussed below.

BB1 performs reasoning operations that are
suggested by and make changes to information in
the global memory. Its satisficing cycle [Collinot
and Hayes-Roth, 1990, Hayes-Roth, 1990]
iterates three steps: (1) The agenda manager uses
recent important perceptual and cognitive events
and the current control plan to identify and rate a

few of the most important reasoning operations,
recording them on the agenda. (2) The scheduler
uses the control plan to determine when to
interrupt agenda management and which operation
to execute, recording it as the next operation. (3)
The executor executes the next operation,
producing cognitive events that represent: new
perceptual filters or intended actions in output
buffers; new inferences or conclusions for
ongoing reasoning tasks; or new control decisions
that initiate, terminate, or modify strategies for
reasoning tasks. By controlling resource
allocation at its fundamental unit of computation,
the satisficing cycle enables Guardian to
guarantee real-time responses to selected events.

Dynamic control planning determines the
utility-quality and timeliness--of perception,
reasoning, and action [Collinot and Hayes-Roth,
1990, Hayes-Roth, 1985, Hayes-Roth, 1990]. A
control plan is a temporally organized pattern of
control decisions, each describing a class of
operations to be performed, under specified
constraints, during some time period. Control
operations, which are triggered by events and,
when executed, generate or modify control
decisions, construct control plans incrementally.
They guide the scheduling of reasoning operations.
Thus, an agent can construct and follow plans, but
also change its plans, given a changing
environment. Control plans also modulate the
speed-quality tradeoff in the satisficing cycle.
They determine the order in which reasoning
operations are identified and the associated
interrupt conditions, so that an agent can execute
a "good enough" operation as soon as possible or
the "best available" operation when a deadline
occurs. Finally, control plans focus the attention
of perception systems. For example, given a plan
to diagnose a particular problem, the agent would
increase its attention to relevant data. Given a
plan to perform computationally demanding
reasoning tasks, it would lower its global input
data rate by adjusting rates for different
variables according to their relevance,
importance, and urgency.

4. Satisfaction of Real-Time Control
Requirements

The proposed agent architecture is addresses
the requirements above: Communications.
Information passes from the environment to
perception subsystems, from perception
subsystems to cognition and action subsystems,
and from the cognition subsystem to perception

426

and action subsystems. Asynchrony. Parallel
subsystems, with buffered communications,
provide asynchronous perception, cognition,
action. Selectivity. Limited-capacity event
buffers selectively favor "high priority" inputs-
-those that are recent, relevant, important, and
urgent. Perception/action subsystems selectively
process high priority sensed data and intended
actions. The agenda manager selectively triggers
and schedules high priority operations. Dynamic
control plans selectively favor high priority
reasoning tasks and establish associated focus of
attention parameters. Recency. Limited-capacity
buffers with best-first retrieval and worst-first
overflow favor recent items, as does the heuristic
best-first agenda manager. Coherence. Dynamic
control plans provide a global focus of attention to
coordinate perception, cognition, and action over
time. They also strategically organize reasoning
operations within a task and among concurrent
reasoning tasks. Flexibility. Exceptional events
can override global focus of attention in
perceptual preprocessors or the cognitive
system. Responsivity. Graduated reactive
responses-peripheral, reflex, and cognitive
responses-span a range of latencies. Within
cognitive responses, additional gradations are
supported. The agenda manager can control cycle
time. Dynamic control planning can establish
deadlines and discriminate among alternative
reasoning methods strategies. Timeliness.
Satisfying each of the requirements discussed
above contributes to an agent's timely response to
the most important events. In addition, dynamic
control planning allows an agent to reason
explicitly about the time requirements of
alternative operations and the time constraints on
its behavior. Robustness. Satisfying many of the
requirements discussed above entails gracefully
trading amount of computation, and therefore,
expected quality of response, against latency of
response. Scalability. Several aspects of the
architecture are designed to accommodate changes
in scale. For example, perceptual preprocessing
and focus of attention will protect the agent
against increasing perceptual overload. Given a
discriminating control plan, the satisficing cycle
will produce stable cycle times regardless of
increases in problem size. Development.
Increases or improvements in knowledge should
improve the agent's ability to meet several of
these requirements. For example, improvements
in its control knowledge should enable it to focus
perceptual attention more effectively, improve

the strategic control of its reasoning, and execute
higher-priority operations more rapidly.

5. The Guardian Application

Given our research goal to develop a general
architecture for intelligent agents, experimental
development of agents that operate in diverse
domains is a major part of our research. Each
new domain tests the sufficiency and generality of
the current architecture and presents new
requirements for subsequent versions. We are
now studying monitoring agents for
semiconductor fabrication [Murdock and Hayes-
Roth, 1990], power plant maintenance, and
medical monitoring [Hayes-Roth, 1989a]. To
illustrate how agents are implemented within the
proposed architecture, consider Guardian.

Guardian monitors simulated intensive-care
patients who have temporary failure of one or
more organ systems, which is treated with life-
support devices that assume the functions of the
ailing system until it heals. For example, the
ventilator is an artificial breathing machine that
augments the patient's own breathing. Life-
support devices are adjusted based upon frequent
patient observations. Some observations are made
continually and automatically, for example,
measurements of air pressures and air flows in
the patient-ventilator system. Other observations
are made intermittently. Blood gases, for
example, are measured once every hour or so,
while chest xrays are usually taken once or twice
a day. Based on patient observations, device
settings are adjusted to vary the amount of
assistance the device provides. For example,
ventilator settings determine the number of
breaths delivered to the patient per minute, the
volume of air blown into the patient's lungs on
each breath, and the amount of oxygen in the air.
Other therapeutic actions might include adjusting
a ventilator tube, clearing the patient's air
passages, administering drugs, etc. The short-
term goal of SICU monitoring is to keep the
patient as comfortable and healthy as possible, to
diagnose and correct unexpected problems, and to
refine and execute the long-term therapy plan,
while progressing toward therapeutic objectives.
The long-term goal is to withdraw life-support
devices gradually so that the patient eventually
can function autonomously.

Guardian's task instantiates the requirements
for real-time control. Because it has access to
many automatically sensed patient data variables
and because it can reason about and act upon these

427

observations in many different ways, it must
selectively perceive important patient data and
perform key reasoning operations that contribute
to its most important actions. Because the patient
embodies a dynamic physical process, Guardian
must asynchronously perceive patient data,
reason about the patient's condition, and perform
therapeutic actions. To insure that its behavior is
current, it must "forget" unrealized past
opportunities for perception, reasoning, and
action in favor of present opportunities. To
achieve longer-term goals, Guardian must enact a
coherent pattern of perception, reasoning, and
action over time. On the other hand, uncertain
changes in the patient's condition require
flexibility and adaptation. Guardian must respond
to patient conditions of varying urgency; other
things being equal, the more urgent the patient's
condition is, the more quickly it must perceive
relevant information, perform necessary
reasoning, and execute appropriate actions.
Guardian must satisfy a variety of hard and soft
real-time constraints on the utility of its
behavior. Because it encounters situations that
strain or exceed its capacity-too many signs and
symptoms, interpretation, diagnosis, prediction,
and planning tasks, and therapeutic actions-its
performance must degrade gracefully, not
precipitously. Guardian must maintain the quality
of its behavior as we scale up to more realistic
problems and improve the utility of its behavior
with more knowledge.

Guardian currently monitors a simulated
patient. A single perceptual preprocessor
manages its perception of twenty automatically
sensed variables, with an average overall rate of
one value per second. It also perceives
irregularly reported lab results and messages
from human users. Each one, if passed to the
cognitive system, would trigger several cognitive
operations, whose execution would produce
several cognitive events and trigger new
operations. Although this is not a high data rate in
absolute terms, it is beyond Guardian's current
cognitive capacity, one operation every couple of
seconds. Moreover, we anticipate that Guardian's
sensory activity will increase from twenty to one
hundred automatically sensed variables, each
sensed at least once per second. There will be at
least twenty irregularly sensed data variables.
Thus, Guardian faces significant and growing
perceptual overload.

To avoid falling behind real time, Guardian's
perceptual preprocessor applies dynamic
abstraction, filtering, and annotation parameters

sent by the cognitive system. It abstracts
numerical data values into value classes and
trends. It assigns data values to three levels of
importance: life-threatening, abnormal, and
other. It distinguishes data that are relevant to
ongoing reasoning activities from those that are
not relevant. It distinguishes three levels of
urgency: events that permit an effective response
within four minutes, one hour, or longer. It
filters data based on criterial value changes
within deadlines. Thus, the cognitive system can
bound the variability of unsent intervening
values. Using these mechanisms, the
preprocessor typically reduces sensed data rates
by over 90%, maintaining an average overall
perception rate of approximately one perceptual
input every twenty-two seconds, without
reducing solution quality [Washington and Hayes-
Roth, 1989]. Additional selectivity is provided by
the cognitive system itself.

Guardian has a wide range of medical
knowledge including: knowledge of meaningful
classifications and trends of the currently sensed
patient variables; knowledge of a twenty-node
hierarchy of respiratory disease conditions, along
with their likely signs and standard treatments;
knowledge of the normal structure and function of
the respiratory, circulatory, pulmonary
exchange, tissue exchange, and tissue metabolism
systems and the ventilator; knowledge of the
normal and abnormal structure and function of
abstract flow, diffusion, equilibrium, and
metabolic systems; knowledge of prototypical
therapeutic protocols for managing a small
number of evolving disease conditions; knowledge
of the importance and urgency of particular
observations and diagnoses; knowledge of the
precondition, results, and time required to
perform a number of therapeutic actions.

Guardian knows how to perform several
reasoning tasks: interpretation of time-varying
data, diagnosis of observed signs and symptoms,
selection of corrective actions for diagnosed
conditions, prediction of future patient
conditions, explanation of observations,
diagnoses, and predictions, and dynamic therapy
planning. For most of these, it has both
associative and model-based methods. Associative
methods use clinical knowledge and permit quick
responses to familiar situations. Model-based
methods use more fundamental biological and
physical knowledge and permit more thorough
(and time-consuming) responses to both familiar
and unfamiliar cases. Each method is implemented
as a set of abstract reasoning operations that are

428

triggered by particular kinds of perceptual or
cognitive events, along with control operations
that construct resource-bounded control plans in
particular contexts. The results of all reasoning
activities are recorded in temporally organized
episodes in the global memory.

Depending on the circumstances, Guardian
may be logically capable of pursuing many
different reasoning tasks with both associative
and model-based methods. Given the real-time
constraints on its behavior, however, Guardian
typically must be quite selective about which
tasks it pursues and how it allocates reasoning
resources among them. Accordingly, it uses
strategic knowledge to construct a dynamic global
control plan that differentially favors the
triggering and scheduling of executable operations
involved in competing reasoning tasks.

For example, in one scenario, Guardian
observes that a post-operative patient has low
body temperature. It makes a global control
decision to perform a sequence of reasoning tasks:
diagnose the low temperature as a normal result
of post-operative status; predict a spontaneous
rise in temperature to normal over a period of
hours; infer undesirable consequences of low
temperature, low arterial C02 rising to normal
with temperature; and plan and execute a
sequence of changes to breathing rate coordinated
with body temperature to maintain normal
arterial C02. For each task, Guardian makes local
control decisions about whether to apply
associative or model-based reasoning methods and
how to organize its reasoning. At the same time,
its global control plan allows it to incorporate
new perceptions, but not to reason about most of
them as they are less important than ongoing
activities. However, Guardian does respond to a
request for explanation of the relationship among
temperature, breathing rate, and arterial C02 in
terms of the underlying anatomy and physiology.
And it subsequently interrupts all of these tasks-
-diagnosis, prediction, planning, and
explanation-when it observes very high peak
inspiratory pressure, a life-threatening
condition with a four-minute deadline. Guardian
makes a new global control decision to direct all
of its resources to correcting this condition as
quickly as possible. As a result, its perceptual
preprocessor refocuses to favor data relevant to
the high peak pressure. Its agenda manager adopts
a shorter deadline to insure quick reasoning. And
its satisficing cycle favors associate reasoning
operations that quickly diagnose and correct the
high peak pressure. Given these adaptations,

Guardian very quickly performs a sequence of
operations: diagnose the immediate problem,
inadequate ventilation; increase the breathing
rate so the patient will get enough oxygen and the
deadline will be extended; diagnose the underlying
problem, pneumothorax (hole in the lung);
perform the appropriate action, insert a chest
tube to release accumulated air in the chest
cavity; reduce the breathing rate now that the
pressure is relieved; confirm that the pressure
is normal; and confirm that the blood gases are
normal. Once the problem is solved, Guardian
makes a new global control decision to resume its
interrupted activities, adapting them as
necessary to results of intervening events.

Several display drivers manage Guardian's
dynamic graphical displays of: patient history;
reasoning and results of diagnosis, prediction,
planning, and explanation; and control reasoning.

6. Evaluation of the Proposed Architecture

Guardian's evolution through four
demonstration systems shows its expanding
competence. In Demonstration 1, Guardian had
factual knowledge for only the respiratory
system, the ventilator, an abstract flow system,
and two types of flow system faults, blockage and
leakage. It had reasoning knowledge for
associative and model-based diagnosis and model-
based explanation. It monitored eight patient data
variables and diagnosed and explained kinked tube
and one-sided intubation problems. As described
above, by Demonstration 4, Guardian had
substantially more factual and reasoning
knowledge and handled a much more complex
scenario. In fact, each scenario represents a class
of scenarios that Guardian can handle, the breadth
being determined by the extent of Guardian's
medical knowledge relevant to the capabilities
being demonstrated. For example, in
Demonstration 4, one capability is to respond
under severe time constraints, in the context of
important ongoing activities, to an unanticipated
critical problem. We demonstrate that by
Guardian's response to a pneumothorax when it
already is performing several important
prediction, planning, and explanation tasks.
However, Guardian actually can respond
effectively to the unanticipated occurrence of any
critical condition currently in its clinical
knowledge, in the context of any combination of
ongoing prediction, planning, and explanation
activities involving its current knowledge.
Demonstrating Guardian over successive

429

scenarios gives evidence of the essential
correctness, extensibility, and scalability of its
underlying approach. Demonstrations 1, 2, and 3
entailed significant changes to Guardian's
architecture and knowledge representation.
Demonstration 4 required additions only to its
reasoning skills and factual knowledge. Although
we expect to make continuing improvements at all
levels of Guardian, most future improvements
will be at higher knowledge levels.

We evaluated the real-time interactions of
Guardian's perception, action, and reasoning
systems [Hewett and Hayes-Roth, 1989]. Our
experiment shows constant communication
latencies among the systems over a range of
activity within each system and vice versa.
Absolute latencies are determined by processor
speed, network speed, and program optimization.
Thus, within the ranges tested, Guardian achieves
true concurrency and asynchrony of perception,
action, and reasoning. We also evaluated the real-
time performance of Guardian's perception
system [Boureau and Hayes-Roth, 1989,
Washington and Hayes-Roth, 1989]. One
experiment showed that adaptation of filtering
thresholds, based on dynamic load and focus of
attention in the reasoning system, reduced input
data by 94% on average, with no reduction in the
quality of the reasoning results. A second
experiment showed that knowledge-based
prioritizing of input data allows Guardian to meet
deadlines for critical observations over a range of
data rates, compared to a control condition in
which critical observations are lost under high
data rates. Thus, Guardian's perception system
effectively shields Guardian from input
variability and overload, while maintaining
responsiveness to critical data.

We evaluated Guardian's reasoning [Collinot
and Hayes-Roth, 1990] about four key events in
Demonstration 4: observed low temperature
requires prediction of future temperature
changes and causal implications; inferred low
PaC02 requires planning of rate changes to keep
PaC02 in normal range; the user's request
requires explanation of how low temperature and
normal breathing rate cause low PaC02; and
observed high PIP requires diagnosis of the
underlying pneumothorax and insertion of a chest
tube. The high PIP event is highly critical
because it is potentially life-threatening. The
other events are moderately critical. We made
component measurements of the correctness,
specificity, timeliness, and selectivity of
Guardian's response to each event. We measured

the global utility of Guardian's performance by
integrating component measurements according to
two rules. Under rule 1, global utility is the sum
of products of event criticality and response
quality (correctness, specificity, and timeliness)
for the four events. Rule 2 introduces a condition:
If Guardian responds correctly, specifically, and
within deadline to highly critical events, then
global utility is as defined in rule 1; otherwise
global utility is 0. The results show that Guardian
responded correctly, specifically, and within
deadline to all key events and responded more
selectively and more quickly to the high PIP than
to less critical events. As a result, the global
utility of its performance over the complete
scenario was quite high by both integration rules.
By contrast, a comparison system having a "less
intelligent" architecture, but the same factual
knowledge and reasoning skills, failed to respond
correctly, specifically, or within deadline to
some events-in particular the highly critical
event, high PIP. As a result, its global utility was
lower by both integration rules, especially the
second rule where its failure to respond to the
high PIP gave a global utility of 0.

We made the above measurements while
systematically manipulating input data rates and
knowledge base size [Collinot and Hayes-Roth,
1990] . Results show that Guardian maintains
high values of all component measurements and
high global utility despite increases in data rates
or knowledge. By contrast, the comparison system
frequently failed to respond correctly,
specifically, or within deadline to key events,
especially the high PIP, and therefore produced
lower global utility as data rates or knowledge
increased. These results indicate Guardian's
robustness over increasingly complex monitoring
situations and scalability over increasing
amounts of knowledge.

7. Limitations of the Proposed Architecture

We must acknowledge that the proposed
architecture makes agents vulnerable to errors
that do not occur under some other architectures.
By definition, the architecture's real-time
control mechanisms-its perceptual filtering,
limited capacity I/O buffers, dynamic control
planning, focus of attention, and satisficing
cycle-allow an agent to ignore many
opportunities to perceive, reason, and act and to
perform sub-optimal operations. In general, the
agent allocates limited computational resources
among competing activities in proportion to their

430

urgency and importance. In many cases, this will
not affect the global utility of the agent's
performance. In others, it will produce
acceptable degration in particular aspects of
performance. In extreme cases, however, an agent
might decide prematurely to perform costly,
ineffective, or counterproductive operations; or
it could fail to perform highly desirable
operations that are well within its capabilities.
Nonetheless, we hypothesize that, if we wish to
build agents that function well in complex real-
time environments, we must forego optimality in
favor of effective management of complexity
[Simon, 1969]. Allowing the possibility of
occasional, more or less consequential error is a
necessary concession toward that end.
Formulating control knowledge that allows an
agent to meet important real-time performance
requirements while minimizing the impact of
incompleteness and suboptimality is a primary
objective of our research.

8. References

[Ash, et al., 1990] Ash, D., Vina, A., Seiver, A.,
and Hayes-Roth, B. Action-oriented diagnosis
under real-time constraints. Procs. of the
International Workshop on Principles of
Diagnosis, 1990.

[Boureau and Hayes-Roth, 1989] Boureau, L,
and Hayes-Roth, B. Deriving priorities and
deadlines in real-time knowledge-based
systems. Procs. of the IJCAI89 Workshop on
Real-Time Systems, 1989.

[Collinot and Hayes-Roth, 1990] Collinot, A., and
Hayes-Roth, B. Real-time control of
reasoning: Experiments with two control
models. Stanford Unversity: KSL Report 90-
17, 1990.

[d'Ambrosio, et al., 1987] d'Ambrosio, B.,
Fehling, M.R., Forrest, S., Raulefs, P., and
Wilbur, M. Real-time process management
for materials composition in chemical
manufacturing. IEEE Expert. 1987.

[Fagan, 1980] Fagan, LM. VM: Representing
time-dependent relations in a medical setting.
PhD Dissertation, Stanford University, 1980.

[Goto and Stentz, 1989] Goto, Y., and Stentz, A.
Mobile robot navigation: The CMU system.
IEEE Expert. Volume 2, 4, 44-54, 1989.

[Hayes-Roth, et al.,1979] Hayes-Roth, B.,
Hayes-Roth,, F., Rosenschein, S., and
Cammarata, S. Modelling planning as an
incremental, opportunistic process. Procs. of
the IJCAI, 6:375-383, 1979.

[Hayes-Roth, 1985] Hayes-Roth, B. A
blackboard architecture for control. Artificial
Intelligence, 26:251-321, 1985.

[Hayes-Roth, 1990] Hayes-Roth, B.
Architectural foundations for intelligent
agents. Real-Time Systems: The International
Journal of Time Critical Systems, 2, 99-
125, 1990.

[Hayes-Roth, et al., 1989a] Hayes-Roth, B.,
Washington, R., Hewett, R., Hewett, M., and
Seiver, A., Intelligent real-time monitoring
and control. Procs. of the IJCAI, 1989.

[Hayes-Roth, 1989a] Hayes-Roth, B. A multi-
processor interrupt-driven architecture for
adaptive intelligent systems. Procs. of the
IJCAI89 Workshop on Real-Time Systems,
1989.

[Hayes-Roth, et al., 1989b] Hayes-Roth, B.,
Hewett, M., Washington, R., Hewett, R., and
Seiver, A. Distributing intelligence within a
single individual. In L Gasser and M.N. Huhns
(Eds.) Distributed Artificial Intelligence,
Volume 2. Morgan Kaufmann, 1989.

[Hayes-Roth, 1989b] Hayes-Roth, B. Making
intelligent systems adaptive. In K. VanLehn
(Ed.), Architectures for Intelligence.
Lawrence Erlbaum, 1989.

[Hayes-Roth, 1987] Hayes-Roth, B. Dynamic
control planning in adaptive intelligent
systems. Procs. of the DARPA Knowledge-
Based Planning Workshop, Austin, Texas,
1987

[Hewett and Hayes-Roth, 1989] Hewett, M., and
Hayes-Roth, B. Real-Time I/O in Knowledge-
Based Systems. In V. Jagannathan, R.T.
Dodhiawala, and L. Baum (Eds.), Current
Trends in Blackboard Systems. Morgan
Kaufmann, 1989.

[Hewett and Hayes-Roth, 1990] Hewett, R., and
Hayes-Roth, B. Representing and reasoning

431

about physical systems using generic models.
In J. Sowa, S. Shapiro, and R. Brachman
(Eds.) Formal Aspects of Semantic Networks.
Morgan Kaufmann, 1990.

[Johnson and Hayes-Roth, 1987] Johnson, M.V.,
and Hayes-Roth, B. Integrating diverse
reasoning methods in the BB1 blackboard
control architecture. Procs. of the AAAI,
1987.

[McTamaney, 1989] McTamaney, L.S. Mobile
robots: Real-time intelligent control. IEEE
Expert. 2:55-70, 1989.

[Murdock and Hayes-Roth, 1990] Murdock, J.,
and Hayes-Roth, B. Intelligent monitoring and
control of semiconductor manufacture. Procs.
of the Fifth Annual SRC/DARPA CIM-IC
Workshop, Berkeley, 1990.

[Murray, 1989] Murray, W. Dynamic
instructional planning in the BB1 blackboard
control architecture. In V. Jagannathan, R.
Dodhiawala, and L. Baum (eds.), Current
Trends in Blackboard Systems. Morgan
Kaufman,1989.

[O'Neill and Mullarkey, 1989] O'Neill, D.M., and
Mullarkey, P.W. A knowledge-based approach
to real time signal monitoring. Procs. of
the AAAI, 1989.

[Pardee, et al., 1990] Pardee, W. J., Schaff, M.
A., and Hayes-Roth, B. Intelligent control of
complex materials processes. Al in
Engineering, Design, Analysis, and
Manufacturing, 4:55-65, 1990.

[Rosenschein, 1989] Rosenschein, S.J., Hayes-
Roth, B., and Erman, L. Notes on
methodologies for evaluating IRTPS systems.
Procs. of the AFOSR Workshop on Intelligent
Real Time Problem Solving Systems. Santa
Cruz, 1989.

[Smith and Broadwell, 1988] Smith, D.M., and
Broadwell, M.M. The pilot's associate - An
overview. Procs. of the Eighth International
Workshop on Expert Systems and their
Applications, 1988.

[Sowa, 1984] Sowa, J. Conceptual Structures:
Information Processing in Mind and Machine;.
Addition-Wesley, 1984.

[Stankovic,1988] Stankovic, J.A.,
Misconceptions about real-time computing: A
serious problem for next-generation systems.
IEEE Computer, 21:10-19, 1988.

[Simon, 1969] Simon, H.A. The Sciences of the
Artificial. MIT Press, 1969.

[Touchton, 1988] Touchton, R.A. Reactor
emergency action level monitor. Technical
Report NP-5719, Electric Power Research
Institute, 1988.

[Washington and Hayes-Roth, 1989] Washington,
R., and Hayes-Roth, B. Managing input data in
real-time Al systems. Procs. of the IJCAI,
1989.

[Washington and Hayes-Roth, 1990] Washington,
R., and Hayes-Roth, B. Abstraction planning
in real time. Procs. of the AAAI Symposium on
Planning in Dynamic Uncertain
Environments, Palo Alto, 1990.

432

Specifying Complex Behavior for Computer Agents

Leslie Pack Kaelbling*
Teleos Research

576 Middlefield Road
Palo Alto, CA 94301

1 Introduction

Consider the problem of programming computer-
controlled agents to behave in complex environments.
These agents might be robot arms that assemble cars,
household assistants that do the laundry and take out
the trash, or database agents that schedule appoint-
ments and keep computer files up to date. Such agents
must interact with a world that is dynamic and is pre-
dictable in some respects but highly unpredictable in
others.

In recent years, a wide range of formalisms have
been developed for specifying behaviors for computer
agents, including the paradigms of the general notions
of "classical planning" and "reactive behavior." These
formalisms represent points in a complexity space that
has as two of its most important dimensions

• ease of expression of complex action strategies by
the human programmer

• efficiency of execution of formal behavioral speci-
fication by the agent

There is no single formalism that is most appro-
priate for all problems of agent behavior specifica-
tion. By studying the properties of various behavior-
specification formalisms and of the settings of particu-
lar problems, we can choose formalisms appropriately.

This paper will focus on three different methods for
specifying behaviors for agents: direct programming,
operator descriptions, and goal reduction rules. These
will serve as example formalisms that will allow us to
discuss ease of human programming, ease of automatic
execution, and the value of compilation.

2 Framework

In order to make the following discussion precise, we
must assume a concrete model of the agent's inter-
action with its environment. This discussion will be

'This work was supported in part by the Air Force
Office of Scientific Research under contract F49620-89-C-
0055DEF, in part by the National Aeronautics and Space
Administration under Cooperative Agreement NCC-2-494
through Stanford University subcontract PR-6359, and by
the Defense Advanced Research Projects Agency through
NASA contract NAS2-13229.

Figure 1: Framework for embedded computation, di-
vided into perception and action functions.

based on a model of computation in which an agent is
seen to perform a finite transduction from a stream of
input data into a stream of output data (this model
also forms the foundation of situated-automata the-
ory [Rosenschein, 1985, Rosenschein and Kaelbling,
1986]). The agent receives an input from the environ-
ment, updates its internal state as a function of the
input and the state value, then outputs that action,
effecting the world. This cycle happens at regular in-
tervals that are timed in a way that allows the agent
to keep pace with the important events in its environ-
ment (this pace may vary from 100 cycles per second
in an automatic-pilot system to 1 cycle per day in a
system that does inventory management in a store).

The job of an agent designer, then, is to specify
the state-update and output functions, which make
up the agent's program. We shall refer to them as the
perception and action functions, as shown in Figure 1.
We require the computation time of these functions to
have a finite upper bound. This bound will guarantee
that the agent can react with appropriate speed to
external events by having a bounded delay between
the arrival of any given input and the generation of
an output that depends on that input. This paper is
primarily concerned with the specification of the action
function.

Another popular computational model for embed-
ded agents is one of many concurrent processes. Typ-
ically, one process runs with a guaranteed fixed cycle
time, and its outputs can be influenced by the results
of other processes as they are completed. This is a
useful model, especially appropriate for machines with
coarse-grained processor parallelism, but it makes the
semantic analysis of the computation performed by the
agent quite difficult. The exact meaning of the result

433

of any computation depends crucially on how much
time has passed since the inputs to the computation
were sensed by the agent; this is more difficult to mea-
sure and keep track of in a concurrent-process model
than in the simple circuit model of Figure 1.

One important thing to note is that, in this frame-
work, "perceptual actions" that are performed to gain
information are not distinguished from actions in gen-
eral. One reason for treating all actions uniformly
is that perceptual actions may be externally indis-
tinguishable from other actions and use the same re-
sources: a robot may put its hand on a table to steady
the table or to find out if it is clear. We must, then,
consider all actions together in attempting to deter-
mine which one is most appropriate to execute.

This paper considers different ways in which pro-
grammers can specify the mapping from an agent's
perceptual state (current values of the internal state
and input vectors) into an action; we shall refer to
this mapping as the action map.

3 Specifying Action Maps

There is a wide variety of formalisms that may be used
by a human programmer to specify the action map for
an agent. It is widely held to be easier for humans to
program in formalisms that allow a modular, declar-
ative expression of the program, rather than a direct
procedural account. This point is discussed at length
by Winograd [Winograd, 1985] in connection with the
general knowledge-representation problem. This sec-
tion will address the use of three different types of
formalisms for specifying actions maps, leaving issues
of executability for discussion in the following section.

3.1 Direct programming

The most traditional method of supplying the action
map for an agent is to use the standard methods of
computer programming. Using a functional or pro-
cedural programming language, the programmer can
specify the function that should be computed to gen-
erate each new action.

In simple domains, especially those to which the
methods of control theory can be applied, this ap-
proach is quite adequate. In many domains, for exam-
ple, there is a simple numerical functional relationship
between output values and input values, which can be
easily specified in a traditional programming language.

Another situation for which this method is appropri-
ate is when the programmer has complete information
about the initial state of the world and about the ef-
fects of the agent's actions on the world. In this case,
the agent's program can typically be written as a list
of actions, which the agent executes one-by-one, ignor-
ing the input values from the world. Domains that are
this benevolent and understandable are rare, but the
approach has been used successfully for "sequencing"
unmanned space missions and for programming highly
constrained robotic assembly tasks.

In most other cases, the actions that an agent should
take are highly conditional on the perceptual state, re-
quiring a large and complex computer program. Of

course, any action map can be specified this way, but
direct programming can become very tedious and dif-
ficult for the programmer.

3.2 Classical Operator Descriptions

The standard artificial intelligence (AI) technique for
specifying an action map is to give a description of the
abilities of the agent, a description of a desired goal
state of the world, and a description of the initial state
of the world. From this information and the assump-
tion that the agent should act in such a way as to cause
the world to satisfy the goal-state description, it is pos-
sible to derive the next action that should be taken by
the agent by finding a string of actions that, if exe-
cuted starting in any state satisfying the initial state
description, will cause the world to be in some state
satisfying the goal state description. The agent's abil-
ities are typically described using an operator descrip-
tion language. In this language, each possible action
of the agent is characterized by a set of preconditions
and a set of postconditions. If the preconditions are
true in the world and the agent performs the action,
then the postconditions will be true in the world. The
descriptions of the initial and goal states of the world
do necessarily correspond to completely individuated
perceptual states. In general, they can be arbitrarily
general or specific. If the initial state description is
true, then the agent must act without assuming any-
thing about the initial state of the world. This process
is typically referred to as "planning" and has a large
related literature [Allen el ai, 1990].

Using operator descriptions to specify action maps
is very appealing. It allows the programmer to write
a declarative specification in terms of facts about the
world and the abilities of the agent; this makes the
task less like regular programming and (theoretically)
easier for non-professionals. Another benefit is that,
once the agent's abilities have been described in the
operator description language, generating a new action
map amounts to specifying new initial state and goal
state descriptions. Finally, this finite description of the
operators and the initial and goal states may engender
behaviors of arbitrary complexity; there is no bound
on the number of actions that can be strung together
to achieve the goal.

This approach has a number of drawbacks, as well.
First, the semantics of the operator descriptions can

rarely be satisfied in the real world. The effects of
low-level operations, such as sending a voltage to a
wheel in a mobile robot, cannot be modeled reliably
at a level of abstraction for which planning is appropri-
ate. Higher level actions that have non-deterministic
results might be usefully modeled with probabilistic
operator descriptions.

In addition, operator-description languages are typ-
ically oriented toward single goals of achievement, but
it is often useful to supply a goal of maintenance like
"don't spill the milk." Goals of maintenance could be
added to such a framework by adding a third compo-
nent to operator descriptions describing which condi-
tions are maintained. Although this extension is theo-

434

retically possible, it gives rise to an explicit version of
the frame problem [Hayes, 1990], in which a possibly
infinite number of maintained conditions would have
to be specified for each operation.

3.3 Goal Reduction Rules

There are many formalisms that lie between di-
rect programming and operator descriptions on the
procedural-declarative spectrum. One is goal reduc-
tion rules. Gapps [Kaelbling, 1988] is a declarative lan-
guage in which the programmer writes a set of instan-
taneous goal-reduction rules. These rules, together
with a top-level goal description, specify an action map
for the agent. The goal-reduction rules specify how to
take the top-level goal and, depending on the current
state of the world, reduce it to another top-level goal.
Eventually the reduction process bottoms out in an ac-
tion that is correct to execute given the current state
of the world.

The use of goal-reduction rules moves some of the
burden of "plan synthesis" from the agent to the pro-
grammer, but allows easy expression of many kinds of
action strategies that are difficult to encode using op-
erator descriptions. Take, as an example, the strategy
of hammering in a nail until it is flush with a board. It
might be possible to describe an operator hii-ihe-nail
that has as its post-condition that the nail is some
fraction of an inch farther into the board than it was,
or one called probably-hii-the-nail that 10% of the time
has as its postcondition that the nail is flush with the
board. Both of these uses of operator descriptions re-
quire fairly sophisticated plan synthesis methods. The
simple goal-reduction rule captures the commonsense
knowledge that if your goal is to have the nail be flush
with the board and the nail is not yet flush with the
board, you should hit the nail.

(defgoalr (ach nail-flush-with-board)
(if (nail-not-ilush-with-board)

(do hit-the-nail)
(do anything)))

Rather than saying exactly what the effects of an oper-
ation are, the user specifies under which environmen-
tal conditions an action is appropriately performed.
In the goal-reduction approach, the initial condition
of the world need not be specified; instead, the world
is monitored as the agent interacts with it, and each
action is selected on the basis of the currently per-
ceived state of the world rather than on its predicted
state. This makes it easy to specify action mappings
for domains in which the effects of individual actions
are quite unreliable.

One drawback of goal-reduction rules in compari-
son with operator descriptions is that the programmer
must provide a reduction rule for any primitive goal
that might occur. This is in contrast to the operator-
description approach, in which any formula in the for-
mal language used to specify the domain could, poten-
tially be used as a goal.

4 Executing Action Maps

Once the programmer has specified an action map, it
must be executed by the agent. The degree of difficulty
of this execution depends on the nature of the language
used to specify the map. It can vary from trivial to
nearly impossible. This section considers the compu-
tational aspects of executing specifications written in
each of the specification languages discussed above.

4.1 Direct programming

Languages used for direct programming are designed
to be compiled and executed directly by the agent's
computer. In using such languages, it is incumbent
upon the programmer to guarantee that the compu-
tation time for the state-update and action functions
is bounded. This problem can be avoided by using a
language, such as Rex [Kaelbling, 1987b] or a more
standard real-time programming language and oper-
ating system, that guarantees response time.

4.2 Operator Descriptions

Operator description languages are not directly exe-
cutable by an agent. The standard execution model is
to search for a sequence of actions that will take the
agent from any state satisfying the initial state descrip-
tion to some state satisfying the goal state description.
Having found this sequence, the agent should take the
first action. In order to avoid repeating this work,
this process is often divided into two phases: planning
and execution. In the planning phase, the search is
done and the chain of actions stored. In the execution
phase, the actions are simply emitted in sequence with
no regard to the state of the world. More sophisticated
systems of this type perform "execution monitoring"
in which the planning phase records the expected state
of the world between the actions. The execution phase
then monitors the execution of the plan, making sure
that the world satisfies the descriptions of the expected
intermediate states. If it does not, the system reverts
to the planning phase with a description of the current
state of the world as the initial state.

Chapman has shown that the planning phase in such
a system is, in the general case, undecidable [Chap-
man, 1987]; for very restricted operator-description
languages, it is merely intractable, with the time it
takes to find a plan increasing exponentially in the
number of operators. Because the agent must com-
plete the planning phase before it takes its first action,
this sort of execution of operator descriptions does not
satisfy the requirements of having a constant bound on
the reaction time of the agent. Additionally, an advan-
tage that we cited of operator-description languages,
that a small description could generate an arbitrarily
long program, is a detriment for execution, because ar-
bitrarily long programs take exponentially more time
to generate.

Also, if it takes too long to perform the planning
phase, the information upon which it was based, espe-
cially the initial state description, may change, inval-
idating the entire plan. A good execution monitoring
system might notice this before any wrong action was

435

taken and cause the planning phase to be re-entered,
but this kind of behavior makes the reaction time even
worse.

Despite the apparent intractability of executing op-
erator descriptions, there are at least two ways to limit
the total expressiveness of the language and make the
execution compatible with a requirement for guaran-
teed reaction time.

4.2.1 Using Space

If we are willing to limit the scope of planning to plans
of a fixed length, it is possible to do the search to
that depth in an amount of time that is bounded by
a constant. This can be thought of as expanding the
search tree in parallel to a fixed depth all at once;
hence, "using space." This process can be made even
more efficient (but no longer strictly correct) if a beam
search is used, assuming that at each level of the search
all but a certain number of candidate plans can be
pruned.

In this formulation of the planning problem, just the
first step of the plan is executed. The next time the
action function is called, the computation is repeated
and, again, the first step is executed. This planning
and execution style does no caching of plans and is,
therefore, not in danger of diverging from the expected
execution path in the world. The disadvantage is that
the time-constant required to do this computation may
be too large for many systems (on current hardware)
to keep up with their environment.

4.2.2 Using Time

An alternative to computing a fixed-length plan on
every cycle is to express the planning process as an
incremental computation, which is carried out over
the course of many calls to the action function. This
method of "using time" requires that state be used
in the computation of the action. On each call to the
action function, the planning process generates an out-
put, but it may be one that means "I don't have an
answer yet." After some number of cycles (depending
on the size of the planning problem) the planner will
generate a real result. This result might be cached and
executed as in a traditional system, or the agent might
simply take the first action and wait for the planner
to generate a new plan.

One advantage of organizing the computation this
way is that it allows the programmer to specify a hi-
erarchical action map. It may be that the best actions
for the agent to take are those specified in the opera-
tor description language (because it is easiest for the
human programmer to come to grips with the complex-
ity of the domain in this language), but that certain
instantaneous reflexive reactions can be specified in a
more direct way. The agent can then execute the plan-
ner and the reflex program in parallel, performing the
action suggested by the planner when there is one, and
otherwise heeding its reflexes. This need not happen
on just two levels; the general organization of such
a system with many levels is described by Kaelbling
[Kaelbling, 1987a].

We must still take care that the plan generated by
the planner, given that time has passed since it be-
gan its task, is appropriate for the situation in which
it is finished. This can be guaranteed if the planner
monitors the conditions in the world upon which the
correctness of its plan depends. If any of these condi-
tions goes false, the planner can begin again. This is
correct behavior, with the planner continuously emit-
ting the "I don't know" output and allowing the agent
to react reflexively to its environment if necessary.

Such a planner might generate a plan in the form
of a linear sequence of actions or a set of condition-
action rules. It is important to be able to evaluate
the validity of a plan as time passes, so that the plan-
ner may be reinvoked if the execution of the plan does
not take place as expected. One useful and robust
way to provide a validity test is to generate a directly
executable action map for some small part of the in-
put space that the agent is likely to find itself in as it
traverses a path from the current state to a goal state.
The plan becomes invalid when the world enters a state
for which the plan provides no action. Triangle tables
[Nilsson, 1985] were a solution of this type, but they
assumed that the likely deviations of the world from
the intended solution path would be, themselves, to
other states on that path. More general plans could
be constructed by making their scope (the number of
situations for which they have a reaction) somewhat
larger. How large they should be depends on the na-
ture of the domain and how likely the operators are
to do what they are expected to do. Given proba-
bilistic characterizations of the operators' effects, it is
possible to generate an action map such that if the
agent were to act according to the map it would, with
high probability, arrive in a goal state before finding
itself outside the domain of the map (a planning algo-
rithm with similar characteristics has been developed
by Drummond and Bresina [Drummond and Bresina,
1990]).

The kind of planner discussed above is a form of
an anytime algorithm [Dean and Boddy, 1988]. An
anytime algorithm always has an answer, but the an-
swer improves over time. In the example given above,
the answer is useless for a while, then improves in one
big jump. It might be useful to have planning algo-
rithms that improve more gradually. Such algorithms
exist for certain kinds of path planning, for instance,
in which some path is returned at the beginning, but
the algorithm works to make the path shorter or more
efficient. There is still a difficult decision to be made,
however, about whether to take the first step on a plan
that is known to be non-optimal or to plan for a while
longer.

4.3 Goal Reduction Rules

Given a set of goal-reduction rules, an action map is
specified by a top-level goal for the agent. The rules
can be "executed" by using them, on each call to the
action function, to reduce the top-level goal to a prim-
itive action that is suitable for the currently-perceived
state of the world. If the reduction rules are not re-

436

cursive, execution time has a bound linear in the num-
ber and size of the reduction rules. If they are recur-
sive, the goal-reduction process may not terminate, so
bounded reaction time cannot be guaranteed.

5 Compilation

We have seen that the high-level languages in which
it is convenient for human programmers to specify ac-
tion maps are often intractable for an agent to exe-
cute. Conversely, languages that can be efficiently ex-
ecuted tend to be tedious for human programmers to
use. It is possible to bridge this gap, to some degree,
by adding a compilation stage in which the language
used by the programmer to specify the action map is
translated into another language for execution by the
agent. This section discusses the compilation of action
maps specified as operator descriptions and as goal re-
duction rules, then considers when it is desirable to
perform this compilation.1

5.1 Compiling operator descriptions

Operator descriptions can be compiled into a directly
executable language. If the initial state description
and the goal state description are known at compile
time and the world is completely deterministic and the
operator descriptions absolutely correct, then compi-
lation can simply be planning. The result would be a
list of actions to be taken by the agent. This is a very
limited approach, because it assumes that the agent
has some fixed goal of achievement (unless the plan-
ner is a very sophisticated one, capable of synthesizing
plans with loops and conditionals, a goal of mainte-
nance would require an infinite list of actions).

When a description of the goal state is known, but
the initial state is not known or when the operator
descriptions are not completely reliable, descriptions
of the goal and the operators can be compiled into an
action map specified by a set of condition-action rules.
The rules map every possible situation into an action
that, according to the operator descriptions, is a useful
step toward the goal.

Schoppers' algorithm for synthesizing universal
plans [Schoppers, 1989] performs compilation of this
sort, although the reaction time of the compiled code
may not have a constant bound on execution time.

A disadvantage of compiling operator descriptions
into condition-action rules is that very large program
structures can result, and although they are as robust
as possible, the majority of the program will never be
consulted. Additionally, the top-level goal is frozen
into the compiled structure.

5.2 Compiling goal-reduction rules

The Gapps language includes an algorithm for com-
piling a set of goal-reduction rules and a top-level
goal into a set of condition-action rules. Whereas the

In the terms used by Russell to discuss knowledge com-
pilation [Russell, 1989], the methods described in this sec-
tion perform heterogeneous compilation, mapping knowl-
edge of types A, B, and F into knowledge of type D.

goal-reduction rules could not, in general, be executed
by the agent in bounded time, the condition action
rules are efficiently executable. To enable this com-
pilation, the top-level goal must be fixed at compile
time. It is still possible for the compiled program to
respond to externally specified run-time goals, but the
goal-reduction mechanism cannot be used at run time
[Kaelbling, 1988].

The Gapps compilation procedure described above
can be used, in conjunction with standard operators
described in terms of a regression function, to compile
a set of operator descriptions and a top-level goal into a
set of condition-action rules. This compilation method
requires that the operator descriptions be used to de-
fine a function (regress p alpha), which returns the
weakest condition in the world such that, if operator
alpha is executed, p will be true.

(defgoalr (ach p)
(if (regress p alpha)

(do alpha)
(ach (regress p alpha))))

This goal-reduction rule says that the goal of achieving
a condition p can be reduced to performing some ac-
tion alpha if that action will cause p to be true in one
step (the condition denoted by (regress p alpha));
otherwise, it can be reduced to the condition of being
one step away from p. If the Gapps compiler is modi-
fied to have a depth bound, so that only plans of finite
length may be considered, it will generate a partial ac-
tion map that has an action for every situation from
which the goal can be achieved in a number of steps
that is less than the depth bound.

5.3 Online versus Offline Compilation

There is a middle ground between compiling all of
the declarative structure and flexibility away and per-
forming large search computations on each action step.
When the agent can encounter a wide range of goals
or initial states at run time, it may be more effi-
cient to retain a compact declarative description of
the agent's abilities in terms of operator descriptions
or goal-reduction rules and use them to derive actions
at run time. This approach is an instance of a space
versus time trade-off. It would always be possible to do
the complete compilation in advance, but storing the
result could take a huge amount of space. In addition,
we have already seen that complete direct execution of
the declarative specification is intractable. Thus, for
each world, agent, and task specification there is an
appropriate degree of compilation.

An agent's behavior usually stems from the require-
ments of a number of constraints. They may be ever-
present constraints, such as not running out of power
or avoiding running into walls; they may be reflex con-
straints, such as pulling away from touching a hot ob-
ject; or they may be dynamic goal constraints, such
as going to the store to get a sandwich because some-
one asked you to. An intuitively reasonable place to
divide compilation from run-time interpretation is ac-
cording to when the constraints are known. Thus, all
of the agent's background and reflex constraints might

437

be compiled into a program that is intersected with
a program obtained by run-time interpretation asso-
ciated with a particular dynamic goal that has been
received by the agent. Another intuitive dividing line
would be to compile those parts of the agent's behav-
ior that are appropriate for the situations in which it
is most likely to find itself. If the agent finds itself
without a compiled response to a particular situation,
it can fall back on dynamic interpretation of high-level
structures.

Blythe and Mitchell have explored incremental com-
pilation methods in a mobile robot [Blythe and
Mitchell, 1989]. The robot uses a traditional planner
to solve problems initially, but it caches the results of
the planning as situation-action rules. Whenever the
robot re-encounters a situation, it can act reactively.
This is a relatively simple but reliable way to ensure
that the agent can react quickly to common occur-
rences.

6 Conclusion

The selection of a formalism for specifying the action
map of an embedded agent is much the same as the se-
lection of a programming language for a conventional
programming project. Two important considerations
are the ease of use of the formalism for the agent's de-
signer and the efficiency of execution of the formalism
by the agent. These two considerations are often in
direct conflict, but that conflict can be mediated very
successfully by a variety of compilation methods. It is
an important research direction to develop new com-
pilation methods, exploring the trade-offs between ef-
ficiency of the compiler and efficiency of the compiled
code and between online and offline compilation.

Acknowledgments

Many of these ideas are a result of joint work with Stan
Rosenschein. This paper was also influenced by helpful
discussions with David Chapman on action formalisms
as programming languages.

References

[Allen et al., 1990] James Allen, James Hendler, and
Austin Täte, editors. Readings in Planning. Morgan
Kaufmann, San Mateo, California, 1990.

[Blythe and Mitchell, 1989] Jim Blythe and Tom M.
Mitchell. On becoming reactive. In Proceedings
of Ike Sixth International Workshop on Machine
Learning, pages 255-257, Ithaca, New York, 1989.
Morgan Kaufmann.

[Chapman, 1987] David Chapman. Planning for con-
junctive goals. Artificial Intelligence, 32(3):333-378,
1987.

[Dean and Boddy, 1988] Thomas Dean and Mark
Boddy. An analysis of time-dependent planning. In
Proceedings of the Seventh National Conference on
Artificial Intelligence, Minneapolis-St. Paul, Min-
nesota, 1988.

[Drummond and Bresina, 1990] Mark Drummond
and John Bresina. Anytime synthetic projection. In
Proceedings of the Eighth National Conference on
Artificial Intelligence, pages 138-144, Boston, Mas-
sachusetts, 1990. Morgan Kaufmann.

[Hayes, 1990] Patrick J. Hayes. The frame problem
and related problems in artificial intelligence. In
James Allen, James Hendler, and Austin Täte, edi-
tors, Readings in Planning. Morgan Kaufmann, San
Mateo, California, 1990.

[Kaelbling, 1987a] Leslie Pack Kaelbling. An architec-
ture for intelligent reactive systems. In Michael P.
Georgeff and Amy L. Lansky, editors, Reasoning
About Actions and Plans, pages 395-410. Morgan
Kaufmann, 1987.

[Kaelbling, 1987b] Leslie Pack Kaelbling. Rex: A
symbolic language for the design and parallel imple-
mentation of embedded systems. In Proceedings of
the AIAA Conference on Computers in Aerospace,
Wakefield, Massachusetts, 1987.

[Kaelbling, 1988] Leslie Pack Kaelbling. Goals as par-
allel program specifications. In Proceedings of the
Seventh National Conference on Artificial Intelli-
gence, Minneapolis-St. Paul, Minnesota, 1988.

[Nilsson, 1985] Nils J. Nilsson. Triangle tables: A pro-
posal for a robot programming language. Technical
Report, 347, Artificial Intelligence Center, SRI In-
ternational, Menlo Park, California, 1985.

[Rosenschein and Kaelbling, 1986] Stanley J. Rosen-
schein and Leslie Pack Kaelbling. The synthesis
of digital machines with provable epistemic prop-
erties. In Joseph Halpern, editor, Proceedings of
the Conference on Theoretical Aspects of Reason-
ing About Knowledge, pages 83-98. Morgan Kauf-
mann, 1986. An updated version appears as Tech-
nical Note 412, Artificial Intelligence Center, SRI
International, Menlo Park, California.

[Rosenschein, 1985] Stanley J. Rosenschein. Formal
theories of knowledge in AI and robotics. New Gen-
eration Computing, 3(4):345-357, 1985.

[Russell, 1989] Stuart J. Russell. Execution archi-
tectures and compilation. In Proceedings of the
Eleventh International Joint Conference on Arti-
ficial Intelligence, pages 15-20, Detroit, Michigan,
1989. Morgan Kaufmann.

[Schoppers, 1989] Marcel J. Schoppers. Representa-
tion and Automatic Synthesis of Reaction Plans.
PhD thesis, University of Illinois at Urbana-
Champaign, Urbana, Illinois, 1989.

[Winograd, 1985] Terry Winograd. Frame representa-
tions and the declarative/procedural controversy. In
Ronald J. Brachman and Hector J. Levesque, edi-
tors, Readings in Knowledge Representation. Mor-
gan Kaufmann, 1985.

438

Plan Evaluation under Uncertainty

John D. Lowrance and David E. Wilkins

Artificial Intelligence Center, SRI International

Menlo Park, California 94025

Prepared for: DARPA Planning Workshop, November 1990

Introduction
SRI International (SRI) has a long history of work in

automated planning and uncertain reasoning. In a re-

cent effort1, we began to explore the problem of plan-

ning in uncertain environments. Here we present our

results on how to evaluate the likelihood that plans will

accomplish their intended goals given both an uncer-

tain description of the initial state of the world and the

use of probabilistically reliable operators. We begin by

reviewing our approach to developing a new planning

architecture, for the DARPA/RADC Knowledge-Based

Planning Initiative, that will incorporate these results2.

Planning in Uncertain and Dynamic

Environments
SRI intends to develop a planning system capable of

coping with the inherent complexity and requirements

of many real-world domains. The requirements in-

clude uncertain information, competing goals, real-time

response, intelligent application of standard operating

procedures, integration of multiple plans, dynamic plan

modification, and interaction with a human planner.

Our approach includes the development of a hybrid

methodology that is able to use classical methods such

as optimization techniques when appropriate, and will

use AI methods to organize and evaluate the evolving

plan.
The basis for the proposed flexible, integrated plan-

ning system will be several high-performance AI tech-

1 Contract No. N00039-88-C-0248, Space and Naval War-
fare Systems Command/Defense Advanced Research Project
Agency.

2 Contract No. F30602-90-C-0086, Rome Air Develop-
ment Center/Defense Advanced Research Project Agency.

nologies. These include classical, search-based planning;

structured, procedural reasoning; and evidential reason-

ing. Various SRI research programs and results have

contributed to the state-of-the-art in each of these ar-

eas: SIPE-2 [10] provides a "classical" framework for

hierarchically elaborating plans and subplans, tracking

resources, and monitoring plan execution; PRS [4] pro-

vides a means for bringing expert planning and domain

knowledge to bear on the planning problem; Gister's im-

plementation of evidential reasoning [7] provides a nat-

ural and effective representation for reasoning from lim-

ited uncertain information to assess the present and fu-

ture states of the world during plan execution. SIPE-2,

PRS, and Gister are implemented and tested systems3,

not theoretical exercises. SIPE-2 has been applied to
construction tasks and the scheduling of process lines in

a real manufacturing environment [11], PRS has been

used for monitoring and controlling the Reaction Con-

trol System of the NASA Space Shuttle [4] and for battle

management aboard a Grumman E-2C [5], and Gister
has been applied to naval-intelligence decision problems

[7] and helicopter route planning [3], among others.

To provide the capabilities that are required by real-

world problems but are not provided by currently avail-

able systems, we propose to:

• Introduce evidential-reasoning methods into SIPE-2.

Evidential reasoning, constructs will be used to rep-

resent nondeterministic operators and uncertain and

incomplete situational knowledge.

• Implement procedural templates as PRS "Knowledge

Areas" for representation and use of expert planning

3SIPE-2, PRS, and Gister are trademarks of SRI
International.

439

knowledge. These templates will be used to out-
line plans for stereotypical situations (where stan-
dard operating procedures would be used); they will
be applied by PRS in real-time; they will be used
by SIPE-2 to provide methods for improving planner
operation when resources (including time) are con-
strained. This capability is a necessity for controlling
the uncertainty-induced growth of the solution space.

• Integrate generic and problem-specific optimization
methods with AI planning techniques.

• Develop techniques to control planning and plan exe-
cution that will enable the system to react quickly
when necessary, and to consider more alternatives
when time permits.

• Design mechanisms for combining plans that have
been produced in a distributed manner.

• Validate the technical developments through a proof-
of-concept demonstration based upon selected logis-
tics problems.

Existing Technologies
In the remainder of this paper, we describe preliminary
work that demonstrates some of the ways that our plan-
ning technology can be beneficially combined with ev-
idential reasoning. The ideas described are supported
by an implementation that incorporates both SIPE-2
and Gister, and demonstrates that the theory works in
practice. Brief introductions to these two systems will
provide the necessary terminology for the remainder of
this paper.

SIPE-2
Faced with the overwhelming complexity of planning,
SIPE-2 has attempted to balance epistemological and
heuristic adequacy. It retains enough expressive power
to be useful, yet makes enough restricting assumptions
to produce a viable, efficient implementation. Unlike
most AI planning research, the design of SIPE-2 has
taken heuristic adequacy as one of its primary goals.

SIPE-2 provides a domain-independent formalism for
describing operators (the planner's representation of ac-
tions), and utilizes the knowledge encoded in these op-
erators, together with heuristics for handling the combi-
natorics of the problem, to plan means to achieve given
goals in diverse problem domains. The plans include
a plan rationale so that the system can modify these
plans in response to unanticipated events during plan

execution. Automatically, or under interactive control,
the system generates possibly nonlinear plans contain-
ing conditionals that will achieve the given goals when
executed in the given initial situation. It can intermin-
gle planning and execution, and can accept arbitrary
descriptions, in the language used to describe the do-
main, of unexpected occurrences during execution and
modify its plan to take these into account.

To achieve heuristic adequacy, SIPE-2 incorporates
special techniques for solving a number of problems;
these techniques are described elsewhere [10]. The tech-
nique most important for the current work is the truth
criterion. A planner's truth criterion is its algorithm
for determining whether a formula is true in a particu-
lar world state. As Chapman has shown [1], nonlinear-
ity makes the truth criterion NP-complete, given a rea-
sonably powerful representation. SIPE-2 incorporates
several heuristics for making its truth criterion efficient
[10]. For present purposes, these are unimportant ex-
cept to note that each node in a SIPE-2 plan network
implicitly and economically encodes a world state by
specifying the changes that have occurred since the pre-
vious world state. Thus a plan node can be passed back
to Gister as a representation of a world state. Of course,
only by using this node in the context of the whole plan
network and using SIPE-2's truth criterion to process
this network can the implicit representation be properly
interpreted.

Gister
Gister incorporates a body of techniques for automated
reasoning from evidence that we call evidential reason-
ing. The techniques are based upon the mathematics
of belief functions developed by Dempster and Shafer
[2, 8, 9] and have been applied to a variety of prob-
lems including multisensor integration, situation analy-
sis, route planning, diagnosis, plan execution monitor-
ing, and process control.

We have developed both a formal basis and a frame-
work for implementing automated reasoning systems
based upon these techniques [6]. Both the formal and
practical approach can be divided into four parts: (1)
specifying a set of distinct propositional spaces (i.e.,
frames of discernment), each of which delimits a set of
possible world situations; (2) specifying the interrela-
tionships among these propositional spaces (i.e., com-
patibility relations); (3) representing bodies of evidence
as belief distributions over these propositional spaces

440

(i.e., mass distributions); and (4) establishing paths (i.e.,
analyses) for the bodies of evidence to move through
these propositional spaces by means of evidential oper-
ations, eventually converging on spaces where the target
questions can be answered. These steps specify a means
for arguing from multiple bodies of evidence toward a
particular (probabilistic) conclusion.

Evaluating Plans in Uncertain Worlds
The approach we are taking in our preliminary work is
to combine our existing systems into a test bed suitable
for exploring different technological solutions. Later in
this effort, when our solutions have stabilized, we will
determine the target architecture for the final imple-
mentation. By combining our existing systems, we are
attempting to accumulate the benefits of each. This is
facilitated by the fact that each system can support a
common representation, namely first-order logic. To fa-
cilitate this, we posed the problem of evaluation of a
given plan in an uncertain environment. By uncertain
environment, we mean a world where the initial state
is not known with certainty and where the effects of
actions are not known with certainty.

Since Gister supports reasoning about uncertainty,
but SIPE-2 and PRS do not, our approach is to have
Gister evaluate a given plan in an uncertain environ-
ment. The plan will not incorporate uncertain informa-
tion, rather it will be a plan produced by SIPE-2, or a
standard operating procedure that has been selected by
PRS, or a plan created by the user. By evaluate a plan,
we mean that Gister will be able to predict the prob-
abilistic results of executing a plan given that neither
the initial state of the world nor the effects of applying
operators (in known states) are known with certainty.

Frame Logic

The first step in applying Gister to a selected domain
of application is to define the frame logic. Suppose that
the answer to some question A is contained in a finite set
0,4. That is, each element a,- of ©A corresponds to a dis-
tinct possible answer to the question A, no two of which
can be simultaneously true. For example, A might be a
question concerning the configuration of a set of blocks.
In this case, ©A would consist of all the possible con-
figurations under consideration. 0 A is called a frame of
discernment. If there are exactly three blocks, labeled
"A" "B", and "C", and each can rest on top of one

other block or on a table, then ©A might be defined as
follows:

©A = {ABC,ACB,AB-C,AC-B, BAC,

BCA,BC-A,BA-C,CAB,

CBA,CA-B,CB-A,A-B-C} ,

where AB-C corresponds to block A resting on top of
block B, and blocks B and C resting on the table.

Propositions Once a frame of discernment has been
established for a given question, it formalizes a variable
where each possible value for the variable is an element
of the frame. A statement pertaining to the value of
this variable is discerned by the frame, just in case the
impact of the statement is to focus on some subset of the
possible values in the frame as containing the true value.
In other words, a propositional statement A,- about the
answer to question A corresponds to a subset of ©A.

For example, if the statement is "block A is on block
B," then it corresponds to the set of block configuration
in QA where block A rests on block B.

A-ON-B = {ABC, AB-C, CAB} C 0A .

Other propositions related to this question can be
similarly represented as subsets of ©A (i.e., as elements
of the power set of ©A, denoted 2®"); the subset Aj
might correspond to all those configurations in 0A that
have no block on top of block C. Once this has been
accomplished, logical questions involving multiple state-
ments can be posed and resolved in terms of the frame.
Given two propositions, A, and Aj, and their corre-
sponding sets, Ai and Aj, the following logical opera-
tions and relation can be resolved through the associ-
ated set operations and relation:

-A,- <^=> QA - At

A,- A Aj <=$■ Ai n Aj

A{ V Aj <£=> AiUAj

Ki => Aj •<=> -A-i (_ Aj

Thus, when two statements pertaining to the same
question are available, and they are each represented as
subsets of the same frame, their joint impact is calcu-
lated by intersecting those two subsets. Given "A is on
B" (A-ON-B) and "the top of C is clear" (CLEAR-C),
their joint impact is

441

CLEAR-C = {AB-C, BA-C, CAB, CBA,

CA-B.CB-A, A-B-C}

A-ON-Bn CLEAR-C = {AB-C,CAB}

All other statements that correspond to supersets of this
result in ©A, are implicitly true (e.g., "a block is on
B"); all of those statements whose corresponding sets
are disjoint from this result are implicitly false (e.g., "A
is on C"); and all others statements' truthfulness are
undetermined (e.g., "B is on the table"). As additional
information becomes available, it can be combined with
the current result in the same way. Since intersection is
commutative and associative, the order that information
enters is of no consequence.

Translating Propositions Suppose that another
question of interest B has been separately framed. For
example, if A corresponds to the state of the blocks at
time 1, then B might correspond to the state of the
blocks at time 2. Its frame of discernment, QB, is de-
fined as the set of possible block configurations at time
2 (for this example, O^ and QB are equivalent).

relative to QB- If a statement Ak is true, then the state-
ment TA^B(A):) is also true:

0 = {h,h,
Bj C QB •

, bm)

If something is known about the state of the blocks at
time 1, we would like to take advantage of this infor-
mation to narrow the possibilities at time 2. To do
this, one must first define a compatibility relation be-
tween the two frames. A compatibility relation simply
describes which elements from the two frames can be
true simultaneously i.e., which elements are compatible.
For this example, if at most one block can be moved in a
single unit of time, then state AB-C from 0^ is compat-
ible with AB-C, CAB, and A-B-C from 0^, since these
are the only states that could immediately follow AB-C.
Thus, a compatibility relation between frames QA and
QB is a subset of the cross product of the two frames. A
pair (di,bj) is included if and only if they are compati-
ble. Typically, there is at least one pair (a;, fy) included
for each a,- in QA (the analogue is true for each bj):

II(A,B) C QA x QB ■

Using the compatibility relation H(A,B)
we can define

a compatibility mapping TA>-+B for translating preposi-
tional statements expressed relative to 0,4 to statements

TA~B : 20^

TA~B(Ak) { bj | (ai,bj) £ IL(A,B), at € Ak }

In our example, the compatibility relation H(A,B) de-
limits all possible state changes between time 1 and 2.
However, when evaluating a plan, additional informa-
tion is available, namely, the specific action or operation
that is to be performed. One means of incorporating this
information is to define a distinct compatibility relation
corresponding to each operation. For example, the com-
patibility relation ÜPUT-C-ON-A would have CAB as the
only state in QB compatible with AB-C in 0^; those
states in 0^ that already have block C on block A (e.g.,
CAB) or that have some block on C, thus preventing it
from being moved, are compatible with the same state
in QB-

Given the propositions A-ON-B and CLEAR-C at time
1, we conclude that the initial state is either AB-C or
CAB; if we do not know which, if any, operator is ap-
plied in this state, then we conclude that any of three
states are possible at time 2, AB-C, CAB, or A-B-C; on
the other hand, if we know that PUT-C-ON-A is ap-
plied, then we conclude that the state at time 2 must be
CAB. Presuming that the possible states for any time
i are the same as those for times 1 and 2, and that
the possible operations and their effects are the same in
moving from any time i to i + 1, these frames and com-
patibility relations can be used to calculate the effects
of any planned sequence of actions.

Framing Evidence

When information is inconclusive, partial beliefs re-
place certainty; probabilistic distributions over state-
ments discerned by a frame replace Boolean valued
propositions. These distributions are called mass distri-
butions. Each body of evidence is represented as amass
distribution (e.g., mA) that distributes a unit of belief
over propositional statements discerned by a frame (e.g.,

©A):

mA : 2@A H+ [0,1]

]P mA(Ai) = 1
AiCeA

mA(0)

442

For example, if we are told that there is an 80% chance
that block A is on B and a 20% chance that block A is
not on B, then this is represented by a mass distribution
(TJA-ON-B that attributes 0.8 to the set corresponding to
A-ON-B, 0.2 to the complement of A-ON-B with respect
to 0^i, and 0.0 to all other subsets of 0^.

Interpreting Evidence To interpret a body of evi-
dence relative to the statement Aj, we calculate its sup-
port and plausibility to derive its evidential interval as
follows:

SPt(Aj) = Yl mA(Ai)
AiCAj

Pls(Aj) = 1 - Spt(0A - Aj)

[Spt(Aj),Pls(Aj)] C [0,1] .

Given the body of evidence represented by mA-ON-B, the
evidential interval for A-ON-B is [0.8, 0.8], for CLEAR-C
is [0.0,1.0], for {ABC} is [0.0,0.8], and for CLEAR-B is
[0.0,0.2].

Propositional statements that are attributed nonzero
mass are called the focal elements of the distribution.
When a mass distribution's focal elements are all single
element sets, the distribution corresponds to a classi-
cal additive probability distribution and the evidential
interval, for any proposition discerned by the frame, col-
lapses to a point i.e., support is equivalent to plausibil-
ity. For any other choice of focal elements, some propo-
sitional statement discerned by the frame will have an
evidential interval with support strictly less than plau-
sibility. This reflects the fact that mass attributed to a
set consisting of more than one element represents an
incomplete assessment; if additional information were
available, the mass attributed to this set of elements
would be distributed over its single element subsets.
Thus, an evidential interval with support strictly less
than plausibility is indicative of incomplete information
relative to the frame.

For example, consider another point of evidence. A
computer vision system reports that block C is clear.
Based upon our previous experience with this system,
we know that it always correctly determines if a block
is clear or not, but 10% of the time it misidentifies the
block. In other words, although we do not doubt that
some block is clear, we are uncertain whether the block
observed was C. Assuming that there is a 90% chance
that the observed block was C and a 10% chance that it

was not, then this evidence is represented by amass dis-
tribution mcLEAR-c that attributes 0.9 to CLEAR-C and
0.1 to the set of all possible configurations, since every
configuration has at least one clear block. Based upon
this distribution, the evidential interval corresponding
to the proposition that block C is clear is [0.9,1.0], that
it is not clear [0.0,0.1], and that it is any particular
configuration where C is clear is [0.0,1.0].

Fusing Evidence When two mass distributions m\
and m\ representing independent opinions are ex-
pressed relative to the same frame of discernment, they
can be fused (i.e., combined) using Dempster's Rule of
Combination. Dempster's rule pools mass distributions
to produce a new mass distribution mA that represents
the consensus of the original disparate opinions. That is,
Dempster's rule produces a new mass distribution that
leans towards points of agreement between the original
opinions and away from points of disagreement. Demp-
ster's rule is defined as follows:

m3
A(Ak) = m\®mA(Ak)

= YZT^ J2 "»A(^.-)"»A(4J)
AinAj=:Ak

K = J2 mA(Ai)mA(Aj)

< 1 .

Combining the two bodies of evidence ITIA-ON-B and
TICLEAR-C by Dempster's rule results in a mass distri-
bution that attributes 0.72 to C being clear and A being
on B (i.e., {CAB, AB-C}), 0.18 to C being clear and A
not on B (i.e., {A-B-C, CB-A, CA-B, CBA, BA-C}), 0.08
to A on B (i.e., A-ON-B), and 0.02 to A not on B (i.e.,
the complement of A-ON-B). This induces the following
evidential intervals: [0.9,1.0] for CLEAR-C, [0.72,1.0] for
C-ON-A, [0.8,0.8] for A-ON-B, [0.0,0.8] for {CAB} and
{AB-C}, [0.0,0.2] for {CBA}, and [0.0,1.0] for CLEAR-A.

Since Dempster's rule is both commutative and asso-
ciative, multiple (independent) bodies of evidence can
be combined in any order without affecting the result. If
the initial bodies of evidence are independent, then the
derivative bodies of evidence are independent as long as
they share no common ancestors.

The conflict (i.e., K) generated during the applica-
tion of Dempster's rule quantifies the degree to which
the mass distributions being combined are incompati-
ble, that is, the degree to which the two distributions

443

are directly contradictory. When K = 1, the distribu-
tions are in direct and complete contradiction to one
another and no consensus exists (i.e., Dempster's rule
is undefined); when K = 0, there is no contradiction
and the evidential intervals based upon the consensus
distribution will be contained within the bounds of the
evidential intervals based upon the component distribu-
tions i.e., the combination is monotonic; otherwise, the
component distribution are partially contradictory. In
this case, Dempster's rule focuses the consensus on the
compatible portions of the component distributions by
eliminating the contradictory portions and normalizing
what remains; some evidential intervals based upon the
consensus distributions will not fall within the bounds
of intervals based upon the component distributions i.e.,
the combination is nonmonotonic.

Translating Evidence If a body of evidence is to be
interpreted relative to a question expressed over a dif-
ferent frame from the one over which the evidence is ex-
pressed, a path of compatibility relations connecting the
two frames is required. The mass distribution express-
ing the body of evidence is then repeatedly translated
from frame to frame, via compatibility mappings, until
it reaches the ultimate frame of the question. In our
planning example, interpreting the effects of a body of
evidence about time 1 on propositions at time 5 requires
that the evidence be translated from frame to frame, for
each planned action between time 1 and time 5.

In translating TUA from frame &A to frame QB via
compatibility mapping TA^B, the following computa-
tion is applied to derive the translated mass distribution
mB:

mB{Bj) = YZT^ XI mAAi)

Yl mA{Ai) K =

rA^B(A,)=m
<

Intuitively, if we (partially) believe Ai, and A{ implies
Bj, then we should (partially) believe Bj; if some focal
element Ai is incompatible with every element in QB,

then there is conflict (i.e., K) between the evidence and
the logic of the frames and compatibility relation. This
is equivalent to the conflict in Dempster's rule.

In our example, to evaluate the effect of applying the
PUT-C-ON-A operator, given the two independent bod-
ies of evidence about the initial state, mA-ON-B and

"ICLEAR-C, we first combine these mass distributions
using Dempster's rule and then translate the result via
compatibility mapping TPUT-C-ON-A to frame QB- The
result is a mass distribution that attributes 0.72 to
{CAB}, 0.18 to {CA-B, CBA, BA-C}, 0.08 to {CAB,
ABC}, and 0.02 to the complement of {A-B-C}; this
induces the following evidential intervals: [0.9,1.0] for
CLEAR-C, [0.72,1.0] for C-ON-A, [0.8,0.8] for A-ON-B,
[0.72,0.8] for {CAB}, [0.0,0.2] for {CBA}, [0.0,0.1] for
CLEAR-A, and [0.0,0.0] for {AB-C}. Given a sequence
of operators to be applied after executing PUT-C-ON-
A, we simply perform successive translations until the
sequence is exhausted.

When multiple bodies of evidence are available over
different frames, they must be translated to a common
frame before they can be combined using Dempster's
rule. They can all be translated to a single frame and
combined, or subsets of the available evidence can be
translated and combined at intermediate frames, and
these intermediate results then translated and combined
until the final destination frame is reached. If during
plan execution, intermediate observations are made, re-
sulting in additional bodies of evidence about the state
of world at time i, these bodies of evidence can be com-
bined with the body of evidence representing the pre-
sumed state of the world at time i, to refine the pre-
dicted outcome of the plan. So, in our example, if we
had additional information about the state of the world
at time 2, it could be combined with our result for that
time before additional translations are performed.

Implementing Evidential Reasoning

In the preceding discussion, we have defined the frame
logic in terms of set theoretic concepts. This is the way
that it is most often presented since the audience is usu-
ally more familiar with multivariate decision theory and
statistics than with propositional logic. However, all of
the evidential reasoning operations can be recast using
propositional logic. These modified definitions follow.

Interpretation:

Spt(Aj) = 2 mA(A0
Aj^Aj

Pls(Aj) = l-Spti-nAj)

[Spt(Aj),PlS(Aj)] C [0,1] .

444

Fusion:

m3
A (A,- A Aj) = ml

k ® m\ (A; A Aj)

= Y^ S mA(A')mA(Ai)
AiAAy

K = S mA(A')mA(Ai)
^A.AA,)

< 1

Translation:

mB(Bj)
1-K X] mA(A<)

lA-B (A,)=Bi

K = Yl mA(Ao
rA„B(A,)=FALSE

< 1 .

Implementing evidential-reasoning systems can be di-

vided into two independent subproblems: How to rep-

resent mass distributions and perform numeric calcu-

lations on them? How to represent propositions and

perform logical inferences? Accordingly, Gister's imple-

mentation of evidential reasoning consists of two distinct

components: one that manipulates and interprets mass

distributions and another that performs logical reason-

ing. As mass distributions are manipulated by the first

component, logical questions are posed to the second

component. The implementation of each of these com-

ponents is independent of the other. The best suited im-

plementations depends upon the characteristics of the

domain of application and upon the characteristics of

the host computational environment. Most importantly,

the numeric component places no constraints on the rep-

resentation of propositions or the implementation of the

logical operations, just so long as the logical questions

posed by the numeric component are answered by the

logical component.
Since different logical representations are better

suited to different applications, Gister allows a frame

logic implementation to essentially be given as a pa-

rameter. A frame logic implementation is represented

as a distinct object (using object-oriented programming

techniques) capable of answering all of the logical ques-

tions required to support the numeric module's eviden-

tial operations. One such implementation is based on

set theory, mirroring the set-theoretic presentation of

the frame logic in this paper.

However, it should be clear from the simple blocks

world example in this paper that this representation is

not suitable for real-world planning. The representation

is too cumbersome since each possible world state must

be enumerated, and the compatibility relations must

specify all compatible states for every possible world

state. Furthermore, continually translating from one

frame to another during evaluation of a plan will be inef-

ficient, and partially ordered plans will cause problems.

Instead, we propose to develop a frame logic based upon

SIPE-2's representation of plans and techniques for rea-

soning about them.

A SIPE-2 Logic
The central idea behind the current combination of

SIPE-2 and Gister is that the former can provide the

logic used by the latter when the domain is planning,

with several advantages. Briefly, these advantages are

compactness of representation (one does not enumerate

every possible world state nor elements of compatibil-

ity relations), SIPE-2's efficiency when determining the

truth of a proposition in a world state, the use of nonlin-

ear plans under conditions imposed by SIPE-2's heuris-

tics, and the ability of the planner to generate plans au-

tomatically when Gister eventually asks that goals be

satisfied rather than that operators be applied.

We have implemented a SIPE-2 frame logic for Gis-

ter as described below, and have tested it by evaluating

and interactively constructing plans in a blocks world

with uncertain states. When Gister evaluates plans, the

SIPE-2 logic provides the algorithms and representa-

tions for determining whether a proposition is true in a

world state, for determining whether two world states

are equivalent, and for performing translations using a

compact SIPE-2 operator.

World States and Propositions

The different possible initial worlds states are repre-

sented in Gister as SIPE-2 plan nodes of type planhead.

Planhead nodes explicitly list all predicates that are true

at that node. All other worlds states, i.e., those gener-

ated by planned actions, are represented in Gister by

SIPE-2 plan nodes of type process. The planner creates

these plan nodes in response to requests from Gister to

perform translations (see next section). Process nodes

implicitly represent the world state since they list only

predicates that have changed since the previous node.

Gister represents an incompletely specified world state

as a set of plan nodes.

445

For example, given the propositions A-ON-B and

CLEAR-C at time 1, we represent the resulting incom-

pletely specified world state as {AB-C, CAB}, where

AB-C and CAB are names for SIPE-2 planhead nodes.

Suppose an operator is applied in this state. As de-

scribed in the next section, this will cause SIPE-2 to

produce plan networks for each element of this set, and

the uncertain world state at time 2 would be represented

as {P13, P19}, where P13 and P19 are names for SIPE-2

process nodes in plan networks.

Gister needs to query the truth of propositions in spe-

cific world states. In our implementation, Gister accepts

propositions specified in SIPE-2 input syntax, which are

then passed on to the planner together with the plan

node representing the desired world state. (Checking a

proposition in an incompletely specified state may re-

sult in several such calls to the planner). SIPE-2 parses

the propositions into appropriate data structures and

simply applies its truth criterion to the proposition at

the plan node. The plan node is part of a whole plan

network that the truth criterion uses to compute its re-

sult. This computation has been shown in practice to

be efficient, even in fairly realistic domains [11].

In the blocks world example, the SIPE-2 predicates,

plans, and operators are exactly the same as they are

in published examples [10]. The only limitation of this

technique is that certain restrictions are placed by SIPE-

2 on the form of the input propositions [10]. We do

not expect this to be problematic, and some restrictions

could be easily relaxed. This implementation provides

both the compactness of plan nodes as a representation

and the efficiency of computing on them with the truth

criterion.

Translations

As discussed earlier, Gister could use a set to represent

a compatibility relation that captures the effects of an

action. However, this representation is much too cum-

bersome in practice since an element must be included

from every possible pair of successive world states.

The SIPE-2 logic does translations for Gister by us-

ing its operators to generate plan networks. Gister still

has a name for each possible compatibility mapping, but

need not represent these mappings in any more detail.

Gister will call SIPE-2 to translate from one world state

to another using the named compatibility mapping. The

planner translates Gister's name into a goal or process

node in a plan network. For example, a translation re-

quest for the compatibility mapping PUT-A-OI\l-B will

cause the planner to add a process/goal node to a plan

network. The goal node would specify (ON A B) as

the goal, while the process node would specify that the

standard PUTON operator be applied to the arguments

A and B. The current implementation creates process

nodes, the use of goal nodes is described in the next

section.

The node is added to the plan at the point that rep-

resents the state from which we are translating. The

planner then expands this plan in more detail to ob-

tain the final representation of the new world state.

This process makes use of the SIPE-2 's causal theory

for deducing the effects of actions. The plan node re-

turned to Gister will be the last node in the expansion

of the added node. Since Gister may make the same re-

quest several times, SIPE-2 uses its context mechanism

to keep track of all expansions and returns an already

constructed plan node whenever appropriate.

Suppose we apply PUT-A-ON-C in the incompletely

specified state {AB-C, CAB} at time 1. SIPE-2 will cre-

ate process nodes for applying PUTON to A and C after

each of the two planhead nodes AB-C and CAB. The first

one will be expanded by the planner and a process node,

say P13, will be returned. As described later, an equiv-

alence test in the SIPE-2 frame logic will allow Gister to

merge P13 with AC-B. The second process node cannot

be expanded because the precondition of the operator is

not satisfied. Currently, SIPE-2 will return the previous

world state, CAB in this case, on the assumption that

the executing agent recognizes the unexecutable action

and ignores it. Thus the resulting uncertain state at

time 2 would be {P13, CAB}. Domain-specific knowl-

edge about the effects of attempting unexecutable ac-

tions could easily be incorporated. For example, if the

agent would knock C off A while attempting to put A on

C in CAB, an operator could be written to encode this

knowledge and the precondition of this operator would

allow it to expand the node for putting A on C.

In this system, the compatibility mappings are rep-

resented by SIPE-2 operators. Since the Gister names

may encode a list of arguments, one operator with vari-

ables can represent any number of Gister compatibility

mappings. For example, the single standard PUTON op-

erator is used to represent all 9 blocks world compatibil-

ity mappings. Thus a significant economy is achieved,

and the economic representation can be computed with

efficiently.

446

Another advantage of using plan networks is that
they might contain nonlinear plans, yet the nonlinearity
would be invisible to Gister. The process node returned
to Gister would be after the unordered actions in the
nonlinear plan, so only SIPE-2's truth criterion needs
to address the question of nonlinearity. Thus, the re-
striction to linear sequences can be partially alleviated.

Generating Plans for Translations One extension
of this scheme is to allow the translation to be described
as a goal node to be achieved. The planner could then
build an arbitrary plan for achieving this goal and use
it to represent the compatibility mapping. One compli-
cation is that this means the "compatibility mapping"
might vary depending on the situation (since different
plans might be generated). However, achieving a goal
in an uncertain world state will require that the same
plan be used for each world state in the mass distribu-
tion. While this complication does not appear to pose
theoretical difficulties, it has not yet been implemented.
This capability of translating via goals would be use-
ful for letting the planner fill in the details of a more
abstract plan that has been provided.

Equivalent States

It is important to notice when two world states are
equivalent in Gister, since this can significantly collapse
the size of the sets that the system must reason about,
which in turn significantly reduces the combinatorics.
This is particularly useful in the blocks world because
the simple states mean that all sorts of plan networks
might result in the same world state. In more complex,
realistic domains it may be rare for different sequences
of actions to result in exactly the same state. However,
even in these domains it will eventually be necessary to
recognize states as equivalent in all relevant aspects so
that the combinatorics can be reduced.

For this reason, we have not written code to determine
the equality of two states in SIPE-2 (a possibly expen-
sive computation). Instead we allow the user to specify
the relevant aspects for dividing states into equivalence
classes. While this puts more of a burden on the user, we
view it as necessary for obtaining heuristic adequacy in
complex domains. This is accomplished by defining an
"equivalence" operator that is designated for this check-
ing. This is a standard SIPE-2 operator with a list of ar-
guments and a precondition, but nothing else. Matching
the precondition in a particular world state will return

a list of instantiations for variables in the operator that
effectively specify its equivalence class. Thus, when Gis-
ter asks whether two world states are equivalent, SIPE-
2 simply calls its truth criterion on the precondition of
the equivalence operator at each of the two states. If
the result is failure in both cases, or success with the
same variable instantiations in both cases, then the two
states are equivalent. Again, the efficiency of the truth
criterion is used to significantly improve on an algorithm
for determining the equality of any two states.

For example, our equivalence operator in the
blocks world has a precondition of (ON A 0BJECT1)
A (ON B 0BJECT2) A (ON C 0BJECT3), where the
OBJECTn are variables to be instantiated. In a world
where A, B, and C are the only blocks, this condition
distinguishes every state, effectively implemented a test
for equality with the efficiency obtained from using the
equivalence-operator mechanism. In our previous exam-
ple, P13 and AC-B were equivalent. This is easily deter-
mined by matching the equivalence condition at each of
these two nodes, and getting C, TABLE, and TABLE
as the instantiations for the OBJECTn in both cases.

Probabilistic Operators
The discussion to this point has focused on plan evalu-
ation when the initial (and therefore subsequent) state
of the world is uncertain. Another source of uncertainty
that needs to be taken into account is the nondetermin-
istic nature of many real-world operators. Within the
blocks world, one can imagine that if a robot is attempt-
ing to move the blocks as specified in a plan, that each
operation will only probabilistically achieve the intended
goal. For example, if the operation is to put block C on
block A, the initial grasp for block C might fall short
leaving block C in its original position or the placement
of block C on top of block A might fail, causing block
C to fall to the table. These probabilistically accurate
operators can be incorporated into an evidential model
as probabilistic translations.

As previously discussed, given two frames, &A and
&B, and a compatibility relation, H.(A,B)> propositional
statements can be translated between these two frames.
Alternatively, instead of translating propositional state-
ments between these two frames via TA~-B and TB^A,

we might choose to translate these statements to a com-
mon frame that captures all of the information and then
on to the target frame. This common frame, Q(A,B), is
identical to the compatibility relation TI(A,B)- Frames

447

QA and Qß are trivially related to frame Q(A,B)
via

the following compatibility relations and compatibility

mappings:

0 (A,B) =

n (A,(A,B))
U((A,B),B)

^A>->(A,B)(Ak)

^(A,B)~B{Xk)

R(A,B) CeAXÖB

{(ai,(a,i,bj)) | (Cli,bj) e!l(A,B)}

{ i(ai,bj), bj) | (ai,bj) G H(A,B) }

{ (a,, bj) | (ai,bj) G U(A,B), «i G Ak }

{ bj | (ai,bj) G n(A)B), (a8-, 6j) G A'fc }

Given these three frames, 6A, Q(A,B), and ©ß, and

two compatibility mappings, TA^(A,B) and r^^j^ß,

a mass distribution over ©^ can be translated to Q(A,B)

and then on to QB; the result will be identical to that

produced through a single translation from O^ to 0B

via TA^B-
Once this intermediate frame has been introduced,

probabilistic information about the relationship between

QA and QB can be taken into account. This infor-

mation, expressed as a mass distribution, m(A,B)i over

0(yt,B)> provides a means of "weighting" translations to

favor some elements of Q(A,B) over others. The prob-

abilistic translation is accomplished by translating the

mass distribution over 0A to 0(A,B), fusing the result

with rri(A,B), and translating the fused result to QB-

In our blocks world example, if 11(^,2?) (and conse-

quently Q(A,B)) delimits all possible state changes be-

tween time i and i + 1, then each nonprobabilistic op-

erator can be represented by a mass distribution that

assigns all of its mass to a single set, the set consist-

ing of paired states from 0^ and QB where the state

from 0.4 is transformed into the state from QB by ap-

plying that operator. For the operator PUT-C-ON-A

this set assigned unit mass is designated PUT-C-ON-A.

Given similarly constructed sets, PUT-C-ON-TABLE

and DO-NOTHING, corresponding to the operators for

putting C on the table and doing nothing (i.e., no

changes in state), we can represent a probabilistically

accurate operator for putting C on A by a mass dis-

tribution mpuT-C-ON-A- This mass distribution might
attribute 0.9 to PUT-C-ON-A and 0.1 to the union of

PUT-C-ON-TABLE and DO-NOTHING, representing the

knowledge that 90% of the time this operator acts as

intended, but 10% of the time it functions as if the in-

tended action were to put C on the table or to do noth-

ing.

Using this probabilistic version of PUT-C-ON-A in

combination with the evidence about the initial state,

niA-ON-B and mCLEAR.c, we conclude [0.9,1.0] for

CLEAR-C, [0.65,1.0] for C-ON-A, [0.8, 0.8] for A-ON-B,

[0.65, 0.8] for {CAB}, [0.0, 0.2] for {CBA}, [0.0,0.19] for

CLEAR-A, and [0.0,0.8] for {AB-C}. Comparing these

results with previous ones obtained using a nonproba-

bilistic version of PUT-C-ON-A, we find that the sup-

port for C-ON-A and {CAB} has decreased, the plau-

sibility for CLEAR-A and {AB-C} has increased, while

the evidential intervals for the others have remained un-

changed. This reflects the fact that C is less likely to be

on top of A and more likely to be elsewhere.

Importantly, this approach to probabilistic operators

requires no changes to the SIPE-2 frame logic previously

described.

Conclusion
We have implemented a SIPE-2 logic within Gister, and

have tested it by evaluating and interactively construct-

ing plans in a blocks world with uncertain world states.

This work demonstrates some of the ways that our plan-

ning technology can be beneficially combined with ev-

idential reasoning. Several advantages are obtained by

this combination: compactness of representation, the ef-

ficiency of SIPE-2 operators to determine the effects of

actions, SIPE-2's efficiency when determining the truth

of a proposition in a world state, the use of nonlinear

plans, and the ability of the planner to generate plans

automatically while Gister manages the uncertain as-

pects of the situation.

References
[1] D. Chapman. Planning for conjunctive goals. Ar-

tificial Intelligence, 32:333-378, 1987.

[2] Arthur P. Dempster. A generalization of Bayesian

inference. Journal of the Royal Statistical Society,

30:205-247, 1968.

[3] Thomas D. Garvey. Evidential reasoning for ge-

ographic evaluation for helicopter route planning.

Technical Report 405, SRI International Artifi-

cial Intelligence Center, 333 Ravenswood Avenue,

Menlo Park, California, December 1986.

[4] Michael P. Georgeff and Francois Felix Ingrand.

Research on procedural reasoning systems. Final

Report Phase 1, SRI International Artificial In-

telligence Center, 333 Ravenswood Avenue, Menlo

Park, California, October 1988.

448

[5] Francois Felix Ingrand, Jack Goldberg, and
Janet D. Lee. SRI/GRUMMAN Crew Members'
Associate Program: Development of an author-
ity manager. Final Report SRI Project 7025,
SRI International Artificial Intelligence Center,
333 Ravenswood Avenue, Menlo Park, California,

March 1989.

[6] John D. Lowrance. Automated argument construc-
tion. Journal of Statistical Planning and Inference,

20:369-387, 1988.

[7] John D. Lowrance, Thomas M. Strat, and
Thomas D. Garvey. Application of artificial intelli-
gence techniques to naval intelligence analysis. Fi-
nal Report SRI Contract 6486, SRI International
Artificial Intelligence Center, 333 Ravenswood Av-
enue, Menlo Park, California, June 1986.

[8] Glenn Shafer. A Mathematical Theory of Evidence.
Princeton University Press, Princeton, New Jersey,

1976.

[9] Glenn Shafer. Belief functions and possibility mea-
sures. The Analysis of Fuzzy Information, 1, 1986.

[10] David E. Wilkins. Practical Planning: Extending
the Classical AI Planning Paradigm. Morgan Kauf-
mann Publishers Inc., San Mateo, California, 1988.

[11] David E. Wilkins. Can AI planners solve prac-
tical problems? Technical Report 468R, SRI
International Artificial Intelligence Center, 333
Ravenswood Avenue, Menlo Park, California,
November 1989.

449

Planning Reactive Behavior:
A Progress Report

Drew McDermott*
Yale Computer Science Department

P.O. Box 2158 Yale Station
New Haven, Connecticut 06520

mcdermott@cs.yale.edu

Abstract

Recently AI planning theory has concerned it-
self with the behavior of realistic agents, which
involves sensing and reacting. The plans that
control this behavior have to be more compli-
cated than traditional action sequences, which
makes generating and modifying them much
more difficult. I describe a novel planning ar-
chitecture that is intended to surmount these
problems, by providing transformational plan-
ning capabilities on top of a reactive plan in-
terpreter for a robot delivery truck. Planning
is implemented by way of a set of critics and
schedulers that anticipate problems with the
plan by projecting it ahead of time, and seek
to transform the plan to alleviate these prob-
lems. For the plans to be transformable, they
must be simple and modular. We make sim-
plicity more likely by providing high-level con-
trol structures, and we encourage modularity
by providing a uniform way of referring to the
tasks generated by executing the plan.

1 Introduction

The focus of our research project is on planning for
agents in a dynamic, not fully controllable world. It
has been suggested that in such an environment agents
cannot and should not have plans. [2, 1, 5] Having a
plan seems to imply planning ahead, and the benefits
of planning ahead are often limited. We agree with this
view up to a point, but it can be overstated. Planning
ahead is indeed of little value — except when it is of great
value. An.agent with several trips to undertake can gain
a lot by coordinating them, rather than by doing them
in no particular order or all at once. For the agent to
be able to take advantage of such planning opportuni-
ties, it must have the ability to think about the future,
in particular about what it intends to do and what else
will happen. We take the agent's plan simply to be that
part of its future intentions that it is in a position to
reason about. Being able to plan means being able to

'The work reported herein was supported by the De-
fense Advanced Research Projects Agency, contract number
DAAA15-87-K-0001, administered by the" Ballistic Research
Laboratory.

model and improve some piece of one's program before
it is executed.

Classical planners focused entirely on program ma-
nipulation. Consequently they could be based on the
assumption that the programs were quite simple, typi-
cally sequences of actions involving the manipulation of
objects with standard names. Now that we are taking
agenthood more seriously, we realize that plans have to
contain explicit steps for sensing the world and reacting
to it. Such plans are better able to guide agent behavior
over long stretches of time. But they are harder to rea-
son about. One response to this difficulty is to give up
and just tune all plans by hand. But a less pessimistic
response is to try to make reactive plans transparent
enough that a planner has a chance of reasoning about
them and improving them. The payoffs of even a small
planning capacity seem large enough that it is worth try-
ing to develop one.

Several people are working on ways of combining plan-
ning with reaction. [20, 33, 26, 14] It is too early to tell
which approaches are best. Hence the views I outline
here are basically in the form of a manifesto rather than
an argument.

We assume that an agent always has a plan. New as-
signments are given to it in the form of abstract plans,
with steps like "Make such-and-such a state true." But
even abstract plans have default methods for carrying
them out, so that the agent's plan is always in some
sense executable, even if the default methods have little
chance of succeeding. Actually, we expect that the de-
fault method will under normal circumstances be quite
capable. We do not insist that the planner be able to do
something useful within a bounded period of time. [4,
18, 19] In any case, the present paper is concerned with
general architectural issues, not the adequacy of partic-
ular plans.

Under this view, planning is the operation of improv-
ing the agent's existing plan. It goes on in the back-
ground, at whatever time scale its natural evolution re-
quires. Whenever the planner thinks it has an improved
plan, it swaps it for the current plan. The interpreter
must be built so this can happen smoothly. If things are
happening too fast, then the planner may never catch
up with the interpreter, in which case the interpreter's
existing plan had better be good enough.

One of the most elegant ideas in planning theory is

450

2 B.C

1A 3
o

Robot

4

Figure 1: A Simple Delivery Problem

that a planner can operate by refining abstract plans.
[28, 23] Unfortunately, our architecture makes that idea
inapplicable. We have to find ways of editing an already
fleshed-out plan. [13, 29, 30] We can distinguish be-
tween two sorts of editors: schedulers and debuggers.1

A scheduler is a transformation that reorders tasks in
order to optimize time or other resource usage. [9, 25,
3]. A debugger is a transformation that attempts to elim-
inate a bug. [32] A bug is simply a detectable problem,
discovered by a process of projecting the plan — simulat-
ing its operation — to see how well it will work. [35, 15,
16] A scheduler cannot run in response to bug detection,
because such a transformation is worth doing whenever
it would substantially improve the plan, and usually the
only way to verify that it will is to try it. Hence sched-
ulers should run whenever they can. One advantage of
doing things this way is that schedulers tend to increase
the amount of order in a plan, and an ordered plan is
easier to reason about. [24J

Figure 1 shows a simple example of the kind of prob-
lem we want to solve. The system is given three jobs,
to take object A from location 1 to location 3, and take
objects B and C from location 2 to location 4. Its orders
arrive as a plan to do these three things in no particular
order — interleaving steps if necessary. This specifica-
tion is already executable, but the interpreter by default
would do the errands in some random order, unlikely
to be optimal. As the interpreter starts to work (we
assume these trips take a substantial amount of time,
on the order of minutes or hours), the planner starts to
think. The first thing it does is call a heuristic sched-
uler. In this domain, a good way to proceed is to extract
a traveling-salesman algorithm from the plan, solve it ap-
proximately (in polynomial time [27]), and impose the
constraints derived on the plan. The result, as shown
in the figure, is a reasonable schedule, in which all the
loads happen before any of the unloads.

To make the problem interesting, let us suppose that
the scheduler, black box that it is, is incapable of taking
any constraints into account except for those depending
on the space-time location of tasks. In particular, it has
no idea that the robot has only two hands and cannot
carry three objects at once. Detecting and solving this
bug is the job of another module, the overload bug detec-
tor. In the present case, its only remedy for the bug is
to remove all constraints imposed by the scheduler, add

Transformational
Planner

PLAN

T
Reactive
Interpreter

'I used the term "debug" differently in [23].

Figure 2: Block Diagram of XFRM Planner/Interpreter

the constraint that an unloading (say, of A) occur before
the overload, and call the scheduler again. This time it
decides to deliver A before loading B or C.

Our goal is to devise and implement a planner that
can carry this plan out, with or without optimizing it.
The simultaneous requirements that the plan must

• be complex enough to be able to survive interfer-
ence;

• but be transparent enough to be manipulated by a
planner

impose strong constraints on the design of the inter-
preter, the planner, and the plan itself. In the rest of
this paper, I will explain the design decisions that are
the result of these constraints.

2 Agent Architecture

Figure 2 shows a top-level view of the agent architecture.
There is a central plan that is manipulated by a trans-
formational planner and a reactive executor. We call the
planner XFRM.

One of the major issues in deciding which transforma-
tion to do next is deciding how to coordinate debuggers
and schedulers. The debuggers ought to take precedence,
because a buggy plan is probably too awful to try to op-
timize. But we can't arrange to run the schedulers after
the debuggers, simply because the schedulers may them-
selves introduce bugs. Hence when a debugger runs, it
may have to undo some work done by a scheduler.

That means that (a) the orderings imposed by the
scheduler must be clearly marked as undoable; (b) sched-
ulers must be rerun when their work might have been
undone. Achieving (a) is just a matter of bookkeeping.
Achieving (b) is trickier. We don't want to run every
scheduler periodically, and we don't want to try to guess
which need to run. It seems best to have any program

451

that undoes a schedule to be responsible for rerunning
the appropriate schedulers. That will have the additional
advantage that after every plan revision that plan will
be as scheduled as possible. The more ordered a plan is,
the easier it is to work with.

We use the classic phrase plan critic [32] to refer to a
module that looks for a particular class of problem and
proposes corrections. A critic is a procedure that takes
a plan and a set of timelines resulting from projecting
it, and returns a list of bugs. A bug is a data structure
with the following slots:

1. Penalty: How much it costs a plan to have this bug.

2. Signature: A symbolic description of the bug.

3. Comparer: A procedure for comparing the signature
with that of another bug. Two bugs can be the same
except for severity. (E.g., the same deadline can be
missed by a minute or by an hour.)

4. Transformation: A procedure that will try to fix
the bug by making a change in the plan. It will
return zero or more new plans that purport to be
improvements.

XFRM operates as follows. It keeps a queue of buggy
plans. Each plan has several bugs, but the worst bug
is special in that it is the one whose transformation will
be run if the plan is selected for future search. In the
steady state, the planner repeatedly executes this loop:

1. Select the most promising plan on the queue, and
run its transformation, thus generating some new
plans.

2. For each new plan, run the projector to generate
timelines; run the critics on the plan and timelines
to find bugs; score the resulting plan.

3. Sort and merge the new plans into the queue.

Formally this system is a best-first seacher. However,
in practice it had better focus on a very narrow "beam"
in the search space, or else the whole idea will collapse.
Here we are inspired by past transformational systems
([13, 29, 30]) that avoided keeping track of more than
one plan at all. (Hammond's planner picked one trans-
formation and tried it. Simmons's system tried several
transformations, but picked one of the resulting plans
based on a heuristic score, and discarded all the others.)

The reason for comparing bug signatures is to address
a hard question, how to measure progress in eradicat-
ing bugs. It could easily happen that a transformation
could fail to eliminate a bug, or even reintroduce one
previously eliminated. By encouraging critics to provide
simple-symbolic descriptions of a bug, we make it likely
that a persistent bug will be recognized. The plan eval-
uation function adds heavy penalties for a bug that has
reappeared.

Our plans are general robot plans, which raises spe-
cial problems for the projection and transformation al-
gorithms. The projector basically mimics the plan in-
terpreter and the world's response, but it must do more
than that. Suppose the plan contains a monitor [8], a
command to wait for a condition and then do something.
Assuming the condition is not under the planner's con-
trol, there are essentially an infinite number of points

when it can become true. The best we can do is investi-
gate a random sample.

Once a bug is found, it must be accompanied by a
transformation that claims to know how to fix it. The
transformation must be able to rearrange portions of a
plan, where the plan is a complex program. For example,
suppose that the agent is supposed to plan a set of deliv-
eries, and a critic detects that the cargo capacity will be
overloaded given the current schedule. The repair trans-
formation could rerun the scheduler after constraining
the next possible unloading step to come before the step
that caused the overload. (This tactic may not eliminate
the problem, but the planner will presumably be able to
detect that it is getting better.) To allow such edits, our
plan notation must be as transparent as possible.

3 The Interpreter
We call our notation RPL, for Reactive Plan Language.
It can be considered to be the next generation of Firby's
RAPS system [8], but it is also related to MACNET [ö],
PRS [12], COAL [6], and robot programming languages
like OWL [7]. There are two major differences between
RPL and RAPS:

1. The syntax is more "recursive," more in the style of
Lisp

2. More high-level concepts (interrupts, monitors)
have been made into explicit constructs.

The language is still evolving.
A RPL plan looks like a program. Indeed, I will use

the terms "plan" and "program" interchangeably. RPL
looks so much like Lisp that many Lisp programs are
valid RPL plans. However, that is not the intended use
for the language. Mechanisms are provided to allow and
encourage the plan writer to let sensory input guide the
behavior of the system, rather than complex data and
control structures.

One of these mechanisms is the fluent, or time-varying
quantity. Of course, all program variables are time-
varying quantities, but in plans we want behavior to be
governed by the temporal changes. For example, in RPL
we can say (FILTER c e) to mean, "Execute e while the
fluent c remains true." If c becomes false, the execution
of e is "evaporated" [22], that is, rendered unnecessary.
Fluents can be denned in terms of other fluents. For
example,

(FILTER (AND Cl (> I S)) (CARRY-OUT A))

does (CARRY-OUT A) only while Cl remains true and I
remains greater than 5. Here Cl is a Boolean-valued
fluent, and I is a numerical-valued one.

Fluents can be set by sensors, thus allowing immediate
sensory control of actions. The combination of Boolean
combination and program control by fluents puts much
of the functionality of MACNET [5] into RPL (while
dispensing with the idea of combinational-logic compila-
tion).

RPL contains a LET* construct for binding local vari-
ables, which behaves a lot like Lisp's. One use for this
facility is in perceiving objects in the world. E.g., the
plan

452

(LET* ((X (Find a block)))
(PICKUP X))

picks up a block. I will say more about this sort of thing
in Section 3.3. A more mundane use of local variables is
for counting or keeping track of lists, just as in regular
programming.

As a RPL plan is executed, a task network is con-
structed. The task network corresponds to the stack in
a standard programming language. However, an impor-
tant difference is that the "stack frames" can come into
being before the interpreter reaches them, and the plan-
ner and interpreter can refer to them in advance. A task
is an occurrence of an action that the planner has carried
out or might try to carry out. A task has two kinds of
subtask [22]: syntactic subtasks and reducing subtasks.
A syntactic subtask of a task T is one that is generated
from a piece of the text of the action of T. For exam-
ple, if the action of T is (LOOP (A) (B)), then one of
its syntactic subtasks might be "the second step in the
third iteration of T," i.e., the third execution of (B). We
denote this task with the expression (SUB STEP 2 (SUB
ITER 3 T)). This example shows that in principle a
task can have an infinite number of syntactic subtasks,
but that only a finite number can actually be executed
(or even be committed to).

Tasks are accessible using plan variables. The top task
is the value of global variable TOP-TASK*, and one can
use SUB expressions to work one's way down to a par-
ticular subtask. However, it is often more convenient to
TAG a subtask. In this plan:

(SEQ (A) (TAG STEP2 (B)) (C))

the second step can be referred to using the variable
STEP2. This is most useful in the PLAN construct, which
expects explicit constraints among steps:

(PLAN ((TAG STEPi (A))
(TAG STEP2 (B))
(TAG STEP3 (C)))

(ORDER STEPI STEP3)
(ORDER STEP2 STEP3))

TAG actually binds local variables to tasks.
A new task is created for every "step" of a plan. To

avoid generating a huge pile of tasks, we distinguish be-
tween steps and expressions. The latter are pieces of the
plan that are evaluated rather than being executed. For
example, in (IF e a b), the expression e is evaluated,
resulting in the usual choice of a or 6. A task with an IF
action has two subtasks, one for the true arm and one
for the false arm. There is no subtask for the test, e.

IalsoTnentioned reducing subtasks above. The plan-
ner can step in and declare that a certain set of tasks is to
be carried out using a specified RPL plan. This hangs a
reduction off the tasks in question, pointing to a new re-
ducing subtask. When the interpreter is to execute these
tasks, it executes the reducing subtask instead. This fa-
cility is not yet well developed.

A policy is an action defined as a constraint on other
actions. [2l] An example is the action "Avoid making
any noise." For the RPL interpreter, a policy is an action
that can fail but whose successful termination is not an
end in itself. The RPL construct (WITH-POLICY p a)

carries out action a after starting action p. If a or p
fails, the whole thing fails, but a must succeed for the
WITH-POLICY to succeed. That is, p is behaving as a
policy during the execution of a. When a finishes, the
task for p evaporates. One useful construct to serve as
such a p is (WHENEVER c i), which executes i whenever
fluent c becomes true. This action can never succeed,
although it can fail.

An important policy class are protections. [32] A pro-
tection of state P is the policy of keeping P true. As
Firby [8] observes, there are many different policies that
might fall under this description. We distinguish three:
A "soft" protection is one that is routinely expected to
lapse and be restored. A "hard" protection is one that
should not lapse, although the plan has resources for
restoring it when it does. A "rigid" protection is one
that must not lapse; if the planner foresees the violation
of a rigid protection, it must take steps to correct it or
expect its plan to fail. Historically, most planners have
assumed protections to be rigid, and have worked hard
to make protection violations impossible.

RPL provides the following construct:

(PROTECTION [:RIGID I:HARD I:SOFT]
state
fluent
repair)

The state is a predicate-calculus pattern summarizing
what is protected. This is of use to the projector and
planner. The fluent is the actual run-time entity whose
truth the interpreter cares about. If it should become
false, the repair is run. If the repair fails to make flu-
ent true, then the PROTECTION fails (and so, presumably,
does the plan it occurs in).

3.1 Example

Space does not permit inclusion of a RPL manual, so
I will give an annotated example to convey the flavor
of the language. The plan library consists of subrou-
tines, defined using DEF-INTERP-PROC. The plan in Fig-
ure 3 achieves the goal of transporting OBJ from location
X1.Y1 to location X2.Y2:

3.2 Implementation

The interpreter is run by a "cpu" that keeps track of
threads of control. It looks something like a real-time
operating system [3l], except that we focus on issues of
flexibility rather than speed of response. The interpreter
takes plan constructions and turns them into control
threads. Unlike a traditional operating system, schedul-
ing is done "depth-first" instead of "round-robin." That
is, the interpreter stays focused on a particular thread
and its successors until interrupted, rather than trying
to run all enabled threads in some fair way. It would not
be hard to make the scheduling policy be more flexible.

A cpu thread consists of three things: a priority, an
aliveness checker, and a continuation. Calling the contin-
uation is supposed to return zero or more threads. The
aliveness checker is a function that returns NIL when the
thread has died for some reason. One use of this is in
(TRY-ALL a.\ .. . ajv), where each action is alive only if

453

(DEF-INTERP-PROC TRANSPORT (OBJ XI Yl X2 Y2)
(LET* ((HAND (FREE-HAND))

(DROPPED-IT »#F)
(DROP-X 0) (DROP-Y 0))

;; First, pick the object up. FREE-HAND finds a hand that is
;; not in use if it can, or picks one randomly.
(AT-LOCATION XI Yl

(ACHIEVE-IN-HAND OBJ))
;; Note that the hand is in use,
(CONCLUDE (IN-USE HAND))

Request the "resource" WHEELS, using variable
I-HAVE-THE WHEELS to keep track of whether it has been
seized by some other plan:

(USING-RESOURCE WHEELS -1
I-HAVE-THE-WHEELS

;; Go to the new location,
(PLAN ((TAG DOIT (AT-LOCATION X2 Y2

;; and release the object.
(TAG LET-GO (UNHAND HAND))
(CONCLUDE (NOT (IN-USE HAND))))))

;; However, keep track of whether something disturbs
;; the hand en route.
(POLICY (TASK-BEGIN DOIT)

(TASK-BEGIN (TAGGED LET-GO DOIT))
(WHENEVER (NOT DROPPED-IT)

(SEQ (WAIT-FOR (EMPTY HAND))
(CONCLUDE DROPPED-IT)
(!= < DROP-X DROP-Y >

(COORDS-HERE)))))
;; If something does, pick the object up again.
(PROTECTION :HARD

(TASK-BEGIN DOIT)
(TASK-BEGIN (TAGGED LET-GO DOIT))
'(TAKING ,0BJ)

;; Don't worry about the protection violation
;; until this plan has the wheels under its control.
(NOT (AND I-HAVE-THE-WHEELS

DROPPED-IT))
(SEq (!= HAND (FREE-HAND))

;; (A different hand may be used this time.)
(AT-LOCATION DROP-X DROP-Y

(ACHIEVE-IN-HAND OBJ))
(CONCLUDE (IN-USE HAND))
(CONCLUDE (NOT DROPPED-IT))))))))

Figure 3: A RPL Procedure

454

the (TRY-ALL ...) hasn't succeeded yet. Another is in
FILTER, where the value of the filtering fluent is checked.

The priority of a thread may be controlled by the con-
struct (PRIORITY n -body-), which executes body with
priority n. Lower numbers represent more urgent prior-
ities.

3.3 Perception

Classical planning often seemed to assume that, to en-
able an object to be manipulated, it needed only to
be bound to a predicate-calculus constant. A bet-
ter way of putting it is that classical planning took
no position at all on the question how A was to be
found in order to perform (GRASP A). As we move
toward more realistic domains, this gap has become
more glaring. Revisionists like Agre and Chapman [l,
5] have argued that the classical model is bankrupt, and
have diagnosed the underlying illness as reliance on "ob-
jective" instead of "deictic" semantics.

Actually, a careful analysis shows there is nothing re-
ally wrong with the classical account of the way names
work in AI programs. There is no problem executing
(GRASP A) if the plan for carrying out a GRASP can
look up the coordinate of its argument; for instance, if
there's an assertion (COORDS A <X,Y,Z>) stored in the
database.

If there isn't, then the agent has to do some work, of
the following sort: It scans the place where it expects
A to be. Anything in that vicinity that resembles A it
takes to be A (assuming there is just one such object). In
other words, the vision system must be given a descrip-
tion of A, and must return the scene parsed into "things
that look like that" and, at a lower resolution, the back-
ground. Each such thing has a new name (what Firby
[8] calls a sensor name), complete with all the informa-
tion the vision system can extract about it, including,
let us suppose, its coordinates. So now the agent has
an assertion (COORDS 0B991 <X,Y,Z>) in its database.
The crucial step is to assume A=0B99i, so that now it
knows (or thinks it knows) the coordinates of A. It can
proceed to grasp A, and so forth. (While it is grasping
A, the equation "A=object-grasped" can be assumed, and
so forth.)

There is a further layer of indirection to be dealt with,
however. Consider the following robot plan:

Repeat
Look for a widget coming down the chute
Pick it up
Put it in the bin

Now, the question is, how do we analyze "it" in the
"pick it up" step? Classical planning has had remark-
ably little to say about this question, and has tended
to focus on the case where all the objects are "known"
beforehand.

If you inquire of roboticists how they handle this situ-
ation, you find that they write programs in which there
is no reference to widgets at all. Instead, the "look for"
step becomes code to scan images for things that look
like projections of widgets. The image fragments found
are translated into 3-d coordinates or the like, and this

information is what gets passed to the "pick it up" step.
It's hard to argue with this approach,

The way to modulate this to the classical-
representation view is to assume that "it" is a variable.
That is, what we have is

X := widget-like thing in chute
pickup X

where X is bound to a thing with properties such as 3-d
coordinates, etc. This way of thinking of the situation
allows us to tie the plan to robotics while still notat-
ing it in the usual compact way. The question is what
sort of a "thing" this is. Presumably there is no magic
way to guarantee that every time the same object is seen
it will be assigned an EQ entity in memory. Firby's re-
search dealt with how to drop that assumption. But once
we have dropped it, we're left with the classical theory,
pretty much intact. We see that there was no harm after
all in saying (GRASP A), just so long as we realized that
A might have been freshly consed a millisecond ago by
the sensory system.2

In our simulated world, we model perception by hav-
ing a list of objects at each location. There is a primitive
operation to scan that list for objects having certain per-
ceptual properties. The objects found are returned, not
as pointers, but as descriptions, called desigs, including
"coordinates," which are simply given as the position of
the object in the list. (This is contrived, but picture the
world as inhabiting a separate address space, so that it
would be impossible to return a pointer.) If new objects
arrive at this location, or if the robot moves, the desig
can become wrong, but there is no way for the robot
to test for that, without comparing the actual object at
the coordinate with the properties it expects, which are
stored in the desig. Hence if an object is to be manipu-
lated over some stretch of time, then its desig must be
"reacquired" when necessary, by the process, described
at the beginning of this section, of searching for an ob-
ject like it and equating the old desig to the new desig
for the found object.

4 Transformational Planning

We now return to the topic of planning — how plans get
improved by XFRM before being executed. To refresh
your memory, the process consists of projecting the plan
to allow critics to foresee problems with it, where the
critics propose transformations to fix those problems.
Many transformations call a scheduler to optimize the
order of tasks.

4.1 The Projector

The output of the projector is a set of timelines (or
"time maps"), each a story about how execution might
go. Coupled with each timeline is an elaborated task
network that explains which tasks succeeded and which
failed. The hope is that in case of projected failure the

Close analysis of the often confusing literature on "deic-
tic" alternatives to the classical view show that they do not
differ much in practice from what I am proposing; only they
prefer the word "register" to the word "variable."

455

data gathered during projection can suggest patches to
the plan.

Our most elegant and powerful projector was built by
Steve Hanks. [15] It generates a scenario tree that de-
scribes all but the most unlikely ways that a plan could
work. A planner can inspect the tree to find hidden
disasters as well as most probable outcomes. We are
currently working on a simpler cousin of Hanks's pro-
jector as a module for the XFRM planner. The orig-
inal version tends to generate big trees for big plans,
because of its commitment to finding every way a plan
could be executed, even when the ways don't differ much.
An alternative idea is to have the projector generate a
random sample of projections. That is, we project the
plan, making random choices, then project it again a few
times from the beginning, until we have a collection of
timelines. The main advantage of this approach is that
the planner can quickly predict whether a plan is basi-
cally good or bad, because the the first few samples are
probably among the most probable. The danger is that
improbable catastrophes will be overlooked until their
probability has risen.

Plan projection is a good place to apply probability
theory. Typically all we need to estimate is the probabil-
ity that a given state will result from a certain event. It
might be thought that keeping track of the interdepen-
dences among these assessments might be impossible,
but we can arrange to avoid that work. Whenever the
projector estimates the probability of a state at a point
in time, it flips a coin based on that probability and ac-
tually adds an assumption that the state is true or false
from that point on (for some lifetime). Future assess-
ments that are dependent on this state will be affected
by the recorded assumption. Hanks's original projector
would keep track of both outcomes, splitting the projec-
tion into two different scenarios. In our "Monte Carlo"
version, we retain just one of them; the other might be
generated next time.

For example, if the success of a plan step depends on
whether it is raining, and the chance of rain is 20%,
then 20% of the time we install the assumption that it is
raining; 80%, that it is dry. The subsequent assessment
of any other probability that depends upon the chance
of rain must then take this assumption into account.

Projection is relatively easy for straight-line sequences
of plan steps. But in Section 3 we expanded the scope of
plan notations considerably, and the projector must be
able to cope with all of these. Our basic approach is to
treat the projector as just another interpreter, indeed,
just- another incarnation of the interpreter, running in
projection mode. In this mode, instead of dealing with
the real world, the planner acts by adding events to the
timeline, and senses by querying the timeline. Real time
is replaced by "projection time," as recorded in the last
event stored in the time map. As new events are added to
the growing timeline, projection time marches on. In the
dullest case, an event is simply added with a new date,
thus simulating the passage of time by the correspond-
ing amount. However, if the world contains autonomous
processes and agents, then they might cause events to oc-
cur during that time period. In the current system, we

simply provide a hook, a procedure WORLD-PROJECTOR*
that is called whenever an interval passes. It can roll
some dice to decide if it rains, notice that sunset has oc-
curred, or do whatever else is necessary to simulate the
world. It adds the resulting new events to the timeline
before allowing time to proceed.

Because the projector is just the interpreter, it must
be able to handle all the variable-binding and setting
constructs. The tricky case is a Lisp global variable, e.g.,
a fluent tickled by a sensor. It would be inappropriate
for the projector either to read, set, or destructively alter
the current value of such a variable midway through a
projection. Instead, when the interpreter discovers that
a variable has a global binding, it must copy its value
and use the copy from then on. Any data type that
the projector might encounter must respond to a COPY
operation,3 or an error will be generated. Fluents are
an example of an easily copied data type. The copy can
be named "Copy of fluent so-and-so" so the two can be
related when necessary.

4.2 Critics and Transformations

After projecting the current plan revision, critics are run
on the resulting scenarios in order to recognize bugs and
suggest fixes. The fix suggestions, or transformations,
are responsible for keeping the plan scheduled.

Let's look at a detailed example, that arises in the
course of solving the problem in Figure 1, using (among
other plans) the TRANSPORT plan of Section 3.1. After
the first version of the plan has been scheduled, projec-
tion shows that an overload will occur after object C
is loaded. In particular, when FREE-HAND fails to find
a hand that is not in use, it returns a hand that is in
use, which gets emptied, triggering a protection viola-
tion. (Let me remind you that none of this is really
happening, but is just being predicted during projec-
tion.) The projection continues, and the plan completes
successfully, but the protection was marked :HARD, so
XFRM notes the violation, and the "overload critic" will
try to get rid of it, in order to avoid wasting time going
back to get object A after C is unloaded. This critic
is called whenever the following constellation of events
occurs:

• A protection violation occurs in a protection set up
by TRANSPORT during the transport of object Bx to
destination Dx

• The violation occurred due to a call to FREE-HAND
in during the transportation of object B2 to desti-
nation £>2

• The violation occurred at location V

If the distance from V to D2 is longer than the distance
from V to D\, then the critic recommends that a new or-
dering be introduced: from the UNHAND step for B\ to the
step that picks up Bi. This criterion is fairly arbitrary,
but will be supplanted by a more refined estimate when
the transformed plan is rescheduled and reprojected. In

3This would be a good place to use CLOS, the Common
Lisp Object System, but in fact the current implementation
does not.

456

the present case, the resulting plan is a significant im-
provement.

For such transformations to be expressible, the plan-
ner needs a flexible way of talking about plan steps, and
the syntactic subtask idea from Section 3 provides one.
Every step has a name that reflects its place in the plan,
and these names can be used to add order constraints to
the top-level PLAN.

Another transformation we are working on can be ex-
pressed informally as, "If you have lots of deliveries to
make in the same area, then consider getting a box to
put all the things in." It might be thought that applying
this transformation would require editing every pickup
action, transforming it to an action to put an object in
the box. However, we can avoid that work by rewrit-
ing the TRANSPORT procedure so that it will use a box if
one is at hand. Then transforming the plan will require
simply adding steps to acquire a box.

It is not at all clear as yet how many transformations
our planner will need. In our contrived delivery domain,
we won't need many, but as domains get more compli-
cated the problem of coordinating transformations could
become severe.

5 Status and Prospects

The system described here is partially implemented. The
interpreter is running, as are several versions of the pro-
jector, scheduler, and world simulator. We hope to get a
working prototype that includes everything in the next
few weeks.

The RPL interpreter has been ported to GE's Corpo-
rate Research and Development Laboratory for use in
an emergency-advice application. RPL is used to write
scripts for advising personnel how to react to an emer-
gency. The transparency of the notation makes it pos-
sible to display an informative checklist of actions to be
taken.

There are lots of problems left to be solved in the de-
velopment of XFRM. One is the provision of a formal
semantics for RPL. Another is the exploration of ways
of projecting and transforming loops. A plan with loops
can go on for a long time, generating a long boring time-
line. To circumvent this problem, the projector needs
to engage in a little aggregation, in the phrase of Weld
([34], cf. [lO, ll]). That is, having run the loop a couple
of times, it should try to summarize what's happening in
such a way that it can estimate the number of iterations,
and predict in general terms what the world will be like
when the loop is done.

One question that needs to be addressed are the cri-
teria for judging this work. Our focus is on notation
and architecture rather than on particular schedulers or
transformations. The payoff we expect is in the ability
to write reactive plans that are easy to understand and
modify, that make realistic assumptions about execution
platforms, and that support the development of a bat-
tery of plan transformations. Hence the work will be
successful to the extent that it supports the evolution of
a new generation of planners.

Acknowledgements: This work is the result of a collab-

oration with many students, including Jim Firby, Steve
Hanks, Joshy Joseph, and Yuval Shahar. Bruce Pomeroy
and Bill Cheetham helped adapt RPL to the emergency-
advice domain. My thoughts on perception were honed
by electronic correspondence with Phil Agre, who no
doubt disagrees with all of them.

References

[2:

[3:

K

[5

[6

IT

[9:

[10:

[11

[12;

[13

[14

[is:

[16

Philip E. Agre 1989 The dynamic structure of
everyday life. MIT AI Lab Report 1085

Philip E. Agre and David Chapman 1987
Pengi: an implementation of a theory of ac-
tivity. Proc. AAAI6, pp. 268-272

Colin E. Bell and Kwangho Park 1989 Solving
resource-constrained project scheduling by A*
search. University of Iowa Working paper.

Mark Boddy and Thomas Dean 1989 Solving
time-dependent planning problems. Proc. Ijcai
11

David Chapman 1990 Vision, instruction, and
action. MIT AI Lab Tech Report 1204

Ernest Davis 1984 A high-level real-time pro-
gramming language. NYU Dept. of CS Re-
port 145 (Robotics Report 36

Marc Donner 1987 Real-time control of walking
Boston: Birkhäuser

R.J. Firby 1989 Adaptive Execution in Com-
plex Dynamic Worlds. Yale University CS
Dept. TR 672

Mark S. Fox and Stephen F. Smith 1984 ISIS:
a knowledge-based system for factory schedul-
ing. Expert Systems 1, no. 1, pp.25-49

Andrew Gelsey 1990 Automated reasoning
about machines. Yale Computer Science De-
partment Report 785

Andrew Gelsey and Drew McDermott 1988
Spatial reasoning about mechanisms. Yale
CS Department Report YALEU/DCS/RR-
641. To appear in Advances in Spatial Reason-
ing 1, Su-Shing Chen, ed. Ablex Publishing.

Michael Georgeff and Amy Lansky 1987 Re-
active reasoning and planning. Proc. AAAI 7,
pp. 677-682

Kristian Hammond 1988 Case-based Planning:
An Integrated Theory of Planning, Learning,
and Memory. New York: Academic Press.

Kristian Hammond, Timothy Converse, and
Charles Martin 1990 Integrating planning and
acting in a case-based framework. Proc. AAAI
8, pp. 292-297

Steven Hanks 1990 Projecting Plans for Un-
certain Worlds. Yale Yale Computer Science
Department Technical Report 756.

Steven Hanks 1990 Practical temporal projec-
tion. Proc. AAAI 8

457

[17] Jerry Hobbs and Robert C. Moore (eds.) 1985
Formal Theories of the Commonsense World,
Ablex Publishing Corporation

[18] Eric Horvitz 1988 Reasoning under vary-
ing and uncertain resource constraints. Proc.
AAAI7, pp. 111-116

[19] Eric Horvitz, G.F. Cooper, and D.E. Hecker-
man 1989 Reflection and action under scarce
resources: theoretical principles and empirical
study. Proc. Ijcai 11, pp. 1121-1127

[20] Leslie Pack Kaelbling and Stanley J. Rosen-
schein 1990 Action and planning in embedded
agents. In Patti Maes (ed.) New Architectures
for Autonomous Agents: Task-level Decom-
position and Emergent Functionality, Cam-
bridge: MIT Press

[21] Drew McDermott 1978 Planning and acting,
Cognitive Science 2, no. 2, pp. 71-109

[22] Drew McDermott 1985 Reasoning about plans.
In [17], pp. 269-317

[23] Drew McDermott 1989 Regression planning.
Yale Computer Science Report 752. To appear
(with revisions) in Int. J. of Intelligent Sys.
1990

[24] David Miller 1985 Planning by Search through
Simulations. Yale Computer Science Depart-
ment Tech Report 423.

[25] David Miller 1988 A task and resource schedul-
ing system for automated planning. Annals of
Operations Res. 12, pp. 169-198

[26] Tom M. Mitchell 1990 Becoming increasingly
reactive. Proc. AAAI 8, pp. 1051-1058

[27] Daniel J. Rosenkrantz, Richard E. Stearns,
and Philip M. Lewis II 1977 An analysis of sev-
eral heuristics for the traveling salesman prob-
lem. SIAM J. Comput. 6, no. 3, pp. 563-581

[28] Earl Sacerdoti 1977 A Structure for Plans and
Behavior. American Elsevier Publishing Com-
pany, Inc.

[29] Reid Gordon Simmons 1988 Combining Asso-
ciational and Causal Reasoning to Solve In-
terpretation and Planning Problems. MIT AI
Laboratory TR 1048.

[30] Reid Gordon Simmons 1988 A theory of debug-
ging plans and interpretations. Proc. AAAI 7,
pp. 94-99.

[31] David B. Stewart, Donald E. Schmitz, and
Pradeep K. Khosla 1990 Implementing real-
time robotic systems using CHIMERA II.
Proc. IEEE Int. Conf. on Robotics and Au-
tomation, Cincinatti

[32] Gerald J. Sussman 1975 A Computer Model of
Skill Acquisition. American Elsevier Publish-
ing Company

[33] Jennifer Turney and Alberto Segre 1989 A
framework for learning in planning domains

with uncertainty. Cornell Department of Com-
puter Science Report 89-1009

[34] Daniel Weld 1986 The use of aggregation in
causal simulation. Artificial Intelligence 30,
no. 1, pp. 1-34

[35] Robert Wilensky 1983 Planning and Under-
standing. Reading, Mass.: Addison-Wesley

458

Becoming Increasingly Reactive
Tom M. Mitchell

School of Computer Science1

Carnegie Mellon University
Pittsburgh, PA 15213

Tom .Mitchell® cs.cmu.edu

Abstract

We describe a robot control architecture which
combines a stimulus-response subsystem for rapid
reaction, with a search-based planner for handling
unanticipated situations. The robot agent continually
chooses which action it is to perform, using the stimulus-
response subsystem when possible, and falling back on the
planning subsystem when necessary. Whenever it is
forced to plan, it applies an explanation-based learning
mechanism to formulate a new stimulus-response rule to
cover this new situation and others similar to it. With
experience, the agent becomes increasingly reactive as its
learning component acquires new stimulus-response rules
that eliminate the need for planning in similar subsequent
situations. This Theo-Agent architecture is described, and
results are presented demonstrating its ability to reduce
routine reaction time for a simple mobile robot from
minutes to under a second.

1. Introduction and Motivation
Much attention has focused recently on reactive

architectures for robotic agents that continually sense their
environment and compute appropriate reactions to then-
sense stimuli within bounded time (e.g., [Brooks 86, Agre
and Chapman 87, Rosenschein 85]). Such architectures
offer advantages over more traditional open-loop search-
based planning systems because they can react more
quickly to changes to their environment, and because they
can operate more robustly in worlds that are difficult to
model in advance. Search-based planning architectures,
on the other hand, offer the advantage of more general-
purpose (if slower) problem solving mechanisms which
provide the flexibility to deal with a more diverse set of
unanticipated goals and situations.

This paper considers the question of how to combine the
benefits of reactive and search-based architectures for
controlling autonomous agents. We describe the Theo-
Agent architecture, which incorporates both a reactive
component and a search-based planning component. The
fundamental design principle of the Theo-Agent is that it
reacts when it can, plans when it must, and learns by

augmenting its reactive component whenever it is forced to
plan. When used to control a laboratory mobile robot, the
Theo-Agent in simple cases learns to reduce its reaction
time for new tasks from several minutes to less than a
second.

The research reported here is part of our larger effort
toward developing a general-purpose learning robot
architecture, and builds on earlier work described in
[Blythe and Mitchell 89]. We believe that in order to

become increasingly successful, a learning robot will have
to incorporate several types of learning:

• It must become increasingly correct at predicting
the effects of its actions in the world.

• It must become increasingly reactive, by reducing
the time required for it to make rational choices;
that is, the time required to choose actions
consistent with the above predictions and its goals.

• It must become increasingly perceptive at
distinguishing those features of its world that
impact its success.

This paper focuses on the second of these types of
learning. We describe how the Theo-Agent increases the
scope of situations for which it can quickly make rational
decisions, by adding new stimulus-response rules
whenever it is forced to plan for a situation outside the
current scope of its reactive component. Its explanation-
based learning mechanism produces rules that recommend
precisely the same action as recommended by the slower
planner, in exactly those situations in which the same plan
rationale would apply. However, the learned rules infer
the desired action immediately from the input sense data in
a single inference step-without considering explicitly the
robot's goals, available actions, or their predicted
consequences.

1.1. Related Work
There has been a great deal of recent work on

architectures for robot control which continually sense the
environment and operate in bounded time (e.g., [Brooks
86, Schoppers 87, Agre and Chapman 87]), though this

'This is a reprint of a paper which appeared in the Proceedings of the 1990 AAAJ Conference, August 1990, Boston.

459

type of work has not directly addressed issues of learning.
Segre's ARMS system [Segre 88] applies explanation-
based learning to acquire planning tactics for a simulated
hand-eye system, and Laird's RoboSoar [Laird and
Rosenbloom 90] has been applied to simple problems in a
real hand-eye robot system. While these researchers share
our goal of developing systems that are increasingly
reactive, the underlying architectures vary significantly in
the form of the knowledge being learned, underlying
representations, and real response time. Sutton has
proposed an inductive approach to acquiring robot control
strategies, in his DYNA system [Sutton 90], and
Pommerleau has developed a connectionist system which
learns to control an outdoor road-following vehicle
[Pommerleau 89]. In addition to work on learning such

robot control strategies, there has been much recent
interest in robot learning more generally, including work
on learning increasingly correct models of actions
[Christiansen, et al. 90, Zrimic and Mowforth 88], and

work on becoming increasingly perceptive [Tan 90].
The work reported here is also somewhat related to

recent ideas for compiling low-level reactive systems from
high-level specifications (e.g., [Rosenschein 85]). In
particular, such compilation transforms input descriptions
of actions and goals into effective control strategies, using
transformations similar to those achieved by explanation-
based learning in the Theo-Agent. The main difference
between such design-time compilation and the
explanation-based learning used in the Theo-Agent, is that
for the Theo-Agent learning occurs incrementally and
spread across the lifetime of the agent, so that the
compilation transformation is incrementally focused by the
worlds actually encountered by the agent, and may be
interleaved with other learning mechanisms which
improve the agent's models of its actions.

The next section of this paper describes the Theo-Agent
architecture in greater detail. The subsequent section
presents an example of its use in controlling a simple
mobile robot, the learning mechanism for acquiring new
stimulus-response rules, and timing data showing the
effect of caching and rule learning on system reaction
time. The final section summarizes some of the lessons of
this work, including features and bugs in the current design
of the architecture.

2. The Theo-Agent Architecture
The design of the Theo-Agent architecture is primarily

driven by the goal of combining the complementary
advantages of reactive and search-based systems. Reactive
systems offer the advantage of quick response. Search-
based planners offer the advantage of broad scope for
handling a more diverse range of unanticipated worlds.
The Theo-Agent architecture employs both, and uses
explanation-based learning to incrementally augment its

reactive component whenever forced to plan. In addition,
the architecture makes widespread use of caching and
dependency maintenance in order to avoid needless
recomputation of repeatedly accessed beliefs. The primary
characteristics of the Theo-Agent are:

• It continually reassesses what action it should
perform. The agent runs in a tight loop in which it
repeatedly updates its sensor inputs, chooses a
control action, begins executing it, then repeats this
loop.

• It reacts when it can, and plans when it must.
Whenever it must choose an action, the system
consults a set of stimulus-response rules which
constitute its reactive component. If one of these
rules applies to the current sensed inputs, then the
corresponding action is taken. If no rules apply,
then the planner is invoked to determine an
appropriate action.

• Whenever forced to plan, it acquires a new
stimulus-response rule. The new rule recommends
the action which the planner has recommended, in
the same situations (i.e., those world states for
which the same plan justification would apply), but
can be invoked much more efficiently. Learning is
accomplished by an explanation-based learning
algorithm (EBG [Mitchell, et al 86]), and provides
a demand-driven incremental compilation of the
planner's knowledge into an equivalent reactive
strategy, guided by the agent's experiences.

• Every belief that depends on sensory input is
maintained as long as its explanation remains valid.
Many beliefs in the Theo-Agent, including its
belief of which action to perform next, depend
directly or indirectly on observed sense data. The
architecture maintains a network of explanations
for every belief of the agent, and deletes beliefs
only when their support ceases. This caching of
beliefs significantly improves the response time of
the agent by eliminating recomputation of beliefs in
the face of unchanging or irrelevant sensor inputs.

• It determines which goal to attend to, based on the
perceived world state, a predefined set of goal
activation and satisfaction conditions, and given
priorities among goals.

Internal structure of agent: A Theo-Agent is defined
by a frame structure whose slots, subslots, subsubslots, etc.
define the agent's beliefs, or internal state2. The two most
significant slots of the agent are Chosen.Action, which
describes the action the agent presently chooses to
perform; and Observed.World, which describes the agent's
current perception of its world. As indicated in Figure 2-1

^he Theo-Agent is implemented on top of a generic frame-based
problem solving and learning system called Theo [Mitchell, et al. 90],
which provides the inference, representation, dependency maintenance,
and learning mechanisms.

460

ATTENDED.TO.GOAL

SENSORS EFFECTORS

Figure 2-1: Data Flow in a Theo-Agent

the agent may infer its Chosen.Action either directly from
its Observed.World, or alternatively from its current Plan.
Its Plan is in turn derived from its Observed.World and
Attended.To.Goal. The Attended.To.Goal defines the goal
the agent is currently attempting to achieve, and is
computed as the highest priority of its Active.Goals, which
are themselves inferred from the Observed.World.

Agent goals: Goals are specified to the agent by
defining conditions under which they are active, satisfied,
and attended to. For example, an agent may be given a
goal Recharge.Battery which is defined to become active
when it perceives its battery level to be less than 75%,
becomes satisfied when the battery charge is 100%, and
which is attended to whenever it is active and the (higher
priority) goal Avoid.Oncoming.Obstacle is inactive.

Caching policy: The basic operation of the Theo-Agent
is to repeatedly infer a value for its Chosen.Action slot.
Each slot of the agent typically has one or more attached
procedures for obtaining a value upon demand. These
procedures typically access other slots, backchaining
eventually to queries to slots of the Observed.World.
Whenever some slot value is successfully inferred, this
value is cached (stored) in the corresponding slot, along
with an explanation justifying its value in terms of other
slot values, which are in turn justified in terms of others,
leading eventually to values of individual features in the
Observed.World, which are themselves inferred by directly
accessing the robot sensors. Values remain cached for as
long as their explanations remain valid. Thus, the agent's
Active.Goals and Chosen.Action may remain cached for
many cycles, despite irrelevant changes in sensor inputs.
This policy of always caching values, deleting them
immediately when explanations become invalid, and lazily
recomputing upon demand, assures that the agent's beliefs
adapt quickly to changes in its input senses, without
needless recomputation.

Control policy: The Theo-Agent is controlled by
executing the following loop:

Do Forever:
1. Sense and update readings for all eagerly sensed

features of Observed.World, and delete any cached
values for lazily sensed features.

2. Decide upon the current Chosen.Action
3. Execute the Chosen.Action
When the Chosen.Action slot is accessed (during the

decision portion of the above cycle), the following steps
are attempted in sequence until one succeeds:

1. Retrieve the cached value of this slot (if available)
2. Infer a value based on the available stimulus-

response rules
3. Select the first step of the agent's Plan (inferring a

plan if necessary)
4. Select the default action (e.g., WAIT)

Sensing policy: Each primitive sensed input (e.g., an
array of input sonar data) is stored in some slot of the
agent's Observed.World. Higher level features such as
edges in the sonar array, regions, region width, etc., are
represented by values of other slots of the
Observed.World, and are inferred upon demand from the
lower-level features. The decision-making portions of the
agent draw upon the entire range of low to high level
sensory features as needed. In order to deal with a variety
of sensing procedures of varying cost, the Theo-Agent
distinguishes between two types of primitive sensed
features: those which it eagerly senses, and those which it
lazily senses. Eagerly sensed features are refreshed
automatically during each cycle through the agent's main
loop, so that dependent cached beliefs of the agent are
retained when possible. In contrast, lazily sensed features
are simply deleted during each cycle. They are
recomputed only if the agent queries the corresponding
slot during some subsequent cycle. This division between
eagerly and lazily refreshed features provides a simple
focus of attention which allows keeping the overhead of
collecting new sense data during each cycle to a minimum.

Learning policy: Whenever the agent is forced to plan
in order to obtain a value for its Chosen.Action, it invokes
its explanation-based generalization routine to acquire a
new stimulus-response rule to cover this situation. The
details of this routine are described in greater detail in the
next section. The effect of this learning policy is to
incrementally extend the scope of the set of stimulus-
response rules to fit the types of problem instances
encountered by the system in its world.

3. Example and Results
This section describes the use of the Theo-Agent

architecture to develop a simple program to control a Hero
2000 mobile robot to search the laboratory to locate
garbage cans3. In particular, we illustrate how goals and
actions are provided to the robot with no initial stimulus-

3A detailed description of the modified Hero 2000 robot used here is
available in [Lin, et al. 89].

461

response rules, how it initially selects actions by
constructing plans, and how it incrementally accumulates
stimulus-response rules that cover its routine actions.

The robot sensors used in this example include an
ultrasonic sonar mounted on its hand, a rotating sonar on
its head, and a battery voltage sensor. By rotating its hand
and head sonars it is able to obtain arrays of sonar readings
that measure echo distance versus rotation angle. These
raw sonar readings are interpreted (on demand) to locate
edges in the sonar array, as well as regions, and properties
of regions such as region width, distance, direction, and
identity. The primitive sensing operations used in the
present example include Battery, which indicates the
battery voltage level, Sonarw, which measures sonar range
with the wrist sonar pointed directly forward, and
Sweep.Wrist.Roll, which obtains an array of sonar
readings by rotating the wrist from left to right. Of these
sensed features, Sonarw is eagerly sensed, and the others
are lazily sensed.

The robot actions here include Forward. 10 (move
forward 10 inches), Backward. 10 (move backward 10
inches), Face.The.Object (turn toward the closest sonar
region in front of the robot), and Measure.The.Object
(obtain several additional sonar sweeps to determine
whether the closest sonar region in front of the robot is a
garbage can). The.Object refers to the closest sonar region
in front of the robot, as detected by the sense procedure
Sweep.Wrist.Roll.

This Theo-Agent has been tested by giving it different
sets of initial goals, leading it to compile out different sets
of stimulus-response rules exhibiting different behaviors.
In the simple example presented here, the agent is given
three goals:

• Goal.Closer: approach distant objects. This goal is
activated when the Sonarw sense reading is
between 25 and 100 inches, indicating an object at
that distance. It is satisfied when Sonarw is less
that 25 inches, and attended to whenever it is
active.

• Goal.Further: back off from close objects. This is
activated when Sonarw is between 3 and 15 inches,
satisfied when Sonarw is greater than 15 inches,
and attended to whenever it is active.

• Goal.Identify.The.Object: determine whether the
nearest sonar region corresponds to a garbage can.
This is activated when there is an object in front of
the robot whose identity is unknown, satisfied
when the object identity is known, and attended to
whenever it is active and Goal.Closer and
Goal.Further are inactive.

In order to illustrate the operation of the Theo-Agent,
consider the sequence of events that results from setting
the robot loose in the lab with the above goals, actions, and
sensing routines: During the first iteration through its
sense-decide-execute loop, it (eagerly) senses a reading of
41.5 from Sonarw, reflecting an object at 41.5 inches. In
the decide phase of this cycle it then queries its

Chosen.Action slot, which has no cached value, and no
associated stimulus-response rules. Thus, it is forced to
plan in order to determine a value for Chosen.Action.
When queried, the planner determines which goal the
agent is attending to, then searches for a sequence of
actions which it projects will satisfy this goal. Thus, the
planner queries the Attending.To.Goal slot, which queries
the Active.Goals slots, which query the Observed.World,
leading eventually to determining that the
Attending.To.Goal is Goal.Closer. The planner, after
some search, then derives a two-step plan to execute
Forward. 10 two times in a row (this plan leads to a
projected sonar reading of 21.5 inches, which would
satisfy Goal.Closer). The inferred value for the
ChosenAction slot is thus Forward. 10 (the first step of the
inferred plan).

The agent caches the result of each of the above slot
queries, along with an explanation that justifies each slot
value in terms of the values from which it was derived.
This network of explanations relates each belief (slot
value) of the agent eventually to sensed features of its
Observed. World.

In the above scenario the agent had to construct a plan in
order to infer its Chosen.Action. Therefore, it formulates a
new stimulus-response rule which will recommend this
chosen action in future situations, without planning. The
agent then executes the action and begins a new cycle by
eagerly refreshing the Sonarw feature and deleting any
other sensed features (in this case the observed Battery
level, which was queried by the planner as it checked the
preconditions for various actions). During this second
cycle, the stimulus-response rule learned during the first
cycle applies, and the agent quickly decides that the
appropriate Chosen.Action in the new situation is to
execute Forward. 10. As it gains experience, the agent
acquires additional rules and an increasing proportion of
its decisions are made by invoking these stimulus-response
rules rather than planning.

3.1. Rule Learning
The rule acquisition procedure used by the Theo-Agent

is an explanation-based learning algorithm called EBG
[Mitchell, et al 86]. This procedure explains why the

Chosen.Action of the Theo-Agent is justified, finds the
weakest conditions under which this explanation holds,
and then produces a rule that recommends the
Chosen.Action under just these conditions. More
precisely, given some Chosen.Action, ?Action, the Theo-
Agent explains why ?Action satisfies the following
property:

Justified.Action(?Agent, ?Action) <—
(1) The Attending.To.Goal of the ?Agent is ?G
(2) ?G is Satisfied by result of ?Agent's plan
(3) The tail of ?Agent's plan will not succeed without

first executing ?Action
(4) ?Action is the first step of the ? Agent's plan

462

(hero justified.action) = face.the.object
<—prolog—
(hero attending.to.goals) = goal.identify.object
<—prolog—
(hero monitored.goals) = goal.identify.object
(hero goal.identify.object attending.to?) = t
<—prolog—
(hero goal.identify.object active?) = t
<—prolog—
(hero observed.world) = wO
(wO the.object identity known?) = nil

(hero goal.closer active?) = nil
<—prolog—
(hero observed.world) = wO
(wO sonarw) =22.5

(hero goal.further active?) = nil
<--prolog—
(hero observed.world) = wO
(wO sonarw) =22.5

(world376 goal.identify.object wsatisfied?) = t
<—prolog--
(world376 the.object identity known?) = t
<—expected.value—
(world376 previous.state) = worldl59
(worldl59 measure.the.object prec.sat?) = t
<--prolog—
(worldl59 battery) = 100
<—expected.value—
(worldl59 previous.state) = wO
(wO battery) = 100
<--observed.value—
(wO battery observed.value) = 100

(worldl59 the.object distance) = 22
<—expected.value—
(worldl59 previous.state) = wO
(wO face.the.object prec.sat?) = t
<--prolog—
(wO battery) = 100
<--observed.value—
(wO battery observed.value) = 100

(wO the.object direction known?) = t
(wO the.object distance) = 22
<—observed.value—
(wO the.object distance

observed.value) = 22
(worldl59 the.object direction) = 0
<—expected.value—
(worldl59 previous.state) = wO
(wO face.the.object prec.sat?) = t
<—prolog—
(wO battery) = 100
<—observed.value—
(wO battery observed.value) = 100

(wO the.object direction known?) = t
(wO measure.the.object prec.sat?) = nil
<--prolog—
(wO the.object direction) = 10
<—observed.value—
(wO the.object direction observed.value) = 10

Figure 3-1: Explanation for
(Hero Justified.Action) = Face.The.Object

EBG constructs an explanation of why the
Chosen.Action is a JustifiecLAction as defined above, then
determines the weakest conditions on the Observed.World
under which this explanation will hold4. Consider, for
example, a scenario in which the Hero agent is attending to
the goal Goal.Identify.The.Object, and has constructed a
two-step plan: Face.The.Object, followed by
Measure.The.Object. Figure 3-1 shows the explanation
generated by the system for why Face.The.Object is its
Justified.Action. In this figure, each line corresponds to
some belief of the agent, and level of indentation reflects
dependency. Each belief is written in the form (frame slot
subslot subsubslot ...)=value, and arrows such as "<--
observed.value--" indicate how the belief above and left of
the arrow was inferred from the beliefs below and to its
right. For example, the leftmost belief that the Hero's
Justified.Action is Face.The.Object, is supported by the
three next leftmost beliefs that (1) the (Hero
Attending.To.Goals)=Goal.Identify.Object, (2) the
(World376 Goal.Identify.Object Satisfied?)=t, and (3) (WO
Measure.The.Object Prec.Sat?)=nil. W0 is the current
Observed.World, World376 is the world state which is
predicted to result from the agent's plan, and Prec.Sat? is
the predicate indicating whether the preconditions of an
action are satisfied in a given world state. These three
supporting beliefs correspond to the first three clauses in
the above definition of Justified.Action5. Notice the third
clause indicates that in this case the tail of the agent's plan
cannot succeed since the preconditions of the second step
of the plan are not satisfied in the initial observed world.

IF
(1) Identity of The.Object in Observed.World

is not Known
(1) Sonarw in Observed.World = ?s
(1) Not [3 < ?s < 15]
(1) Not [25 < ?s < 100]
(2) Battery in Observed.World > 70
(2) Distance to The.Object in Observed.World

= ?dlst
(2) 15 <= ?dist <= 25
(2,3) Direction to The.Object in Observed.World

= ?dir
(3) Not [-5 <= ?dir <= 5]

THEN
Chosen.Action of Hero = Face.The.Object

Figure 3-2: Rule for Explanation from Figure 3-1

4Notice that the third clause in the definition of Justified.Action requires
that the first step of the plan be essential to the plan's success. Without
this requirement, the definition is too weak, and can produce rules that
recommend non-essential actions such as WAIT, provided they can be
followed by other actions that eventually achieve the goal.

5The fourth clause is not even made explicit, since this is satisfied by
defining the rule postcondition to recommend the current action.

463

Figure 3-2 shows the english description of the rule
produced by the Theo-Agent from the explanation of
Figure 3-1. The number to the left of each rule
precondition indicates the corresponding clause of
Justified.Action which is supported by this precondition.
For example, the first four lines in the rule assure that the
robot is in a world state for which it should attend to the
goal Goal.Identify.Object (i.e., they assure that this goal
will be active, and that all higher priority goals will be
inactive). Of course this rule need not explicitly mention
this goal or any other, since it instead mentions the
observed sense features which imply the activation of the
relevant goals. Similarly, the rule need not mention the
plan, since it instead mentions those conditions, labeled (2)
and (3), which assure that the first step of the plan will lead
eventually to achieving the desired goal.

In all, the agent typically learns from five to fifteen
stimulus-response rules for this set of goals and actions,
depending on its specific experiences and the sequence in
which they are encountered. By adding and removing
other goals and actions, other agents can be specified that
will "compile out" into sets of stimulus-response rules that
produce different behaviors.

3.2. Impact of Experience on Agent Reaction Time
With experience, the typical reaction time of the Theo-

Agent in the above scenario drops from a few minutes to
under a second, due to its acquisition of stimulus-response
rules and its caching of beliefs. Let us define reaction time
as the time required for a single iteration of the sense-
decide-execute loop of the agent. Similarly, define sensing
time, decision time, and execution time as the time required
for the corresponding portions of this cycle. Decision time
is reduced by two factors:

• Acquisition of stimulus-response rules. Matching a
stimulus-response rule requires on the order of ten
milliseconds, whereas planning typically requires
several minutes.

• Caching of beliefs about future world states. The
time required by planning is reduced as a result of
caching all agent beliefs. In particular, the
descriptions of future world states considered by
the planner (e.g., "the wrist sonar reading in the
world that will result from applying the action
Forward. 10 to the current Observed.World") are
cached, and remain as beliefs of the agent even
after its sensed world is updated. Some cached
features of this imagined future world may become
uncached each cycle as old sensed values are
replaced by newer ones, but others tend to remain.

The improvement in agent reaction time is summarized
in the timing data from a typical scenario, shown in table
3-1. The first line shows decision time and total reaction
time for a sense-decide-execute cycle in which a plan must
be created. Notice that here decision time constitutes the
bulk of reaction time. The second line of this table shows

Decision Reaction
Time Time

1. Construct simple plan: 34.3 sec 36.8 sec

2. Construct similar plan: 5.5 sec 6.4 sec

3. Apply learned rules: 0.2 sec 0.9 sec

Table 3-1: Effect of Learning on Agent Response Time

(Timings are in CommonLisp on a Sun3 workstation)

the cost of producing a very similar plan on the next cycle.
The speedup over the first line is due to the use of slot
values which were cached during the first planning
episode, and whose explanations remain valid through the
second cycle. The third line shows the timing for a third
cycle in which the agent applied a set of learned stimulus-
response rules to determine the same action. Here,
decision time (200 msec.) is comparable to sensing time
(500 msec) and the time to initiate execution of the robot
action (200 msec), so that decision time no longer
constitutes the bulk of overall reaction time. The decision
time is found empirically to require 80 + 14r msec, to test a
set of r stimulus-response rules".

Of course the specific timing figures above are
dependent on the particular agent goals, sensors, training
experience, actions, etc. Scaling to more complex agents
that require hundreds or thousands of stimulus-response
rules, rather than ten, is likely to require more
sophisticated methods for encoding and indexing the
learned stimulus-response pairings. Approaches such as
Rete matching, or encoding stimulus-response pairings in
some type of network [Rosenschein 85, Brooks 86] may be
important for scaling to larger systems. At present, the
significant result reported here is simply the existence
proof that the learning mechanisms employed in the Theo-
Agent are sufficient to reduce decision time by two orders
of magnitude for a real robot with fairly simple goals, so
that decision time ceases to dominate overall reaction time
of the agent.

4. Summary, Limitations and Future Work
The key design features of the Theo-Agent are:
• A stimulus-response system combined with a

planning component of broader scope but slower
response time. This combination allows quick
response for routine situations, plus flexibility to
plan when novel situations are encountered.

• Explanation-based learning mechanism for

Rules are simply tested in sequence with no sophisticated indexing or
parallel match algorithms.

464

incrementally augmenting the stimulus-response
component of the system. When forced to plan, the
agent formulates new stimulus-response rules that
produce precisely the same decision as the current
plan, in precisely the same situations.

• The agent chooses its own goals based on the
sensed world state, goal activation conditions and
relative goal priorities. Goals are explicitly
considered by the agent only when it must
construct plans. As the number of learned
stimulus-response rules grows, the frequency with
which the agent explicitly considers its goals
decreases.

• Caching and dependency maintenance for all
beliefs of the agent. Every belief of the agent is
cached along with an explanation that indicates
those beliefs on which it depends. Whenever the
agent sense inputs change, dependent beliefs which
are affected are deleted, to be recomputed if and
when they are subsequently queried.

• Distinction between eagerly and lazily refreshed
sense features. In order to minimize the lower
bound on reaction time, selected sense features are
eagerly updated during each agent cycle. Other
features are lazily updated by deleting them and
recomputing them if and when they are required.
This provides a simple focus of attention
mechanism that helps minimize response time. In
the future, we hope to allow the agent to
dynamically control the assignment of eagerly and
lazily sensed features.

There are several reasonable criticisms of the current
TheoAgent architecture, which indicate its current
limitations. Among these are:

• The kind of planning the TheoAgent performs may
be unrealistically difficult in many situations, due
to lack of knowledge about the world, the likely
effects of the agent's actions, or other changes in
the world. One possible response to this limitation
is to add new decision-making mechanisms beyond
the current planner and stimulus-response system.
For example, one could imagine a decision-maker
with an evaluation function over world states,
which evaluates actions based on one-step
lookahead (similar to that proposed in Sutton's
DYNA [Sutton 90].). As suggested in [Kaelbling
86], a spectrum of multiple-decision makers could
trade off response speed for correctness. However,
learning mechanisms such as those used here might
still compile stimulus-response rules from the
decisions produced by this spectrum of decision-
makers.

• Although the TheoAgent learns to become
increasingly reactive, its decisions do not become
increasingly correct. The acquired stimulus-
response rules are only as good as the planner and
action models from which they are compiled. We

are interested in extending the system to allow it to
inductively learn better models of the effects of its
actions, as a result of its experience. Preliminary
results with this kind of learning using a hand-eye
robot are described in [Christiansen, et al.
90, Zrimic and Mowforth 88].

• The current planner considers the correctness of its
plans, but not the cost of sensing or effector
commands. Therefore, the plans and the stimulus-
response rules derived from them may refer to
sense features which are quite expensive to obtain,
and which contribute in only minor ways to
successful behavior. For instance, in order to
guarantee correctness of a plan to pick up a cup, it
might be necessary to verify that the cup is not
glued to the floor. The current system would
include such a test in the stimulus-response rule
that recommends the grasp operation, provided this
feature was considered by the planner. We must
find a way to allow the agent to choose which tests
are necessary and which can be ignored in order to
construct plausible plans that it can then attempt,
and recover from as needed.

• Scaling issues. As noted in the previous section,
the current robot system requires only a small set of
stimulus-response rules to govern its behavior. We
must consider how the approach can be scaled to
more complex situations. Some avenues are to (1)
explore other strategies for indexing learned
knowledge (e.g., index rules by goal, so that many
subsets of rules are stored rather than a single set),
(2) develop a more selective strategy for invoking
learning only when the benefits outweigh the costs,
and (3) consider representations of the control
function that sacrifice expressive precision for
fixed computational cost (e.g., fixed topology
neural networks with constant response time).

We believe the notion of incrementally compiling
reactive systems from more general but slower search-
based systems is an important approach toward extending
the flexibility of robotic systems while still achieving
respectable (asymptotic) response times. The specific
design of the Theo-Agent illustrates one way to organize
such a system. Our intent is to extend the current
architecture by adding new learning mechanisms that will
allow it to improve the correctness of its action models and
its abilities to usefully perceive its world. These additional
learning capabilities are intended to complement the type
of learning presented here.

Acknowledgements. This work is based on extensions
to earlier joint work with Jim Blythe, reported in [Blythe
and Mitchell 89]. I am most grateful for Jim's significant
contributions to the design of the Theo-Agent. Thanks

465

also to the entire Theo group, which produced the Theo
system on which Theo-Agent is built. Theo provides the
underlying inference, representation, and learning
mechanisms used by the Theo-Agent. Finally, thanks to
Long-Ji Lin who developed a number of the routines for
interfacing from workstations to the robot. This research
is supported by DARPA under research contract
N00014-85-K-0116 and by NASA under research contract
NAGW-1175.

References
[Agre and Chapman 87]

Agre, P. and Chapman, D.
Pengi: An Implementation of a Theory of

Activity.
In Proceedings of the National

Conference on Artificial Intelligence,
pages 268-272. Morgan Kaufmann,
July, 1987.

[Blythe and Mitchell 89]
Blythe, J., and Mitchell, T.
On Becoming Reactive.
In Proceedings of the Sixth International

Machine Learning Workshop, pages
255-259. Morgan Kaufmann, June,
1989.

[Brooks 86] Brooks, R.A.
A Robust Layered Control System for a

Mobile Robot.
IEEE Journal of Robotics and

Automation 2(1), March, 1986.

[Christiansen, et al. 90]
Christiansen, A., Mason, M., and
Mitchell, T.
Learning Reliable Manipulation

Strategies without Initial Physical
Models.

In Proceedings of the IEEE International
Conference on Robotics and
Automation. IEEE Press, May, 1990.

[Kaelbling 86] Kaelbling, L.P.
An Architecture for Intelligent Reactive

Systems.
In M.P. Georgeff and AL. Lansky

(editor), Reasoning about Actions
and Plans: Proceedings of the 1986
Workshop. Morgan Kaufmann,
1986.

[Laird and Rosenbloom 90]
Laird, J.E. and Rosenbloom, P.S.
Integrating Planning, Execution, and

Learning in Soar for External
Environments.

In Proceedings ofAAAI '90. AAAI,
1990.

[Lin, et al. 89] Lin, L., Philips, A., Mitchell, T., and
Simmons, R.
A Case Study in Robot Exploration.
Robotics Institute Technical Report

CMU-RI-89-001, Carnegie Mellon
University, Robotics Institute,
January, 1989.

[Mitchell, et al 86]Mitchell, T.M., Keller, R.K., and Kedar-
Cabelli, S.
Explanation-Based Generalization: A

Unifying View.
Machine Learning 1(1), 1986.

[Mitchell, et al. 90]
Mitchell, T. M., J. Allen, P. Chalasani,
J. Cheng, O. Etzioni, M. Ringuette, and
J. Schlimmer.
Theo: A Framework for Self-improving

Systems.
In VanLehn, K. (editor), Architectures

for Intelligence. Erlbaum, 1990.

[Pommerleau 89] Pommerleau, D.A.
ALVINN: An Autonomous Land

Vehicle In a Neural Network.
In Touret2ky, D. (editor), Advances in

Nerual Information Processing
Systems, Vol. 1. Morgan Kaufmann,
1989.

[Rosenschein 85] Rosenschein, S.
Formal Theories of Knowledge in AI and

Robotics.
New Generation Computing 3:345-357,

1985.

[Schoppers 87] Schoppers, MJ.
Universal Plans for Reactive Robots in

Unpredictable Environments.
In Proceedings of the Tenth International

Joint Conference on Artificial
Intelligence, pages 1039-1046.
AAAI, August, 1987.

[Segre 88] Segre, A.M.
Machine Learning of Robot Assembly

Plans.
Kluwer Academic Press, 1988.

466

[Sutton90] Sutton,R.
First Results with DYNA, an Integrated

Architecture for Learning, Planning,
and Reacting.

In Proceedings ofAAAI Spring
Symposium on Planning in
Uncertain, Unpredictable, or
Changing Environments, pages
136-140. AAAI, March, 1990.

[Tan 90] Tan, M.
CSL: A Cost-Sensitive Learning System

for Sensing and Grasping Objects.
In Proceedings of the 1990 IEEE

International Conference on Robotics
and Automation. IEEE, May, 1990.

[Zrimic and Mowforth 88]
Zrimic, T., and Mowforth, P.
An Experiment in Generating Deep

Knowledge for Robots.
In Proceedings of the Conference on

Representation and Reasoning in an
Autonomous Agent. 1988.

467

A Preliminary Analysis of the Soar Architecture
as a Basis for General Intelligence* t *

Paul S. Rosenbloom§

Information Sciences Institute
University of Southern California

John E. Laird
Department of Electrical Engineering and Computer Science

The University of Michigan

Allen Newell
School of Computer Science
Carnegie Mellon University

Robert McCarl
Department of Electrical Engineering and Computer Science

The University of Michigan

Abstract

In this article we take a step towards providing an
analysis of the Soar architecture as a basis for gen-
eral intelligence. Included are discussions of the
basic assumptions underlying the development of
Soar, a description of Soar cast in terms of the
theoretical idea of multiple levels of description,
an example of Soar performing multi-column sub-
traction, and three analyses of Soar: its natural
tasks, the sources of its power, and its scope and
limits.

*This paper will appear in Foundations of Artificial
Intelligence, Editted by Kirsh and Hewitt, MIT Press,
Cambridge MA, and Artificial Intelligence in 1991. It is
reprinted here by permission.

'This research was sponsored by the Proceedings of the
Defense Advanced Research Projects Agency (DOD) un-
der contract N00039-86-C-0133 and by the Sloan Founda-
tion. Computer facilities were partially provided by NIH
grant RR-00785 to Sumex-Aim. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Defense Advanced
Research Projects Agency, the US Government, the Sloan
Foundation, or the National Institutes of Health.

* We would like to thank Beth Adelson, David Kirsh, and
David McAllester for their helpful comments on an earlier
draft of this article.

'Much of this work was done while the first author was
affiliated with the Knowledge Systems Laboratory, Depart-
ment of Computer Science, Stanford University.

The central scientific problem of artificial intelli-
gence (AI) is to understand what constitutes intelligent
action and what processing organizations are capable
of such action. Human intelligence — which stands
before us like a holy grail — shows to first observa-
tion what can only be termed general intelligence. A
single human exhibits a bewildering diversity of intelli-
gent behavior. The types of goals that humans can set
for themselves or accept from the environment seem
boundless. Further observation, of course, shows lim-
its to this capacity in any individual — problems range
from easy to hard, and problems can always be found
that are too hard to be solved. But the general point
is still compelling.

Work in AI has already contributed substantially to
our knowledge of what functions are required to pro-
duce general intelligence. There is substantial, though
certainly not unanimous, agreement about some func-
tions that need to be supported: symbols and goal
structures, for example. Less agreement exists about
what mechanisms are appropriate to support these
functions, in large part because such matters depend
strongly on the rest of the system and on cost-benefit
tradeoffs. Much of this work has been done under the
rubric of AI tools and languages, rather than AI sys-
tems themselves. However, it takes only a slight shift
of viewpoint to change from what is an aid for the pro-
grammer to what is structure for the intelligent system
itself. Not all features survive this transformation, but
enough do to make the development of AI languages as

468

much substantive research as tool building. These pro-
posals provide substantial ground on which to build.

The Soar project has been building on this foun-
dation in an attempt to understand the functionality
required to support general intelligence. Our current
understanding is embodied in the Soar architecture
[Laird, 1986; Laird et al, 1987]. This article represents
an attempt at describing and analyzing the structure
of the Soar system. We will take a particular point of
view — the description of Soar as a hierarchy of levels
— in an attempt to bring coherence to this discussion.

The idea of analyzing systems in terms of multiple
levels of description is a familiar one in computer sci-
ence. In one version, computer systems are described
as a sequence of levels that starts at the bottom with
the device level and works up through the circuit level,
the logic level, and then one or more program lev-
els. Each level provides a description of the system
at some level of abstraction. The sequence is built up
by defining each higher level in terms of the structure
provided at the lower levels. This idea has also re-
cently been used to analyze human cognition in terms
of levels of description [Newell, 1990]. Each level cor-
responds to a particular time scale, such as ~100 msec,
and "1 sec, with a new level occurring for each new
order of magnitude. The four levels between "10 msec,
and "10 sec. comprise the cognitive band (Figure 1).
The lowest cognitive level — at ~10 msec. — is the
symbol-accessing level, where the knowledge referred
to by symbols is retrievable. The second cognitive level
— at "100 msec. — is the level at which elementary
deliberate operations occur; that is, the level at which
encoded knowledge is brought to bear, and the most
elementary choices are made. The third and fourth
cognitive levels — at "1 sec. and ~10 sec. — are the
simple-operator-composition and goal-attainment lev-
els. At these levels, sequences of deliberations can be
composed to achieve goals. Above the cognitive band
is the rational band, at which the system can be de-
scribed as being goal oriented, knowledge-based, and
strongly adaptive. Below the cognitive band is the neu-
ral band.

In the architecture section we describe Soar as a se-
quence of three cognitive levels: the memory level, at
which symbol accessing occurs; the decision level, at
which elementary deliberate operations occur; and the
goal level, at which goals are set and achieved via se-
quences of decisions. The goal level is an amalgama-
tion of the top two cognitive levels from the analysis
of human cognition.

In this description we will often have call to describe
mechanisms that are built into the architecture of Soar.
The architecture consists of all of the fixed structure
of the Soar system. According to the levels analysis,
the correct view to be taken of this fixed structure is
that it comprises the set of mechanisms provided by
the levels underneath the cognitive band. For human
cognition this is the neural band. For artificial cog-

nition, this may be a connectionist band, though it
need not be. This view notwithstanding, it should be
remembered that it is the Soar architecture which is
primary in our research. The use of the levels view-
point is simply an attempt at imposing a particular,
hopefully illuminating, theoretical structure on top of
the existing architecture.

In the remainder of this paper we describe the
methodological assumptions underlying Soar, the
structure of Soar, an illustrative example of Soar's per-
formance on the task of multi-column subtraction, a
set of preliminary analyses of Soar as an architecture
for general intelligence.

Methodological Assumptions
The development of Soar is driven by four method-
ological assumptions. It is not expected that these
assumptions will be shared by all researchers in the
field. However, the assumptions do help explain why
the Soar system and project have the shapes that they
do.

The first assumption is the utility of focusing on
the cognitive band, as opposed to the neural or ratio-
nal bands. This is a view that has traditionally been
shared by a large segment of the cognitive science com-
munity; it is not, however, shared by the connectionist
community, which focuses on the neural band (plus the
lower levels of the cognitive band), or by the logicist
and expert-systems communities, which focus on the
rational band. This assumption is not meant to be ex-
clusionary, as a complete understanding of general in-
telligence requires the understanding of all of these de-
scriptive bands.1 Instead the assumption is that there
is important work to be done by focusing on the cog-
nitive band. One reason is that, as just mentioned,
a complete model of general intelligence will require a
model of the cognitive band. A second reason is that
an understanding of the cognitive band can constrain
models of the neural and rational bands. A third, more
applied reason, is that a model of the cognitive band
is required in order to be able to build practical intel-
ligent systems. Neural-band models need the higher
levels of organization that are provided by the cogni-
tive band in order to reach complex task performance.
Rational-band models need the heuristic adequacy pro-
vided by the cognitive band in order to be computa-
tionally feasible. A fourth reason is that there is a
wealth of both psychological and AI data about the
cognitive band that can be used as the basis for eluci-
dating the structure of its levels. This data can help
us understand what type of symbolic architecture is
required to support general intelligence.

The second assumption is that general intelligence
can most usefully be studied by not making a dis-

1 Investigations of the relationship of Soar to the neu-
ral and rational bands can be found in [Newell, 1990;
Rosenbloom, 1989; Rosenbloom et al., 1990].

469

Rational Band

"10 sec. Goal attainment
"1 sec. Simple operator composition
"100 msec. Elementary deliberate operations
"10 msec. Symbol accessing

Cognitive Band

Neural Band

Figure 1: Partial hierarchy of time scales in human cognition.

tinction between human and artificial intelligence.
The advantage of this assumption is that it allows
wider ranges of research methodologies and data to be
brought to bear to mutually constrain the structure of
the system. Our research methodology includes a mix-
ture of experimental data, theoretical justifications,
and comparative studies in both artificial intelligence
and cognitive psychology. Human experiments pro-
vide data about performance universals and limitations
that may reflect the structure of the architecture. For
example, the ubiquitous power law of practice — the
time to perform a task is a power-law function of the
number of times the task has been performed — was
used to generate a model of human practice [Newell
& Rosenbloom, 1981; Rosenbloom & Newell, 1986],
which was later converted into a proposal for a gen-
eral artificial learning mechanism [Laird et al., 1984;
Laird et al., 1986a; Steier et al., 1987]. Artificial
experiments — the application of implemented sys-
tems to a variety of tasks requiring intelligence — pro-
vide sufficiency feedback about the mechanisms em-
bodied in the architecture and their interactions [Hsu
et al., 1988; Rosenbloom et al., 1985; Steier, 1987;
Steier & Newell, 1988; Washington & Rosenbloom,
1988]. Theoretical justifications attempt to provide an
abstract analysis of the requirements of intelligence,
and of how various architectural mechanisms fulfill
those requirements [Newell, 1990; Newell et al., 1989;
Rosenbloom, 1989; Rosenbloom et al, 1988b; Rosen-
bloom et al., 1990]. Comparative studies, pitting one
system against another, provide an evaluation of how
well the respective systems perform, as well as insight
about how the capabilities of one of the systems can
be incorporated in the other [Etzioni & Mitchell, 1989;
Rosenbloom & Laird, 1986].

The third assumption is that the architecture should
consist of a small set of orthogonal mechanisms. All
intelligent behaviors should involve all, or nearly all,
of these basic mechanisms. This assumption biases
the development of Soar strongly in the direction of
uniformity and simplicity, and away from modularity
[Fodor, 1983] and toolkit approaches. When attempt-
ing to achieve a new functionality in Soar, the first step

is to determine in what ways the existing mechanisms
can already provide the functionality. This can force
the development of new solutions to old problems, and
reveal new connections — through the common under-
lying mechanisms — among previously distinct capa-
bilities [Rosenbloom et al., 1988a]. Only if there is no
appropriate way to achieve the new functionality are
new mechanisms considered.

The fourth assumption is that architectures should
be pushed to the extreme to evaluate how much of
general intelligence they can cover. A serious attempt
at evaluating the coverage of an architecture involves a
long-term commitment by an extensive research group.
Much of the research involves the apparently mundane
activity of replicating classical results within the ar-
chitecture. Sometimes these demonstrations will by
necessity be strict replications, but often the architec-
ture will reveal novel approaches, provide a deeper un-
derstanding of the result and its relationship to other
results, or provide the means of going beyond what
was done in the classical work. As these results accu-
mulate over time, along with other more novel results,
the system gradually approaches the ultimate goal of
general intelligence.

Structure of Soar
In this section we build up much of Soar's structure in
levels, starting at the bottom with memory and pro-
ceeding up to decisions and goals. We then describe
how learning and perceptual-motor behavior fit into
this picture, and wrap up with a discussion of the de-
fault knowledge that has been incorporated into the
system.

Level 1: Memory
A general intelligence requires a memory with a large
capacity for the storage of knowledge. A variety of
types of knowledge must be stored, including declar-
ative knowledge (facts about the world, including
facts about actions that can be performed), procedu-
ral knowledge (facts about how to perform actions,
and control knowledge about which actions to perform
when), and episodic knowledge (which actions were

470

done when). Any particular task will require some sub-
set of the knowledge stored in the memory. Memory
access is the process by which this subset is retrieved
for use in task performance.

The lowest level of the Soar architecture is the level
at which these memory phenomena occur. All of Soar's
long-term knowledge is stored in a single production
memory. Whether a piece of knowledge represents
procedural, declarative, or episodic knowledge, it is
stored in one or more productions. Each production is
a condition-action structure that performs its actions
when its conditions are met. Memory access consists
of the execution of these productions. During the exe-
cution of a production, variables in its actions are in-
stantiated with values. Action variables that existed in
the conditions are instantiated with the values bound
in the conditions. Action variables that did not exist
in the conditions act as generators of new symbols.

The result of memory access is the retrieval of in-
formation into a global working memory. The work-
ing memory is a temporary memory that contains
all of Soar's short-term processing context. Work-
ing memory consists of an interrelated set of objects
with attribute-value pairs. For example, an object
representing a green cat named Fred might look like
(object o025 "name fred "type cat "color green).
The symbol o025 is the identifier of the object, a short-
term symbol for the object that exists only as long as
the object is in working memory. Objects are related
by using the identifiers of some objects as attributes
and values of other objects.

There is one special type of working memory struc-
ture, the preference. Preferences encode control knowl-
edge about the acceptability and desirability of actions,
according to a fixed semantics of preference types. Ac-
ceptability preferences determine which actions should
be considered as candidates. Desirability preferences
define a partial ordering on the candidate actions. For
example, a better (or alternatively, worse) preference
can be used to represent the knowledge that one action
is more (or less) desirable than another action, and a
best (or worst) preference can be used to represent the
knowledge that an action is at least as good (or as bad)
as every other action.

In a traditional production-system architecture,
each production is a problem-solving operator (see, for
example, [Nilsson, 1980]). The right-hand side of the
production represents some action to be performed,
and the left-hand side represents the preconditions for
correct application of the action (plus possibly some
desirability conditions). One consequence of this view
of productions is that the productions must also be
the locus of behavioral control. If productions are go-
ing to act, it must be possible to control which one
executes at each moment; a process known as conflict
resolution. In a logic architecture, each production is
a logical implication. The meaning of such a produc-
tion is that if the left-hand side (the antecedent) is

true, then so is the right-hand side (the consequent).2

Soar's productions are neither operators nor implica-
tions. Instead, Soar's productions perform (parallel)
memory retrieval. Each production is a retrieval struc-
ture for an item in long-term memory. The right-hand
side of the rule represents a long-term datum, and the
left-hand side represents the situations in which it is
appropriate to retrieve that datum into working mem-
ory. The traditional production-system and logic no-
tions of action, control, and truth are not directly ap-
plicable to Soar's productions. All control in Soar is
performed at the decision level. Thus, there is no con-
flict resolution process in the Soar production system,
and all productions execute in parallel. This all flows
directly from the production system being a long-term
memory. Soar separates the retrieval of long-term in-
formation from the control of which act to perform
next.

Of course it is possible to encode knowledge of oper-
ators and logical implications in the production mem-
ory. For example, the knowledge about how to imple-
ment a typical operator can be stored procedurally as
a set of productions which retrieve the state resulting
from the operator's application. The productions' con-
ditions determine when the state is to be retrieved —
for example, when the operator is being applied and
its preconditions are met. An alternative way to store
operator implementation knowledge is declaratively as
a set of structures that are completely contained in the
actions of one or more productions. The structures de-
scribe not only the results of the operator, but also its
preconditions. The productions' conditions determine
when to retrieve this declarative operator description
into working memory. A retrieved operator description
must be interpreted by other productions to actually
have an affect.

In general, there are these two distinct ways to en-
code knowledge in the production memory: procedu-
rally and declaratively. If the knowledge is procedu-
rally encoded, then the execution of the production
reflects the knowledge, but does not actually retrieve
it into working memory — it only retrieves the struc-
tures encoded in the actions. On the other hand, if
a piece of knowledge is encoded declaratively in the
actions of a production, then it is retrievable in its en-
tirety. This distinction between procedural and declar-
ative encodings of knowledge is distinct from whether
the knowledge is declarative (represents facts about
the world) or procedural (represents facts about pro-
cedures). Moreover, each production can be viewed
in either way, either as a procedure which implicitly
represents conditional information, or as the indexed
storage of declarative structures.

2The directionality of the implication is reversed in logic
programming languages such as Prolog, but the point still
holds.

471

Level 2: Decisions
In addition to a memory, a general intelligence requires
the ability to generate and/or select a course of action
that is responsive to the current situation. The sec-
ond level of the Soar architecture, the decision level,
is the level at which this processing is performed. The
decision level is based on the memory level plus an ar-
chitecturally provided, fixed, decision procedure. The
decision level proceeds in a two phase elaborate-decide
cycle. During elaboration, the memory is accessed re-
peatedly, in parallel, until quiescence is reached; that
is, until no more productions can execute. This results
in the retrieval into working memory of all of the acces-
sible knowledge that is relevant to the current decision.
This may include a variety of types of information,
but of most direct relevance here is knowledge about
actions that can be performed and preference knowl-
edge about what actions are acceptable and desirable.
After quiescence has occurred, the decision procedure
selects one of the retrieved actions based on the pref-
erences that were retrieved into working memory and
their fixed semantics.

The decision level is open both with respect to the
consideration of arbitrary actions, and with respect to
the utilization of arbitrary knowledge in making a se-
lection. This openness allows Soar to behave in both
plan-following and reactive fashions. Soar is following
a plan when a decision is primarily based on previously
generated knowledge about what to do. Soar is being
reactive when a decision is based primarily on knowl-
edge about the current situation (as reflected in the
working memory).

Level 3: Goals
In addition to being able to make decisions, a general
intelligence must also be able to direct this behavior to-
wards some end; that is, it must be able to set and work
towards goals. The third level of the Soar architecture,
the goal level, is the level at which goals are processed.
This level is based on the decision level. Goals are set
whenever a decision cannot be made; that is, when the
decision procedure reaches an impasse. Impasses oc-
cur when there are no alternatives that can be selected
(no-change and rejection impasses) or when there are
multiple alternatives that can be selected, but insuffi-
cient discriminating preferences exist to allow a choice
to be made among them (tie and conflict impasses).
Whenever an impasse occurs, the architecture gener-
ates the goal of resolving the impasse. Along with this
goal, a new performance context is created. The cre-
ation of a new context allows decisions to continue to
be made in the service of achieving the goal of resolv-
ing the impasse — nothing can be done in the original
context because it is at an impasse. If an impasse now
occurs in this subgoal, another new subgoal and per-
formance context are created. This leads to a goal (and
context) stack in which the top-level goal is to perform
some task, and lower-level goals are to resolve impasses

in problem solving. A subgoal is terminated when ei-
ther its impasse is resolved, or some higher impasse in
the stack is resolved (making the subgoal superfluous).

In Soar, all symbolic goal-oriented tasks are formu-
lated in problem spaces. A problem space consists
of a set of states and a set of operators. The states
represent situations, and the operators represent ac-
tions which when applied to states yield other states.
Each performance context consists of a goal, plus roles
for a problem space, a state, and an operator. Prob-
lem solving is driven by decisions that result in the
selection of problem spaces, states, and operators for
their respective context roles. Given a goal, a problem
space should be selected in which goal achievement can
be pursued. Then an initial state should be selected
that represents the initial situation. Then an operator
should be selected for application to the initial state.
Then another state should be selected (most likely the
result of applying the operator to the previous state).
This process continues until a sequence of operators
has been discovered that transforms the initial state
into a state in which the goal has been achieved. One
subtle consequence of the use of problem spaces is that
each one implicitly defines a set of constraints on how
the task is to be performed. For example, if the Eight
Puzzle is attempted in a problem space containing only
a slide-tile operator, all solution paths maintain the
constraint that the tiles are never picked up off of the
board. Thus, such conditions need not be tested for
explicitly in desired states.

Each problem solving decision — the selection of
a problem space, a state, or an operator — is based
on the knowledge accessible in the production mem-
ory. If the knowledge is both correct and sufficient,
Soar exhibits highly controlled behavior; at each de-
cision point the right alternative is selected. Such
behavior is accurately described as being algorithmic
or knowledge-intensive. However, for a general intelli-
gence faced with a broad array of unpredictable tasks,
situations will arise — inevitably and indeed frequently
— in which the accessible knowledge is either incorrect
or insufficient. It is possible that correct decisions will
fortuitously be made, but it is more likely that either
incorrect decisions will be made or that impasses will
occur. Under such circumstances search is the likely
outcome. If an incorrect decision is made, the sys-
tem must eventually recover and get itself back on a
path to the goal, for example, by backtracking. If in-
stead an impasse occurs, the system must execute a
sequence of problem space operators in the resulting
subgoal to find (or generate) the information that will
allow a decision to be made. This processing may itself
be highly algorithmic, if enough control knowledge is
available to uniquely determine what to do, or it may
involve a large amount of further search.

As described earlier, operator implementation
knowledge can be represented procedurally in the pro-
duction memory, enabling operator implementation to

472

be performed directly by memory retrieval. When the
operator is selected, a set of productions execute that
collectively build up the representation of the result
state by combining data from long-term memory and
the previous state. This type of implementation is
comparable to the conventional implementation of an
operator as a fixed piece of code. However, if opera-
tor implementation knowledge is stored declaratively,
or if no operator implementation knowledge is stored,
then a subgoal occurs, and the operator must be im-
plemented by the execution of a sequence of problem
space operators in the subgoal. If a declarative de-
scription of the to-be-implemented operator is avail-
able, then these lower operators may implement the
operator by interpreting its declarative description (as
was demonstrated in work on task acquisition in Soar
[Steier et al, 1987]). Otherwise the operator can be
implemented by decomposing it into a set of simpler
operators for which operator implementation knowl-
edge is available, or which can in turn be decomposed
further.

When an operator is implemented in a subgoal,
the combination of the operator and the subgoal cor-
respond to the type of deliberately created subgoal
common in AI problem solvers. The operator spec-
ifies a task to be performed, while the subgoal indi-
cates that accomplishing the task should be treated
as a goal for further problem solving. In complex
problems, like computer configuration, it is common
for there to be complex high-level operators, such as
Conf igure-computer which are implemented by se-
lecting problems spaces in which they can be decom-
posed into simpler tasks. Many of the traditional goal
management issues — such as conjunction, conflict,
and selection — show up as operator management is-
sues in Soar. For example, a set of conjunctive subgoals
can be ordered by ordering operators that later lead to
impasses (and subgoals).

As described in [Rosenbloom et al, 1988b], a subgoal
not only represents a subtask to be performed, but it
also represents an introspective act that allows unlim-
ited amounts of meta-level problem-space processing to
be performed. The entire working memory — the goal
stack and all information linked to it — is available for
examination and augmentation in a subgoal. At any
time a production can examine and augment any part
of the goal stack. Likewise, a decision can be made at
any time for any of the goals in the hierarchy. This al-
lows subgoal problem solving to analyze the situation
that led to the impasse, and even to change the subgoal
should it be appropriate. One not uncommon occur-
rence is for information to be generated within a sub-
goal that, instead of satisfying the subgoal, causes the
subgoal to become irrelevant and consequently to dis-
appear. Processing tends to focus on the bottom-most
goal because all of the others have reached impasses.
However, the processing is completely opportunistic,
so that when appropriate information becomes avail-

able at a higher level, processing at that level continues
immediately and all lower subgoals are terminated.

Learning

All learning occurs by the acquisition of chunks — pro-
ductions that summarize the problem solving that oc-
curs in subgoals [Laird et al, 1986a]. The actions of
a chunk represent the knowledge generated during the
subgoal; that is, the results of the subgoal. The con-
ditions of the chunk represent an access path to this
knowledge, consisting of those elements of the parent
goals upon which the results depended. The results
of the subgoal are determined by finding the elements
generated in the subgoal that are available for use in
supergoals — an element is a result of a subgoal pre-
cisely because it is available to processes outside of the
subgoal. The access path is computed by analyzing the
traces of the productions that fired in the subgoal —
each production trace effectively states that its actions
depended on its conditions. This dependency analysis
yields a set of conditions that have been implicitly gen-
eralized to ignore irrelevant aspects of the situation.
The resulting generality allows chunks to transfer to
situations other than the one in which it was learned.
The primary system-wide effect of chunking is to move
Soar along the space-time trade-off by allowing rele-
vantly similar future decisions to be based on direct
retrieval of information from memory rather than on
problem solving within a subgoal. If the chunk is used,
an impasse will not occur, because the required infor-
mation is already available.

Care must be taken to not confuse the power of
chunking as a learning mechanism with the power
of Soar as a learning system. Chunking is a sim-
ple goal-based, dependency-tracing, caching scheme,
analogous to explanation-based learning [DeJong k.
Mooney, 1986; Mitchell et al, 1986; Rosenbloom fe
Laird, 1986] and a variety of other schemes [Rosen-
bloom & Newell, 1986]. What allows Soar to exhibit
a wide variety of learning behaviors are the variations
in the types of subgoals that are chunked; the types
of problem solving, in conjunction with the types and
sources of knowledge, used in the subgoals; and the
ways the chunks are used in later problem solving. The
role that a chunk will play is determined by the type
of subgoal for which it was learned. State-no-change,
operator-tie, and operator-no-change subgoals lead re-
spectively to state augmentation, operator selection,
and operator implementation productions. The con-
tent of a chunk is determined by the types of problem
solving and knowledge used in the subgoal. A chunk
can lead to skill acquisition if it is used as a more ef-
ficient means of generating an already generatable re-
sult. A chunk can lead to knowledge acquisition (or
knowledge level learning [Dietterich, 1986]) if it is used
to make old/new judgments; that is, to distinguish
what has been learned from what has not been learned
[Rosenbloom et al, 1987; Rosenbloom et al, 1988a;

473

Rosenbloom et al, 1990].

Perception and Motor Control
One of the most recent functional additions to the Soar
architecture is a perceptual-motor interface [Wies-
meyer, 1988b; Wiesmeyer, 1989]. All perceptual and
motor behavior is mediated through working memory;
specifically, through the state in the top problem solv-
ing context. Each distinct perceptual field has a des-
ignated attribute of this state to which it adds its in-
formation. Likewise, each distinct motor field has a
designated attribute of the state from which it takes it
commands. The perceptual and motor systems are au-
tonomous with respect to each other and the cognitive
system.

Encoding and decoding productions can be used to
convert between the high-level structures used by the
cognitive system, and the low-level structures used by
the perceptual and motor systems. These productions
are like ordinary productions, except that they exam-
ine only the perceptual and motor fields, and not any of
the rest of the context stack. This autonomy from the
context stack is critical, because it allows the decision
procedure to proceed without waiting for quiescence
among the encoding and decoding productions, which
may never happen in a rapidly changing environment.

Default Knowledge
Soar has a set of productions (55 in all) that pro-
vide default responses to each of the possible impasses
that can arise, and thus prevent the system from drop-
ping into a bottomless pit in which it generates an un-
bounded number of content-free performance contexts.
Figure 2 shows the default production that allows the
system to continue if it has no idea how to resolve a
conflict impasse among a set of operators. When the
production executes, it rejects all of the conflicting op-
erators. This allows another candidate operator to be
selected, if there is one, or for a different impasse to
arise if there are no additional candidates. This de-
fault response, as with all of them, can be overridden
by additional knowledge if it is available.

II there is an impasse because of an operator
conflict and there are no candidate
problem spaces available

then reject the conflicting operators.

Figure 2: A default production.

One large part of the default knowledge (10 produc-
tions) is responsible for setting up operator subgoaling
as the default response to no-change impasses on oper-
ators. That is, it attempts to find some other state in
the problem space to which the selected operator can
be applied. This is accomplished by generating accept-
able and worst preferences in the subgoal for the parent

problem space. If another problem space is suggested,
possibly for implementing the operator, it will be se-
lected. Otherwise, the selection of the parent problem
space in the subgoal enables operator subgoaling. A se-
quence of operators is then applied in the subgoal until
a state is generated that satisfies the preconditions of
an operator higher in the goal stack.

Another large part of the default knowledge (33 pro-
ductions) is responsible for setting up lookahead search
as the default response to tie impasses. This is accom-
plished by generating acceptable and worst preferences
for the selection problem space. The selection prob-
lem space consists of operators that evaluate the tied
alternatives. Based on the evaluations produced by
these operators, default productions create preferences
that break the tie and resolve the impasse. In order
to apply the evaluation operators, domain knowledge
must exist that can create an evaluation. If no such
knowledge is available, a second impasse arises — a
no-change on the evaluation operator. As mentioned
earlier, the default response to an operator no-change
impasse is to perform operator subgoaling. However,
for a no-change impasse on an evaluation operator this
is overridden and a lookahead search is performed in-
stead. The results of the lookahead search are used to
evaluate the tied alternatives.

As Soar is developed, it is expected that more and
more knowledge will be included as part of the basic
system about how to deal with a variety of situations.
For example, one area on which we are currently work-
ing is the provision of Soar with a basic arithmetical
capability, including problem spaces for addition, mul-
tiplication, subtraction, division, and comparison. One
way of looking at the existing default knowledge is as
the tip of this large iceberg of background knowledge.
However, another way to look at the default knowl-
edge is as part of the architecture itself. Some of the
default knowledge — how much is still unclear — must
be innate rather than learned. The rest of the system's
knowledge, such as the arithmetic spaces, should then
be learnable from there.

Example: Multi-column Subtraction
Multi-column subtraction is the task we will use to
demonstrate Soar. This task has three advantages.
First, it is a familiar and simple task. This allows
the details of Soar not to be lost in the complexities
of understanding the task. Second, previous work has
been done on modeling human learning of subtraction
in the Sierra architecture [VanLehn, 1983]. Our imple-
mentation is inspired by the Sierra framework. Third,
this task appears to be quite different from many stan-
dard search-intensive tasks common in AI. On the sur-
face, it appears difficult to cast subtraction within the
problem-space framework of Soar — it is, after all, a
procedure. One might also think that chunking could
not learn such a procedure. However, in this example,
we will demonstrate that multi-column subtraction can

474

Subtraction

Borrowl

Regroup

Figure 3: A goal hierarchy for multi-column subtraction.

be performed by Soar and that important parts of the
procedure can be learned through chunking.

There exist many different procedures for perform-
ing multi-column subtraction. Different procedures re-
sult in different behaviors, both in the order in which
scratch marks — such as borrowing notations — are
made and in the type of mistakes that might be gener-
ated while learning [VanLehn & Ball, 1987]. For sim-
plicity, we will demonstrate the implementation of just
one of the many possible procedures. This procedure
uses a borrowing technique that recursively borrows
from a higher-order column into a lower-order column
when the top number in the lower-order column is less
than the bottom number.

A Hierarchical Subtraction Procedure
One way to implement this procedure is via the pro-
cessing of a goal hierarchy that encodes what must be
done. Figure 3 shows a subtraction goal hierarchy that
is similar to the one learned by Sierra.3 Under each
goal are shown the subgoals that may be generated
while trying to achieve it. This Sierra goal hierarchy
is mapped onto a hierarchy of operators and problem
spaces in Soar (as described in the architecture sec-
tion). The boxed goals map onto operators and the un-
boxed goals map onto problem spaces. Each problem
space consists of the operators linked to it from below
in the figure. Operators that have problem spaces be-
low them are implemented by problem solving in those
problem spaces. The other operators are implemented

3Sierra learned a slightly more elaborate, but computa-
tionally equivalent, procedure.

directly at the memory level by productions (except
for multiple-column and regroup, which are recursive).
These are the primitive acts of subtraction, such as
writing numbers or subtracting digits.

The states in these problem spaces contain sym-
bolic representations of the subtraction problem and
the scratch marks made on the page during problem
solving. The representation is very simple and direct,
being based on the spatial relationships among the dig-
its as they would appear on a page. The state consists
of a set of columns. Each column has pointers to its top
and bottom digits. Additional pointers are generated
when an answer for a column is produced, or when a
scratch mark is made as the result of borrowing. The
physical orientation of the columns on the page is rep-
resented by having "left" and "right" pointers from
columns to their left and right neighbors. There is
no inherent notion of multi-digit numbers except for
these left and right relations between columns. This
representation is consistent with the operators, which
treat the problem symbolically and never manipulate
multi-digit numbers as a whole.

Using this implementation of the subtraction proce-
dure, Soar is able to solve all multi-column subtrac-
tion problems that result in positive answers. Unfor-
tunately, there is little role for learning. Most of the
control knowledge is already embedded in the produc-
tions that select problem spaces and operators. Within
each problem space there are only a few operators from
which to select. The preconditions of the few operators
in each problem space are sufficient for perfect behav-
ior. Therefore, goals arise only to implement opera-

475

Operators:

Write-difference: If the difference between the top digit and the bottom digit of the current column is known, then
write the difference as an answer to the current column.

Write-top: If the lower digit of the current column is blank, then write the top digit as the answer to the current column.
Borrow-into: If the result of adding 10 to the top digit of the current column is known, and the digit to the left of it

has a scratch mark on it, then replace the top digit with the result.
Borrow-from: If the result of subtracting 1 from the top digit in the current column is known, then replace that top

digit with the result, augment it with a scratch mark and shift the current column to the right.
Move-left: If the current column has an answer in it, shift the current column left.
Move-borrow-left: If the current column does not have a scratch mark in it, shift the current column left.
Subtract-two-digits: If the top digit is greater than or equal to the lower digit, then produce a result that is the

difference.
Subtract-1: If the top digit is not zero, then produce a result that is the top digit minus one.
Add-10: Produce a result that is the top digit plus ten.

Goal Test: If each column has an answer, then succeed.

Figure 4: Primitive subtraction problem space.

tors. Chunking these goals produces productions that
are able to compute answers without the intermediate
subgoals.4

A Single Space Approach

One way to loosen up the strict control provided by
the detailed problem-space/operator hierarchy in Fig-
ure 3, and thus to enable the learning of the con-
trol knowledge underlying the subtraction procedure,
is to have only a single subtraction problem space
that contains all of the primitive acts (writing results,
changing columns, and so on). Figure 4 contains a
description of the problem space operators and the
goal test used in this second implementation. The
operators can be grouped into four classes: the ba-
sic acts of writing answers to a single column prob-
lem (write-difference, write-top); borrow actions on the
upper digits (borrow-into, borrow-from); moving from
one column to the next (move-left, move-borrow-left);
and performing very simple arithmetic computations
(subtract-two-digits, subtract-1, add-10). With this
simple problem space, Soar must learn the subtrac-
tion procedure by acquiring control knowledge that
correctly selects operators.

Every operator in the subtraction problem space is
considered for every state in the space. This is accom-
plished by having a production for each operator that
generates an acceptable preference for it. The condi-
tions of the production only test that the appropriate

4 This work on subtraction was done in an earlier ver-
sion of Soar that did not have the perceptual-motor inter-
face described in the architecture section. In that version,
these chunks caused Soar to write out all of the column
results and scratch marks in parallel — not very realistic
motor behavior. To work around this problem chunking
was disabled for goals in this task during which environ-
mental interactions occurred.

problem space (subtraction) is selected. Similar pro-
ductions existed in the original implementation, except
that those productions also contained additional tests
which ensured that the operators would only be con-
sidered when they were the appropriate ones to apply.

In addition to productions which generate accept-
able preferences, each operator has one or more pro-
ductions which implement it. Although every operator
is made acceptable for every state, an operator will ac-
tually be applied only if all of the conditions in the
productions that implement it are satisfied. For ex-
ample, write-difference will only apply if the difference
between the top and bottom numbers is known. If an
operator is selected, but the conditions of the produc-
tions that implement it are not satisfied, an impasse
arises. As described in the architecture section, the
default response to this type of impasse is to perform
operator subgoaling.

Figure 5 shows a trace of Soar's problem solving as
it performs a simple two-column subtraction problem,
after the learning of control knowledge has been com-
pleted. Because Soar's performance prior to learning
on this problem is considerably more complicated, it is
described after this simpler case. The top goal in this
figure is to have the result of subtracting 3 from 22.
Problem solving in the top goal proceeds from left to
right, diving to a lower level whenever a subgoal is cre-
ated in response to an impasse. Each state is a partially
solved subtraction problem, consisting of the statement
of the subtraction problem, a * designating the current
column, and possibly column results and/or scratch
marks for borrowing. Operator applications are rep-
resented by arrows going from left to right. The only
impasses that occur in this trace are a result of the
failure of operator preconditions — a form of operator
no-change impasse. These impasses are designated by
circles disrupting the operator-application arrows, and
are labeled in the order they arise (A and B). For exam-

476

22 write-difference ^12

- 3
fTW ^r - 3

^ ' T 9

*
22

1 *
borrow-into y

2x12

- 3 —(B)H 1^ " 3

* * 1*
22

move-left 22

" - 3
borrow-from
 ►

*2
- 3 o

1 1

move-left ä12 write-top X12

*~ - 3 *" - 3

9 19

Figure 5: Trace of problem solving after learning for 22 - 3.

pie, impasse A arises because write-difference cannot
apply unless the lower digit in the current column (3)
is less than the top digit (2).

For impasse A, operator subgoaling occurs when the
subtraction problem space is selected in the subgoal.
The preconditions of the write-difference operator are
met when a state has been generated whose top digit
has been changed from 2 to 12 (by borrowing). Once
this occurs, the subgoal terminates and the operator
applies, in this case writing the difference between 12
and 3. In this implementation of subtraction, oper-
ator subgoaling dynamically creates a goal hierarchy
that is similar to the one programmed into the original
implementation.

Performance Prior to Learning
Prior to learning, Soar's problem solving on this task
is considerably more complicated. This added com-
plexity arises because of an initial lack of knowledge
about the results of simple arithmetic computations
and a lack of knowledge about which operators should
be selected for which states. Figure 6 shows a partial
trace of Soar's pre-learning problem solving. Although
many of the subgoals are missing, this small snapshot
of the problem solving is characteristic of the impasses
and subgoals that arise at all levels.

As before, the problem solving starts at the upper
left with the initial state. As soon as the initial state
is selected, a tie impasse (A) arises because all of the
operators are acceptable and there are no additional
preferences that distinguish between them. Default
productions cause the selection space to be selected for
this impasse. Within this space, operators are created
to evaluate the tied operators. This example assumes
that evaluate-object(write-difference) is selected, pos-

sibly based on advice from a teacher. Then, because
there is no knowledge available about how to eval-
uate the subtraction operators, a no-change impasse
(B) occurs for the evaluation operator. More default
productions lead to a lookahead search by suggest-
ing the original problem space (subtraction) and state
and then selecting the operator that is being evalu-
ated. The operator then applies, if it can, creating
a new state. In this example, an operator subgoal
impasse (C) arises when the attempt is made to ap-
ply the write-difference operator — its preconditions
are not satisfied. Problem solving continues in this
subgoal, requiring many additional impasses, until the
write-difference operator can finally be applied. The
lookahead search then continues until an evaluation is
generated for the write-difference operator. Here, this
happens shortly after impasse C is resolved. The sys-
tem was given the knowledge that a state containing
an answer for the current column is a (partial) suc-
cess — such states are on the path to the goal. This
state evaluation is then converted by default produc-
tions into an evaluation of "success" for the operator,
and from there into a best preference for the operator.
The creation of this preference breaks the operator tie,
terminating the subgoals, and leading to the selection
of the preferred operator (write-difference). The over-
all behavior of the system during this lookahead search
is that of depth-first search — where backtracking oc-
curs by subgoal termination — intertwined with oper-
ator subgoaling. Once this search is completed, further
impasses (N) arise to actually apply the selected oper-
ator, but eventually, a solution is found.

One way in which multi-column subtraction differs
from the classic AI search tasks is that the goal test
is underspecified. As shown in Figure 4, the goal test

477

write-difference move-left

Subtract problem space

Selection problem space

Subtract problem space

Figure 6: Trace of problem solving before learning for 22-3.

used here is that a result has been generated for each
column of the problem. This determines whether some
answer has been given for the problem, but is inad-
equate to determine whether the correct answer has
been generated. The reason for this is that when solv-
ing a subtraction problem, the answer is in general not
already available. It is theoretically (and practically)
possible to use an addition procedure to test whether
the subtraction procedure has generated the correct re-
sult. However, that corresponds to a deliberate strat-
egy of "checking your work", rather than to the nor-
mal procedural goal test of determining whether the
sequence of steps has been completed.

One consequence of having an underspecified goal
test is that the combination of the problem space and
goal test are not sufficient to ensure correct perfor-
mance. Additional knowledge — the control knowl-
edge which underlies the subtraction procedure —
must also be provided in some form. VanLehn pro-
vided Sierra with worked out examples which included
the order in which the primitive external actions were
to be performed [VanLehn, 1983]. The approach that
we have taken is to provide advice to Soar [Golding et
ai, 1987] about which task operators it should evalu-
ate first in the selection problem space. This ensures
that the first answer generated during the lookahead
search is the correct one.

Learning in Subtraction

When chunking is used during subtraction problem
solving, productions are created which reproduce the
results of the subgoals in similar future situations.
For the subgoals created because of tie impasses, the

chunks create best preferences for the operators that
led to the solution. These chunks essentially cache the
results of the lookahead searches. A set of such chunks
corresponds to a plan (or procedure) — they determine
at every step what should be done — thus chunking
converts Soar's behavior from search into plan (or pro-
cedure) following. When Soar is rerun on the same
problem, the tie impasses do not arise and the solution
is found directly, as in Figure 5.

One important issue concerning the chunked produc-
tions is their generality. Does Soar only learn chunks
that can apply to the exact same problem, or are
the chunks general enough so that advice is no longer
needed after a few subtraction problems have been
completed? The answer is that the learned control
chunks are quite general — so general that only one
or two are required per operator. Once these chunks
are acquired, Soar is able to solve perfectly all multi-
column subtraction problems that have a positive an-
swer. One sample control chunk for the borrow-into
operator is shown in Figure 7. Similar chunks are
learned for each of the other major operators.

If the super-operator is write-difference,
and the bottom digit is greater than

the top digit,
then make a best preference for borrow-into.

Figure 7: A control chunk for borrow-into.

One reason for this generality is that operator sub-
goaling leads to a fine-grained goal hierarchy. There

478

are a large number of relatively simple goals having
to do with satisfying the preconditions of an operator.
Because the problem solving for these goals is relatively
minimal, the resulting chunks are quite general. A sec-
ond reason for the generality of the learning is that the
control chunks do not test for the specific digits used in
the problems — if such tests were included, the chunks
would transfer to many fewer problems.5

Though the control chunks that are learned are quite
general, many specialized implementation chunks are
also learned for the simple arithmetic operators. For
example, the set of chunks that are eventually learned
for the subtract-two-digits operator comprise a par-
tial subtraction table for one and two-digit numbers.
Conceivably, these chunks could have been learned be-
fore multi-column subtraction is ever attempted — one
can imagine that most of these simple digit manipula-
tions are learned during earlier lessons on addition and
single-column subtraction. Alternatively, these chunks
can continue to be acquired as more multi-column
subtraction problems are solved. The control chunks
would all be acquired after a few trials, but learning
of arithmetic knowledge would continue through later
problems.

Analysis of Soar
There are a variety of analyses that could be performed
for Soar. In this section we take our cue from the
issues provided by the organizers of the 1987 Workshop
on the Foundations of Artificial Intelligence [Hewitt k
Kirsh, 1987]. We examine the set of tasks that are
natural for Soar, the sources of its power, and its scope
and limits.

Natural Tasks
What does it mean for a task to be natural for an
architecture? To answer this question we first must
understand what a task is, and then what it means for
such a task to be natural. By "task" we will mean any
identifiable function, whether externally specified, or
completely internal to the system. Computer config-
uration and maneuvering through an obstacle course
are both tasks, and so are inheritance and skill acqui-
sition. One way to define the idea of naturalness for a

5 Chunking would include tests for the digits if their spe-
cific values were examined during the lookahead searches.
However, the actual manipulation of the numbers is
performed by the simple arithmetic operators: add-10,
subtract-1 and subtract-two-digits. Before an operator
such as write-difference is applied, an operator subgoal is
created in which subtract-two-digits is selected and applied.
The chunk for this subgoal reproduces the result whenever
the same two digits are to be subtracted, eliminating the
need for subtract-two-digits in such situations in the fu-
ture. In the following lookahead searches, only pointers
to the digits rather than the actual digits are ever tested,
thereby leading to control chunks that are independent of
the actual digits.

combination of a task and architecture is to say that
a task is natural for an architecture if the task can be
performed within the architecture without adding an
extra level of interpretation within the software. This
definition is appealing because it allows a distinction
to be made between the tasks that the architecture
can perform directly and those that can be done, but
for which the architecture does not provide direct sup-
port. However, applying this definition is not without
its problems. One problem is that, for any particular
task, it is possible to replace the combination of an
interpreter and its interpreted structures with a proce-
dure that has the same effect. Some forms of learning
— chunking, for example — do exactly this, by com-
piling interpreted structures into the structure of the
interpreter. This has the effect of converting an un-
natural task implementation into a natural one. Such
a capability causes problems for the definition of nat-
uralness — naturalness cannot be a fixed property of
the combination of a task and an architecture — but
it is actually a point in favor of architectures that can
do such learning.

A second problem is that in a system that is itself
built up in levels, as is Soar, different tasks will be
performed at different levels. In Soar, tasks can be
performed directly by the architecture, by memory re-
trieval, by a decision, or by goal-based problem solving.
A task is implemented at a particular level if that level
and all lower levels are involved, but the higher levels
are not. For example, consider the task of inheritance.
Inheritance is not directly implemented by the Soar ar-
chitecture, but it can be implemented at the memory
level by the firing of productions. This implementa-
tion involves the memory level plus the architecture
(which implements the memory level), but not the de-
cision or goal levels. Alternatively, inheritance could
be implemented at the decision level, or even higher up
at goal level. As the level of implementation increases,
performance becomes more interpretive, but the model
of computation explicitly includes all of these levels as
natural for the system.

One way out of this problem is to have pretheoretic
notions about the level at which a particular task ought
to be performable. The system is then natural for the
task if it can be performed at that level, and unnatural
if it must be implemented at a higher level. If, for ex-
ample, the way inheritance works should be a function
of the knowledge in the system, then the natural level
for this capability is at the memory level (or higher).

In the remainder of this section we describe the ma-
jor types of tasks that appear to us to be natural in
Soar. Lacking any fundamental ways of partitioning
the set of all tasks into principled categories, we will use
a categorization based on four of the major functional
capabilities of Soar: search-based tasks, knowledge-
based tasks, learning tasks, and robotic tasks. The
naturalness judgments for these task types are always
based on assumptions about the natural level of imple-

479

mentation for a variety of subtasks within each type of
task. We will try to be as clear as possible about the
levels at which the subtasks are being performed, so
that others may also be able to make these judgments
for themselves.
Search-based tasks Soar performs search in two
qualitatively different ways: within context and across
context. Within-context search occurs when Soar
"knows" what to do at every step, and thus selects
a sequence of operators and states without going into
a subgoal. If it needs to backtrack in within-context
search, and the states in the problem space are inter-
nal (rather than states of the outside world), it can do
so by reselecting a previously visited state. Within-
context search corresponds to doing the task, with-
out lookahead, and recovering if anything goes wrong.
Across-context search occurs when the system doesn't
know what to do, and impasses arise. Successive states
in the search show up in successively lower contexts.
Backtracking occurs by terminating subgoals. Across-
context search corresponds to lookahead search, hypo-
thetical scenario generation, or simulation.

Various versions of Soar have been demonstrated to
be able to perform over 30 different search methods
[Laird, 1983; Laird & Newell, 1983; Laird et al, 1987].
Soar can also exhibit hybrid methods — such as a com-
bination of hill-climbing and depth-first search or of
operator subgoaling and depth-first search — and use
different search methods for different problem spaces
within the same problem.

Search methods are represented in Soar as method
increments — productions that contain a small chunk
of knowledge about some aspect of a task and its ac-
tion consequences. For example, a method increment
might include knowledge about how to compute an
evaluation function for a task, along with the knowl-
edge that states with better evaluations should be pre-
ferred. Such an increment leads to a form of hill climb-
ing. Other increments lead to other search methods.
Combinations of increments lead to mixed methods.

The basic search abilities of making choices and gen-
erating subgoals are provided by the architecture. In-
dividual method increments are at the memory level,
but control occurs at the decision level, where the re-
sults of all of the method increments can be integrated
into a single choice. Some search knowledge, such as
the selection problem space, exists at the goal level.
Knowledge-based tasks Knowledge-based tasks
are represented in Soar as a collection of interact-
ing problem spaces (as are all symbolic goal-oriented
tasks). Each problem space is responsible for a part of
the task. Problem spaces interact according to the dif-
ferent goal-subgoal relationships that can exist in Soar.
Within each problem space, the knowledge is further
decomposed into a set of problem space components,
such as goal testing, state initialization, and operator
proposal [Yost & Newell, 1989]. These components,

along with additional communication constructs, can
then be encoded directly as productions, or can be de-
scribed in a high-level problem space language called
TAQL [Yost k Newell, 1989], which is then compiled
down into productions. Within this overall problem
space organization, other forms of organization — such
as object hierarchies with inheritance — are imple-
mentable at the memory level by multiple memory ac-
cesses. Task performance is represented at the goal
level as search in problem spaces.

Several knowledge-based tasks have been imple-
mented in Soar, including the Rl-Soar computer
configuration system [Rosenbloom et al, 1985], the
Cypress-Soar and Designer-Soar algorithm design sys-
tems [Steier, 1987; Steier & Newell, 1988], the
Neomycin-Soar medical diagnosis system [Washington
& Rosenbloom, 1988], and the Merl-Soar job-shop
scheduling system [Hsu et al., 1988].

These five knowledge-based systems cover a variety
of forms of both construction and classification tasks.
Construction tasks involve assembling an object from
pieces. Rl-Soar — in which the task is to construct
a computer configuration — is a good example of a
construction task. Classification tasks involve select-
ing from among a set of objects. Neomycin-Soar — in
which the task is to diagnose an illness — is a good
example of a classification task.6 In their simplest
forms, both construction and classification occur at the
decision level. In fact, they both occur to some ex-
tent within every decision in Soar — alternatives must
be assembled in working-memory and then selected.
These capabilities can require trivial amounts of pro-
cessing, as when an object is constructed by instanti-
ating and retrieving it from memory. They can also in-
volve arbitrary amounts of problem solving and knowl-
edge, as when the process of operator-implementation
(or, equivalently, state-construction) is performed via
problem solving in a subgoal.

Learning tasks The architecture directly supports
a form of experiential learning in which chunking com-
piles goal-level problem solving into memory-level pro-
ductions. Execution of the productions should have
the same effect as the problem solving would have had,
just more quickly. The varieties of subgoals for which
chunks are learned lead to varieties in types of produc-
tions learned: problem space creation and selection;
state creation and selection; and operator creation, se-
lection, and execution. An alternative classification for
this same set of behaviors is that it covers procedural,
episodic and declarative knowledge [Rosenbloom et al.,
1990]. The variations in goal outcomes lead to both
learning from success and learning from failure. The

In a related development, as part of an effort to map
the Generic Task approach to expert system construction
onto Soar, the Generic Task for classification by establish-
refine has been implemented in Soar as a general problem
space [Johnson et al., 1989].

480

ability to learn about all subgoal results leads to learn-
ing about important intermediate results, in addition
to learning about goal success and failure. The implicit
generalization of chunks leads to transfer of learned
knowledge to other subtasks within the same prob-
lem (within-trial transfer), other instances of the same
problem (across-trial transfer), and other problems
(across-task transfer). Variations in the types of prob-
lems performed in Soar lead to chunking in knowledge-
based tasks, search-based, and robotic tasks. Vari-
ations in sources of knowledge lead to learning from
both internal and external knowledge sources. A sum-
mary of many of the types of learning that have so far
been demonstrated in Soar can be found in [Steier et
al, 1987].

The apparent naturalness of these various forms of
learning depends primarily on the appropriateness of
the required problem solving. Towards the natural end
of the spectrum is the acquisition of operator selec-
tion productions, in which the problem solving consists
simply of a search with the set of operators for which
selection knowledge is to be learned. Towards the un-
natural end of the spectrum is the acquisition of new
declarative knowledge from the outside environment.
Many systems employ a simple store command for such
learning, effectively placing the capability at the mem-
ory level. In Soar, the capability is situated two lev-
els further up, at the goal level. This occurs because
the knowledge must be stored by chunking, which can
only happen if the knowledge is used in subgoal-based
problem solving. The naturalness of this learning in
Soar thus depends on whether this extra level of in-
terpretation is appropriate or not. It turns out that
the problem solving that enables declarative learning
in Soar takes the form of an understanding process that
relates the new knowledge to what is already known.
The chunking of this understanding process yields the
chunks that encode the new knowledge. If it is assumed
that new knowledge should always be understood to
be learned, then Soar's approach starts to look more
natural, and verbatim storage starts to look more in-
appropriate.

Robotic tasks Robotic tasks are performed in
Soar via its perceptual-motor interface. Sensors au-
tonomously generate working memory structures rep-
resenting what is being sensed, and motor systems au-
tonomously take commands from working memory and
execute them. The work on robotics in Soar is still very
much in its infancy; however, in Robo-Soar [Laird et
al, 1989], Soar has been successfully hooked up to the
combination of a camera and a Puma arm, and then
applied to several simple blocks-world tasks.7 Low-

7The work on Robo-Soar has been done in the newest
major release of Soar (version 5) [Laird et al., 1990], which
differs in a number of interesting ways from the earlier ver-
sions upon which the rest of the results in this article are
based.

level software converts the camera signal into informa-
tion about the positions, orientations and identifying
characteristics of the blocks. This perceptual infor-
mation is then input to working memory, and further
interpreted by encoding productions. Decoding pro-
ductions convert the high-level robot commands gen-
erated by the cognitive system to the low-level com-
mands that are directly understood by the controller
for the robot arm. These low-level commands are then
executed through Soar's motor interface.

Given a set of operators which generate motor com-
mands, and knowledge about how to simulate the op-
erators and about the expected positions of blocks fol-
lowing the actions, Robo-Soar is able to successfully
solve simple blocks world problems and to learn from
its own behavior and from externally provided advice.
It also can make use of a general scheme for recovering
from incorrect knowledge [Laird, 1988] to recover when
the unexpected occurs — such as when the system fails
in its attempt to pick up a triangular prism — and to
learn to avoid the failure in the future. Robo-Soar thus
mixes planning (lookahead search with chunking), plan
execution and monitoring, reactivity, and error recov-
ery (with replanning). This performance depends on
all of the major components of the architecture, plus
general background knowledge — such as how to do
lookahead search and how to recover from errors —
and specific problem spaces for the task.

Where the Power Resides
Soar's power and flexibility arise from at least four
identifiable sources. The first source of power is the
universality of the architecture. While it may seem
that this should go without saying, it is in fact a crucial
factor, and thus important to mention explicitly. Uni-
versality provides the primitive capability to perform
any computable task, but does not by itself explain
why Soar is more appropriate than any other universal
architecture for knowledge-based, search-based, learn-
ing, and robotic tasks.

The second source of power is the uniformity of the
architecture. Having only one type of long-term mem-
ory structure allows a single, relatively simple, learning
mechanism to behave as a general learning mechanism.
Having only one type of task representation (problem
spaces) allows Soar to move continuously from one ex-
treme of brute-force search to the other extreme of
knowledge-intensive (or procedural) behavior without
having to make any representational decisions. Hav-
ing only one type of decision procedure allows a single,
relatively simple, subgoal mechanism to generate all of
the types of subgoals needed by the system.

The traditional downside of uniformity is weakness
and inefficiency. If instead the system were built up
as a set of specialized modules or agents, as proposed
in [Fodor, 1983; Minsky, 1986], then each of the mod-
ules could be optimized for its own narrow task. Our
approach to this issue in Soar has been to go strongly

481

with uniformity — for all of the benefits listed above —
but to achieve efficiency (power) through the addition
of knowledge. This knowledge can either be added by
hand (programming) or by chunking.

The third source of power is the specific mecha-
nisms incorporated into the architecture. The pro-
duction memory provides pattern-directed access to
large amounts of knowledge; provides the ability to
use strong problem solving methods; and provides a
memory structure with a small-grained modularity.
The working memory allows global access to process-
ing state. The decision procedure provides an open
control loop that can react immediately to new situ-
ations and knowledge; contributes to the modularity
of the memory by allowing memory access to proceed
in an uncontrolled fashion (conflict resolution was a
major source of nonmodularity in earlier production
systems); provides a flexible control language (prefer-
ences); and provides a notion of impasse that is used
as the basis for the generation of subgoals. Subgoals
focus the system's resources on situations where the
accessible knowledge is inadequate; and allow flexi-
ble meta-level processing. Problem spaces separate
control from action, allowing them (control and ac-
tion) to be reasoned about independently; provide a
constrained context within which the search for a de-
sired state can occur; provide the ability to use weak
problem solving methods; and provide for straightfor-
ward responses to uncertainty and error (search and
backtracking). Chunking acquires long-term knowl-
edge from experience; compiles interpreted procedures
into non-interpreted ones; and provides generalization
and transfer. The perceptual-motor system provides
the ability to observe and affect the external world in
parallel with the cognitive activity.

The fourth source of power is the interaction effects
that result from the integration of all of the capabili-
ties within a single system. The most compelling re-
sults generated so far come about from these interac-
tions. One example comes from the mixture of weak
methods, strong methods, and learning that is found
in systems like Rl-Soar. Strong methods are based
on having knowledge about what to do at each step.
Because strong methods tend to be efficient and to pro-
duce high-quality solutions, they should be used when-
ever possible. Weak methods are based on searching to
make up for a lack of knowledge about what should be
done. Such methods contribute robustness and scope
by providing the system with a fall-back approach for
situations in which the available strong methods do not
work. Learning results in the addition of knowledge,
turning weak methods into strong ones. For example,
in Rl-Soar it was demonstrated how computer config-
uration could be cast as a search problem, how strong
methods (knowledge) could be used to reduce search,
how weak methods (subgoals and search) could be used
to make up for a lack of knowledge, and how learning
could add knowledge as the result of search.

Another interesting interaction effect comes from
work on abstraction planning, in which a difficult prob-
lem is solved by first learning a plan for an abstract ver-
sion of the problem, and then using the abstract plan
to aid in finding a plan for the full problem [Newell
& Simon, 1972; Sacerdoti, 1974; Unruh et al, 1987;
Unruh & Rosenbloom, 1989]. Chunking helps the ab-
straction planning process by recording the abstract
plan as a set of operator-selection productions, and by
acquiring other productions that reduce the amount of
search required in generating a plan. Abstraction helps
the learning process by allowing chunks to be learned
more quickly — abstract searches tend to be shorter
than normal ones. Abstraction also helps learning by
enabling chunks to be more general than they would
otherwise be — the chunks ignore the details that were
abstracted away — thus allowing more transfer and
potentially decreasing the cost of matching the chunks
(because there are now fewer conditions).

Scope and Limits

The original work on Soar demonstrated its capabilities
as a general problem solver that could use any of the
weak methods when appropriate, across a wide range
of tasks. Later, we came to understand how to use Soar
as the basis for knowledge-based systems, and how to
incorporate appropriate learning and perceptual-motor
capabilities into the architecture. These developments
increased Soar's scope considerably beyond its origins
as a weak-method problem solver. Our ultimate goal
has always been to develop the system to the point
where its scope includes everything required of a gen-
eral intelligence. In this section we examine how far
Soar has come from its relatively limited initial demon-
strations towards its relatively unlimited goal. This
discussion is divided up according to the major com-
ponents of the Soar architecture, as presented in the
architecture section: memory, decisions, goals, learn-
ing, and perception and motor control.

Level 1: Memory The scope of Soar's memory level
can be evaluated in terms of the amount of knowledge
that can be stored, the types of knowledge that can be
represented, and the organization of the knowledge.

Amount of knowledge. Using current technology,
Soar's production memory can support the storage
of thousands of independent chunks of knowledge.
The size is primarily limited by the cost of process-
ing larger numbers of productions. Faster machines,
improved match algorithms and parallel implemen-
tations [Gupta k Tambe, 1988; Tambe et al, 1989;
Tambe et al, 1988] may raise this effective limit by
several orders of magnitude over the next few years.

Types of knowledge. The representation of procedu-
ral and propositional declarative knowledge is well de-
veloped in Soar. However, we don't have well worked-
out approaches to many other knowledge representa-
tion problems, such as the representation of quanti-

482

fied, uncertain, temporal, and episodic knowledge. The
critical question is whether architectural support is re-
quired to adequately represent these types of knowl-
edge, or whether such knowledge can be adequately
treated as additional objects and/or attributes. Pre-
liminary work on quantified [Polk k Newell, 1988] and
episodic [Rosenbloom et al., 1990] knowledge is looking
promising.

Memory organization. An issue which often gets
raised with respect to the organization of Soar's mem-
ory, and with respect to the organization of production
memories in general, is the apparent lack of a higher-
order memory organization. There are no scripts
[Schänk k Ableson, 1977], frames [Minsky, 1975], or
Schemas [Bartlett, 1932] to tie fragments of related
memory together. Nor are there are any obvious hi-
erarchical structures which limit what sets of knowl-
edge will be retrieved at any point in time. However,
Soar's memory does have an organization, which is de-
rived from the structure of productions, objects, and
working memory (especially the context hierarchy).

What corresponds to a schema in Soar is an object,
or a structured collection of objects. Such a struc-
ture can be stored entirely in the actions of a single
production, or it can be stored in a piecemeal fash-
ion across multiple productions. If multiple produc-
tions are used, the schema as a unit only comes into
existence when the pieces are all retrieved contempo-
raneously into working memory. The advantage of this
approach is that it allows novel Schemas to be created
from fragments of separately learned ones. The dis-
advantage is that it may not be possible to determine
whether a set of fragments all originated from a single
schema.

What corresponds to a hierarchy of retrieval con-
texts in Soar are the production conditions. Each
combination of conditions implicitly defines a retrieval
context, with a hierarchical structure induced by the
subset relationship among the combinations. The con-
tents of working memory determines which retrieval
contexts are currently in force. For example, prob-
lem spaces are used extensively as retrieval contexts.
Whenever there is a problem solving context that has
a particular problem space selected within it, produc-
tions that test for other problem space names are not
eligible to fire in that context. This approach has
worked quite well for procedural knowledge, where it is
clear when the knowledge is needed. We have just be-
gun to work on appropriate organizational schemes for
episodic and declarative knowledge, where it is much
less clear when the knowledge should be retrieved.
Our initial approach has been based on the incre-
mental construction, via chunking, of multi-production
discrimination networks [Rosenbloom et al., 1988a;
Rosenbloom et al, 1990]. Though this work is too
premature for a thorough evaluation in the context of
Soar, the effectiveness of discrimination networks in
systems like Epam [Feigenbaum k Simon, 1984] and

Cyrus [Kolodner, 1983] bodes well.
Level 2: Decisions The scope of Soar's decision
level can be evaluated in terms of its speed, the knowl-
edge brought to bear, and the language of control.

Speed. Soar currently runs at approximately 10
decisions/second on current workstations such as a
Sun4/280. This is adequate for most of the types of
tasks we currently implement, but is too slow for tasks
requiring large amounts of search or very large knowl-
edge bases (the number of decisions per second would
get even smaller that it is now). The principal bottle-
neck is the speed of memory access, which is a func-
tion of two factors: the cost of processing individually
expensive productions (the expensive chunks problem)
[Tambe k Newell, 1988], and the cost of processing a
large number of productions (the average growth effect
problem) [Tambe, 1988]. We now have a solution to
the problem of expensive chunks which can guarantee
that all productions will be cheap — the match cost of
a production is at worst linear in the number of condi-
tions [Tambe k Rosenbloom, 1989] — and are working
on other potential solutions. Parallelism looks to be an
effective solution to the average growth effect problem
[Tambe, 1988].

Bringing knowledge to bear. Iterated, parallel, in-
dexed access to the contents of long-term memory has
proven to be an effective means of bringing knowledge
to bear on the decision process. The limited power
provided by this process is offset by the ability to use
subgoals when the accessible knowledge is inadequate.
The issue of devising good access paths for episodic
and declarative knowledge is also relevant here.

Control language. Preferences have proven to be a
flexible means of specifying a partial order among con-
tending objects. However, we cannot yet state with
certainty that the set of preference types embodied in
Soar is complete with respect to all the types of in-
formation which ultimately may need to be communi-
cated to the decision procedure.
Level 3: Goals The scope of Soar's goal level can
be evaluated in terms of the types of goals that can
be generated and the types of problem solving that
can be performed in goals. Soar's subgoaling mecha-
nism has been demonstrated to be able to create sub-
goals for all of the types of difficulties that can arise in
problem solving in problem spaces [Laird, 1983]. This
leaves three areas open. The first area is how top-
level goals are generated; that is, how the top-level task
is picked. Currently this is done by the programmer,
but a general intelligence must clearly have grounds —
that is, motivations — for selecting tasks on its own.
The second area is how goal interactions are handled.
Goal interactions show up in Soar as operator interac-
tions, and are normally dealt with by adding explicit
knowledge to avoid them, or by backtracking (with
learning) when they happen. It is not yet clear the
extent to which Soar could easily make use of more

483

sophisticated approaches, such as non-linear planning
[Chapman, 1987]. The third area is the sufficiency of
impasse-driven subgoaling as a means for determining
when meta-level processing is needed. Two of the ac-
tivities that might fall under this area are goal tests
and monitoring. Both of these activities can be per-
formed at the memory or decision level, but when they
are complicated activities it may be necessary to per-
form them by problem solving at the goal level. Either
activity can be called for explicitly by selecting a "mon-
itor" or "goal-test" operator, which can then lead to
the generation of a subgoal. However, goals for these
tasks do not arise automatically, without deliberation.
Should they? It is not completely clear.

The scope of the problem solving that can be per-
formed in goals can itself be evaluated in terms of
whether problem spaces cover all of the types of per-
formance required, the limits on the ability of subgoal-
based problem solving to access and modify aspects of
the system, and whether parallelism is possible. These
points are addressed in the next three paragraphs.

Problem space scope. Problem spaces are a very gen-
eral performance model. They have been hypothesized
to underlie all human, symbolic, goal-oriented behavior
[Newell, 1980]. The breadth of tasks that have so far
been represented in problem spaces over the whole the
field of AI attests to this generality. One way of push-
ing this evaluation further is to ask how well problem
spaces account for the types of problem solving per-
formed by two of the principal competing paradigms:
planning [Chapman, 1987] and case-based reasoning
[Kolodner, 1988].8 Both of these paradigms involve
the creation (or retrieval) and use of a data structure
that represents a sequence of actions. In planning, the
data structure represents the sequence of actions that
the system expects to use for the current problem. In
case-based reasoning, the data structure represents the
sequence of actions used on some previous, presumably
related, problem. In both, the data structure is used
to decide what sequence of actions to perform in the
current problem. Soar straightforwardly performs pro-
cedural analogues of these two processes. When it per-
forms a lookahead search to determine what operator
to apply to a particular state, it acquires (by chunking)
a set of search control productions which collectively
tell it which operator should be applied to each sub-
sequent state. This set of chunks forms a procedural
plan for the current problem. When a search control
chunk transfers between tasks, a form of procedural
case-based reasoning is occurring.

Simple forms of declarative planning and case-based
reasoning have also been demonstrated in Soar in the

8 The work on Robo-Soar also reveals Soar's potential to
exhibit reactive planning [Georgeff &: Lansky, 1987]. The
current version of Soar still has problems with raw speed
and with the unbounded nature of the production match
(the expensive chunks problem), but it is expected that
these problems will be solved in the near future.

context of an expert system that designs floor systems
[Reich, 1988]. When this system discovers, via looka-
head search, a sequence of operators that achieves a
goal, it creates a declarative structure representing the
sequence and returns it as a subgoal result (plan cre-
ation). This plan can then be used interpretively to
guide performance on the immediate problem (plan
following). The plan can also be retrieved during later
problems and used to guide the selection of operators
(case-based reasoning). This research does not demon-
strate the variety of operations one could conceivably
use to modify a partial or complete plan, but it does
demonstrate the basics.

Meta-level access. Subgoal-based problem solving
has access to all of the information in working memory
— including the goal stack, problem spaces, states, op-
erators, preferences, and other facts that have been re-
trieved or generated — plus any of the other knowledge
in long-term memory that it can access. It does not
have direct access to the productions, or to any of the
data structures internal to the architecture. Nonethe-
less, it should be able to indirectly examine the con-
tents of any productions that were acquired by chunk-
ing, which in the long run should be just about all of
them. The idea is to reconstruct the contents of the
production by going down into a subgoal and retrac-
ing the problem solving that was done when the chunk
was learned. In this way it should be possible to de-
termine what knowledge the production cached. This
idea has not yet been explicitly demonstrated in Soar,
but research on the recovery from incorrect knowledge
has used a closely related approach [Laird, 1988].

The effects of problem solving are limited to the
addition of information to working memory. Dele-
tion of working memory elements is accomplished by
a garbage collector provided by the architecture. Pro-
ductions are added by chunking, rather than by prob-
lem solving, and are never deleted by the system. The
limitation on production creation — that it only oc-
curs via chunking — is dealt with by varying the na-
ture of the problem solving over which chunking occurs
[Rosenbloom et al., 1990]. The limitation on produc-
tion deletion is dealt with by learning new productions
which overcome the effects of old ones [Laird, 1988].

Parallelism. Two principal sources of parallelism in
Soar are at the memory level: production match and
execution. On each cycle of elaboration, all produc-
tions are matched in parallel to the working memory,
and then all of the successful instantiations are exe-
cuted in parallel. This lets tasks that can be performed
at the memory level proceed in parallel, but not so for
decision-level and goal-level tasks.

Another principal source of parallelism is provided
by the motor systems. All motor systems behave in
parallel with respect to each other, and with respect
to the cognitive system. This enables one form of
task-level parallelism in which non-interfering external
tasks can be performed in parallel. To enable further

484

research on task-level parallelism we have added the
experimental ability to simultaneously select multiple
problem space operators within a single problem solv-
ing context. Each of these operators can then proceed
to execute in parallel, yielding parallel subgoals, and
ultimately an entire tree of problem solving contexts in
which all of the branches are being processed in par-
allel. We do not yet have enough experience with this
capability to evaluate its scope and limits.

Despite all of these forms of parallelism embodied in
Soar, most implementations of the architecture have
been on serial machines, with the parallelism being
simulated. However, there is an active research effort
to implement Soar on parallel computers. A paral-
lelized version of the production match has been suc-
cessfully implemented on an Encore Multimax, which
has a small number (2-20) of large-grained processors
[Tambe et ah, 1988], and unsuccessfully implemented
on a Connection Machine [Hillis, 1985], which has a
large number (16K-64K) of small-grained processors
[Flynn, 1988]. The Connection Machine implementa-
tion failed primarily because a complete paralleliza-
tion of the current match algorithm can lead to ex-
ponential space requirements. Research on restricted
match algorithms may fix this problem in the future.
Work is also in progress towards implementing Soar on
message-passing computers [Tambe et ah, 1989].

Learning In [Steier et ah, 1987] we broke down the
problem of evaluating the scope of Soar's learning ca-
pabilities into four parts: when can the architecture
learn; from what can the architecture learn; what can
the architecture learn; and when can the architecture
apply learned knowledge. These points are discussed
earlier, and need not be elaborated further here.

One important additional issue is whether Soar ac-
quires knowledge that is at the appropriate level of
generalization or specialization. Chunking provides a
level of generality that is determined by a combination
of the representation used and the problem solving per-
formed. Under varying circumstances, this can lead to
both overgeneralization [Laird et ah, 1986b] and over-
specialization. The acquisition of overgeneral knowl-
edge implies that the system must be able to recover
from any errors caused by its use. One solution to this
problem that has been implemented in Soar involves
detecting that a performance error has occurred, de-
termining what should have been done instead, and
acquiring a new chunk which leads to correct perfor-
mance in the future [Laird, 1988]. This is accomplished
without examining or modifying the overgeneral pro-
duction; instead it goes back down into the subgoals
for which the overgeneral productions were learned.

One way to deal with overspecialization is to patch
the resulting knowledge gaps with additional knowl-
edge. This is what Soar does constantly — if a pro-
duction is overspecialized, it doesn't fire in circum-
stances when it should, causing an impasse to oc-
cur, and providing the opportunity to learn an addi-

tional chunk that covers the missing case (plus pos-
sibly other cases). Another way to deal with over-
specialized knowledge is to work towards acquiring
more general productions. A standard approach is
to induce general rules from a sequence of positive
and negative examples [Mitchell, 1982; Quinlan, 1986].
This form of generalization must occur in Soar by
search in problem spaces, and though there has been
some initial work on doing this [Rosenbloom, 1988;
Saul, 1984], we have not yet provided Soar with a set of
problem spaces that will allow it to generate appropri-
ate generalizations from a variety of sets of examples.
So, Soar cannot yet be described as a system of choice
for doing induction from multiple examples. On the
other hand, Soar does generalize quite naturally and
effectively when abstraction occurs [Unruh k. Rosen-
bloom, 1989]. The learned rules reflect whatever ab-
straction was made during problem solving.

Learning behaviors that have not yet been at-
tempted in Soar include the construction of a model
of the environment from experimentation in it [Ra-
jamoney et ah, 1985], scientific discovery and theory
formation [Langley et ah, 1987], and conceptual clus-
tering [Fisher & Langley, 1985].

Perception and motor control The scope of
Soar's perception and motor control can be evaluated
in terms of both its low-level I/O mechanisms and its
high-level language capabilities. Both of these capa-
bilities are quite new, so the evaluation must be even
more tentative than for the preceding components.

At the low-level, Soar can be hooked up to multiple
perceptual modalities (and multiple fields within each
modality) and can control multiple effectors. The crit-
ical low-level aspects of perception and motor control
are currently done in a standard procedural language
outside of the cognitive system. The resulting system
appears to be an effective testbed for research on high-
level aspects of perception and motor-control. It also
appears to be an effective testbed for research on the
interactions of perception and motor control with other
cognitive capabilities, such as memory, problem solv-
ing, and learning. However, it does finesse many of the
hard issues in perception and motor control, such as
selective attention, shape determination, object iden-
tification, and temporal coordination. Work is actively
in progress on selective attention [Wiesmeyer, 1988a].

At the high end of I/O capabilities is the process-
ing of natural language. An early attempt to imple-
ment a semantic grammar parser in Soar was only a
limited success [Powell, 1984]. It worked, but did not
appear to be the right long-term solution to language
understanding in Soar. More recent work on NL-Soar
has focused on the incremental construction of a model
of the situation by applying comprehension operators
to each incoming word [Lewis et ah, 1989]. Compre-
hension operators iteratively augment and refine the
situation model, setting up expectations for the part
of the utterance still to be seen, and satisfying ear-

485

lier expectations. As a side effect of constructing the
situation model, an utterance model is constructed to
represent the linguistic structure of the sentence. This
approach to language understanding has been success-
fully applied to acquiring task specific problem spaces
for three immediate reasoning tasks: relational reason-
ing [Johnson-Laird, 1988], categorical syllogisms, and
sentence verification [Clark k Chase, 1972]. It has also
been used to process the input for these tasks as they
are performed. Though NL-Soar is still far from pro-
viding a general linguistic capability, the approach has
proven promising.

Conclusion
In this article we have taken a step towards providing
an analysis of the Soar architecture as a basis for gen-
eral intelligence. In order to increase understanding
of the structure of the architecture we have provided
a theoretical framework within which the architecture
can be described, a discussion of methodological as-
sumptions underlying the project and the system, and
an illustrative example of its performance on a multi-
column subtraction task. In order to facilitate compar-
isons between the capabilities of the current version of
Soar and the capabilities required to achieve its ulti-
mate goal as an architecture for general intelligence,
we have described the natural tasks for the architec-
ture, the sources of its power, and its scope and limits.
If this article has succeeded, it should be clear that
progress has been made, but that more work is still re-
quired. This applies equally to the tasks of developing
Soar and analyzing it.

References
[Bartlett, 1932] F. C. Bartlett. Remembering: A Study

in Experimental and Social Psychology. Cambridge
University Press, Cambridge, Eng., 1932.

[Chapman, 1987] D. Chapman. Planning for conjunc-
tive goals. Artificial Intelligence, 32:333-377, 1987.

[Clark k Chase, 1972] H. H. Clark k W. G. Chase. On
the process of comparing sentences against pictures.
Cognitive Psychology, 3:472-517, 1972.

[DeJong k Mooney, 1986] G. DeJong k R. J. Mooney.
Explanation-based learning: An alternative view.
Machine Learning, 1:145-176, 1986.

[Dietterich, 1986] T. G. Dietterich. Learning at the
knowledge level. Machine Learning, 1:287-315,
1986.

[Etzioni k Mitchell, 1989] O. Etzioni k
T. M. Mitchell. A comparative analysis of chunk-
ing and decision analytic control. In Proceedings of
the A A AI Spring Symposium on Limited Rationality
and AI, Stanford, CA, 1989.

[Feigenbaum k Simon, 1984] E. A. Feigenbaum k
H. A. Simon. Epam-like models of recognition and
learning. Cognitive Science, 8:305-336, 1984.

[Fisher k Langley, 1985] D. H. Fisher k P. Langley.
Approaches to conceptual clustering. In Proceedings
ofIJCAI-85, pages 691-697, Los Angeles, CA, 1985.

[Flynn, 1988] R. Flynn. Placing Soar on the connec-
tion machine. Prepared for and distributed at the
AAAI Mini-Symposium "How Can Slow Compo-
nents Think So Fast", 1988.

[Fodor, 1983] J. A. Fodor. The Modularity of Mind.
Bradford Books, MIT Press, Cambridge, MA, 1983.

[Georgeff k Lansky, 1987] M. P. Georgeff k A. L. Lan-
sky. Reactive reasoning and planning. In Proceedings
ofAAAI-87, pages 677-682, Seattle, WA, 1987.

[Golding et al, 1987] A. Golding, P. S. Rosenbloom,
k J. E. Laird. Learning general search control from
outside guidance. In Proceedings of IJCAI-87, Mi-
lan, 1987.

[Gupta k Tambe, 1988] A. Gupta k M. Tambe. Suit-
ability of message passing computers for implement-
ing production systems. In Proceedings of AAAI-88,
pages 687-692, St. Paul, 1988.

[Hewitt k Kirsh, 1987] C. Hewitt k D. Kirsh. Per-
sonal communication. 1987.

[Hillis, 1985] W. D. Hillis. The Connection Machine.
MIT Press, Cambridge, MA, 1985.

[Hsu et al., 1988] W. Hsu, M. Prietula, k D. Steier.
Merl-Soar: Applying Soar to scheduling. In Pro-
ceedings of the Workshop on Artificial Intelligence
Simulation, The National Conference on Artificial
Intelligence, pages 81-84, 1988.

[Johnson et al, 1989] T. R. Johnson, J. W. Jr. Smith,
k B. Chandrasekaran. Generic Tasks and Soar.
In Working Notes of the AAAI Spring Symposium
on Knowledge System Development Tools and Lan-
guages, pages 25-28, Stanford, CA, 1989.

[Johnson-Laird, 1988] P. N. Johnson-Laird. Reasoning
by rule or model? In Proceedings of the 10th Annual
Conference of the Cognitive Science Society, pages
765-771, Montreal, 1988.

[Kolodner, 1983] J. L. Kolodner. Maintaining order
in a dynamic long-term memory. Cognitive Science,
7:243-280, 1983.

[Kolodner, 1988] J. L. Kolodner, editor. Proceedings
of the DARPA Workshop on Case-Based Reasoning.
Clearwater Beach, FL, 1988.

[Laird k Newell, 1983] J. E. Laird k A. Newell. A
universal weak method. Technical Report 83-141,
Department of Computer Science, Carnegie-Mellon
University, June 1983.

[Laird et al, 1984] J. E. Laird, P. S. Rosenbloom, k
A. Newell. Towards chunking as a general learning
mechanism. In Proceedings of AAAI-84, pages 188-
192, Austin, 1984.

486

[Laird et al, 1986a] J. E. Laird, P. S. Rosenbloom, &
A. Newell. Chunking in Soar: The anatomy of a gen-
eral learning mechanism. Machine Learning, 1:11—
46, 1986.

[Laird et ah, 1986b] J. E. Laird, P. S. Rosenbloom,
k A. Newell. Overgeneralization during knowledge
compilation in Soar. In T. G. Dietterich, editor,
Proceedings of the Workshop on Knowledge Compi-
lation, Otter Crest, 1986. AAAI/Oregon State U.

[Laird et al, 1987] J. E. Laird, A. Newell, k P. S.
Rosenbloom. Soar: An architecture for general in-
telligence. Artificial Intelligence, 33:1-64, 1987.

[Laird et al, 1989] J. E. Laird, E. S. Yager, C. M.
Tuck, k M. Hucka. Learning in tele-autonomous sys-
tems using Soar. In Proceedings of the NASA Con-
ference on Space Telerobotics, Pasadena, CA, 1989.

[Laird et al., 1990] J. E. Laird, K. Swedlow, E. Alt-
mann, k. C. B. Congdon. Soar 5 User's Manual.
The University of Michigan, 1990. In preparation.

[Laird, 1983] J. E. Laird. Universal Subgoaling. PhD
thesis, Carnegie-Mellon University, 1983. (Available
in Laird, J. E., Rosenbloom, P. S., k Newell, A.
Universal Subgoaling and Chunking: The Automatic
Generation and Learning of Goal Hierarchies, Hing-
ham, MA: Kluwer, 1986).

[Laird, 1986] J. E. Laird. Soar user's manual (version
4). Technical Report ISL-15, Xerox Palo Alto Re-
search Center, 1986.

[Laird, 1988] J. E. Laird. Recovery from incorrect
knowledge in Soar. In Proceedings of AAAI-88,
pages 618-623, St. Paul, 1988.

[Langley et al., 1987] P. Langley, H. A. Simon, G. L.
Bradshaw, k J. M. Zytkow. Scientific Discovery:
Computational Explorations of the Creative Pro-
cesses. MIT Press, Cambridge, MA, 1987.

[Lewis et al., 1989] R. L. Lewis, A. Newell, k T. A.
Polk. Toward a Soar theory of taking instructions
for immediate reasoning tasks. In Proceedings of the
11th Annual Conference of the Cognitive Science So-
ciety, Ann Arbor, MI, 1989.

[Minsky, 1975] M. Minsky. A framework for the repre-
sentation of knowledge. In P. Winston, editor, The
Psychlogy of Computer Vision. McGraw-Hill, New
York, 1975.

[Minsky, 1986] M. Minsky. The Society of Mind. Si-
mon and Schuster, New York, 1986.

[Mitchell et al., 1986] T. M. Mitchell, R. M. Keller, k
S. T. Kedar-Cabelli. Explanation-based generaliza-
tion: A unifying view. Machine Learning, 1:47-80,
1986.

[Mitchell, 1982] T. M. Mitchell. Generalization as
search. Artificial Intelligence, 18:203-226, 1982.

[Newell k Rosenbloom, 1981] A. Newell k P. S.
Rosenbloom. Mechanisms of skill acquisition and the
law of practice. In J. R. Anderson, editor, Cognitive
Skills and their Acquisition, pages 1-55. Erlbaum,
Hillsdale, NJ, 1981.

[Newell k Simon, 1972] A. Newell k H. A. Simon. Hu-
man Problem Solving. Prentice-Hall, Englewood
Cliffs, 1972.

[Newell et al, 1989] A. Newell, P. S. Rosenbloom, k
J. E. Laird. Symbolic architectures for cognition. In
M. I. Posner, editor, Foundations of Cognitive Sci-
ence. Bradford Books/MIT Press, Cambridge, MA,
1989.

[Newell, 1980] A. Newell. Reasoning, problem solv-
ing and decision processes: The problem space as a
fundamental category. In R. Nickerson, editor, At-
tention and Performance VIII. Erlbaum, Hillsdale,
N.J., 1980.

[Newell, 1990] A. Newell. Unified Theories of Cogni-
tion. Harvard University Press, Cambridge, MA,
1990.

[Nilsson, 1980] N. Nilsson. Principles of Artificial In-
telligence. Tioga, Palo Alto, CA, 1980.

[Polk k Newell, 1988] T. A. Polk k A. Newell. Model-
ing human syllogistic reasoning in Soar. In Proceed-
ings of the 10th Annual Conference of the Cognitive
Science Society, pages 181-187, Montreal, 1988.

[Powell, 1984] L. Powell. Parsing the picnic problem
with a Soar3 implementation of Dypar-1. Depart-
ment of Computer Science, Carnegie-Mellon Univer-
sity. Unpublished, 1984.

[Quinlan, 1986] J. R. Quinlan. Induction of decision
trees. Machine Learning, 1:81-106, 1986.

[Rajamoney et al, 1985] S. Rajamoney, G. F. De-
Jong, k B. Faltings. Towards a model of conceptual
knowledge acquisition through directed experimen-
tation. In Proceedings of IJCAI-85, pages 688-690,
Los Angeles, CA, 1985.

[Reich, 1988] Y. Reich. Learning plans as a weak
method for design. Department of Civil Engineering,
Carnegie Mellon University. Unpublished, 1988.

[Rosenbloom k Laird, 1986] P. S. Rosenbloom k J. E.
Laird. Mapping explanation-based generalization
onto Soar. In Proceedings of AAAI-86, pages 561-
567, Philadelphia, 1986.

[Rosenbloom k Newell, 1986] P. S. Rosenbloom k
A. Newell. The chunking of goal hierarchies: A
generalized model of practice. In R. S. Michalski,
J. G. Carbonell, k T. M. Mitchell, editors, Machine
Learning: An Artificial Intelligence Approach, Vol-
ume II, pages 247-288. Morgan Kaufmann Publish-
ers, Inc., Los Altos, CA, 1986.

487

[Rosenbloom et al, 1985] P. S. Rosenbloom, J. E.
Laird, J. McDermott, A. Newell, k E. Orciuch. Rl-
Soar: An experiment in knowledge-intensive pro-
gramming in a problem-solving architecture. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 7:561-569, 1985.

[Rosenbloom et al, 1987] P. S. Rosenbloom, J. E.
Laird, &. A. Newell. Knowledge level learning in
Soar. In Proceedings of AAAI-87, pages 499-504,
Seattle, 1987.

[Rosenbloom et al., 1988a] P. S. Rosenbloom, J. E.
Laird, & A. Newell. The chunking of skill and knowl-
edge. In B. A. G. Elsendoorn k H. Bouma, editors,
Working Models of Human Perception, pages 391—
410. Academic Press, London, 1988.

[Rosenbloom et al, 1988b] P. S. Rosenbloom, J. E.
Laird, k A. Newell. Meta-levels in Soar. In P. Maes
k D. Nardi, editors, Meta-Level Architectures and
Reflection, pages 227-240. North Holland, Amster-
dam, 1988.

[Rosenbloom et al, 1990] P. S. Rosenbloom,
A. Newell, &; J. E. Laird. Towards the knowledge
level in Soar: The role of the architecture in the use
of knowledge. In K. VanLehn, editor, Architectures
for Intelligence. Erlbaum, Hillsdale, NJ, 1990. In
preparation.

[Rosenbloom, 1988] P. S. Rosenbloom. Beyond gen-
eralization as search: Towards a unified framework
for the acquisition of new knowledge. In G. F. De-
Jong, editor, Proceedings of the AAAI Symposium
on Explanation-Based Learning, pages 17-21, Stan-
ford, CA, 1988. AAAI.

[Rosenbloom, 1989] P. S. Rosenbloom. A symbolic
goal-oriented perspective on connectionism and
Soar. In R. Pfeifer, Z. Schreter, F. Fogelman-Soulie,
k L. Steels, editors, Connectionism in Perspective.
Elsevier, Amsterdam, 1989.

[Sacerdoti, 1974] E. D. Sacerdoti. Planning in a hier-
archy of abstraction spaces. Artificial Intelligence,
5:115-135, 1974.

[Saul, 1984] R. H. Saul. A Soar2 implementation of
version-space inductive learning. Department of
Computer Science, Carnegie-Mellon University. Un-
published, 1984.

[Schänk k Ableson, 1977] R. Schänk k R. Ableson.
Scripts, Plans, Goals and Understanding. Lawrence
Erlbaum, Hillsdale, NJ, 1977.

[Steier k Newell, 1988] D. M. Steier k A. Newell.
Integrating multiple sources of knowledge into
Designer-Soar an automatic algorithm designer. In
Proceedings of AAAI-88, pages 8-13, St. Paul, MN,
1988.

[Steier et al, 1987] D. M. Steier, J. E. Laird,
A. Newell, P. S. Rosenbloom, R. Flynn, A. Gold-
ing, T. A. Polk, O. G. Shivers, A. Unruh, k G. R.

Yost. Varieties of learning in Soar: 1987. In P. Lan-
gley, editor, Proceedings of the Fourth International
Workshop on Machine Learning, pages 300-311, Los
Altos, CA, 1987. Morgan Kaufmann Publishers, Inc.

[Steier, 1987] D. Steier. Cypress-Soar: A case study in
search and learning in algorithm design. In Proceed-
ings ofIJCAI-87, pages 327-330, Milan, 1987.

[Tambe k Newell, 1988] M. Tambe & A. Newell. Some
chunks are expensive. In J. Laird, editor, Proceed-
ings of the Fifth International Conference on Ma-
chine Learning, pages 451-458, Ann Arbor, MI,
1988.

[Tambe k Rosenbloom, 1989] M. Tambe k P. S.
Rosenbloom. Eliminating expensive chunks by re-
stricting expressiveness. In Proceedings of IJCAI-89,
Detroit, 1989.

[Tambe et al, 1988] M. Tambe, Kalp D., A. Gupta,
C. L. Forgy, B. Milnes, k A. Newell. Soar/PSM-E:
Investigating match parallelism in a learning pro-
duction system. In Proceedings of ACM/SIGPLAN
symposium on Parallel Programming: Experience
with Applications, Languages, and Systems, pages
146-161, 1988.

[Tambe et al, 1989] M. Tambe, A. Acharya, k
A. Gupta. Implementation of production systems on
message passing computers: Simulation results and
analysis. Technical Report CMU-CS-89-129, School
of Computer Science, Carnegie Mellon University,
April 1989.

[Tambe, 1988] M. Tambe. Speculations on the com-
putational effects of chunking. Department of Com-
puter Science, Carnegie Mellon University. Unpub-
lished, 1988.

[Unruh k Rosenbloom, 1989] A. Unruh k P. S. Rosen-
bloom. Abstraction in problem solving and learning.
In Proceedings of IJCAI-89, Detroit, 1989.

[Unruh et al, 1987] A. Unruh, P. S. Rosenbloom, k
J. E. Laird. Dynamic abstraction problem solving in
Soar. In Proceedings of the Third Annual Aerospace
Applications of Artificial Intelligence Conference,
pages 245-256, Dayton, OH, 1987.

[VanLehn k Ball, 1987] K. VanLehn k W. Ball. Flex-
ible execution of cognitive procedures. Technical Re-
port PCG-5, Department of Psychology, Carnegie-
Mellon University, June 1987.

[VanLehn, 1983] K. VanLehn. Felicity conditions for
human skill acquisition: Validating an Al-based the-
ory. Technical Report CIS-21, Xerox Palo Alto Re-
serch Center, November 1983.

[Washington k Rosenbloom, 1988] R. Washington k
P. S. Rosenbloom. Applying problem solving and
learning to diagnosis. Department of Computer Sci-
ence, Stanford University. Unpublished, 1988.

[Wiesmeyer, 1988a] M. Wiesmeyer. Personal commu-
nication. 1988.

488

[Wiesmeyer, 1988b] M. Wiesmeyer. Soar I/O Refer-
ence Manual, Version 2. Department of EECS, Uni-
versity of Michigan, 1988.

[Wiesmeyer, 1989] M. Wiesmeyer. New and Improved
Soar 10. Department of EECS, University of Michi-
gan, 1989.

[Yost & Newell, 1989] G. R. Yost & A. Newell. A
problem space approach to expert system specifica-
tion. In Proceedings of IJCAI-89, Detroit, MI, 1989.

489

An Implementation of Indexical/Functional Reference
for Embedded Execution of Symbolic Plans

Marcel Schoppers and Richard Shu
Advanced Decision Systems

1500 Plymouth Street
Mountain View, CA 94043

Abstract

We describe how we modified the Univer-
sal Plans execution engine to provide index-
ical/functional reference capabilities, thus al-
lowing Universal Plans to interact with sev-
eral identical, physical objects at once. This
advance makes it easier for automatically con-
structed, symbolic plans, to reactively control
physical robots. Our implementation of index-
ical/functional reference complements that of
Agre and Chapman, in that our implementa-
tion:

• is designed for use in executing symbolic
plans;

• does not require the planner to reason in-
dexically;

• is capable of interacting with any number
of objects at once;

• supports recursive plans for dismantling
block towers of arbitrary size;

• finds objects to satisfy indefinite descrip-
tions; and

• dynamically constructs the indefinite de-
scriptions to satisfy.

We also explain why the use of any imple-
mentation of indexical/functional reference will
complicate the detection of surprise events
(serendipities).

1 Objectives

The work reported herein was supported in part by the
Defense Advanced Research Projects Agency (DARPA)
and the U.S. Army Missile Command under contract
DAAH01-90-C-0080, in part by IR&D funding from Ad-
vanced Decision Systems, and in part by the authors'
own resources.

Deictic representation was introduced to the planning
community in the PENGI paper [AGRE and CHAPMAN,
1987] and was devised to address the problem of how an
embedded agent could manipulate physical objects. This
problem is not addressed by logic-based representations
(such as those used by automated planning programs)
that do not indicate how a symbol inside an agent can be
made to refer to any particular object in the real world.
The association between a symbol and the real object it

represents - if there is one - usually exists only in the
head of some human being. If an artificial agent is to
interact with real objects it must be able to dynamically
create, destroy, and manipulate references to those ob-
jects: associations between structures inside the agent
and objects outside the agent must be maintained by
the agent itself. Agre and Chapman showed how to do
that by devising an agent capable of establishing indexi-
cal/functional references to external objects, and as part
of their solution, advocated interactionist, deictic repre-
sentation over mentalist, logic-based representation.

Our involvement in both planning and situated ac-
tivity gave us cause to examine the indexical/functional
reference capabilities accruing from the use of deictic rep-
resentation, and to integrate those capabilities with the
use of a more conventional plan representation. Since
Universal Plans were known to be amenable to symbolic
representation, automatic synthesis, and reactive execu-
tion, we undertook to incorporate the capabilities of in-
dexical/functional reference into our Universal Plans ex-
ecution engine, without modifying the plan representa-
tion itself. Further, by taking careful note of the changes
we had to make in the plan execution software along the
way, we would not only come to a clearer understanding
of the capabilities of indexical/functional reference, but
would be in a position to describe it as constructed from
a set of primitive capabilities. If, on the other hand, our
attempt to achieve indexical/functional reference failed
because of our self-imposed constraints, we would have
isolated the precise point of conflict between it and as-
sumptions built into symbolic planning technology.

Note that we were not trying to reconstruct Agre and
Chapman's implementation of indexical/functional refer-
ence. Indeed, by requiring that our own implementation
must be compatible with the use of symbolic plan rep-
resentation and construction, we ran quite contrary to
the motive of machine parsimony that drove the orig-
inal implementation [AGRE, 1988]. We also wished to
avoid such an implementation as would require the plan-
ner to reason indexically, and thus ran contrary to the
direction of [SUBRAMANIAN and WOODFILL, 1989].
Our goal was to provide indexical/functional execution
capabilities for plans produced by ordinary planners.

We summarize our results here: indexical/functional
reference can indeed be achieved by proper construc-
tion of the execution engine for objective symbolic plan

490

representations. As a result, symbolic plans can now
cause embedded agents to interact with physical objects,
even when those objects are objectively indistinguish-
able. More interestingly, the symbolic implementation
confers some advantages, such as making the number of
relevant objects dynamically expandable, and allowing
dynamic determination of the type of object to be refer-
enced.

2 Experimental Setup
For this experiment we have constructed a modified
Blocks World, in which blocks have names, labels, col-
ors, and shapes. Each block's name is unique, and serves
to identify the block. Block labels are letters, suppos-
edly written on the block (e.g. "a"), and there may be
any number of blocks sporting the same letter. Hence
a plan can name a specific block, as usual, or can de-
scribe a desired block as one bearing a given letter. Sim-
ilarly, a plan can describe a desired block as one having
a given color, and there may be many blocks with the
same color. Again, blocks can be spherical, pyramidal,
or box-shaped.

If a plan referred to a desired color or shape, the plan
would be describing, not naming, its objects. Similarly,
if a plan referred to the labels printed on the blocks,
the plan would be describing, not identifying, blocks.
Only the blocks' names serve as designators in the logico-
objective sense (as the atom tweety designates the only
bird of that name).

The Universal Plan for building block towers consists
of all the usual domain constraints of the Blocks World
(e.g. a block can't be supported by two others simulta-
neously), plus a description of the effects of the avail-
able primitive actions, plus some additional informa-
tion discovered by the planner. The planner considers
the domain constraints, the effect descriptions, and the
goals, and adds some new rules that function as advice to
the plan interpreter concerning the order in which goals
should be achieved. How confinement rules are discov-
ered is detailed in [SCHOPPERS, 1989].

Universal Plan interpretation involves the backward
chaining of domain constraints, effect descriptions, and
confinement rules, subject to the truth or falsity (in the
environment) of the plan's goals and the rules' precon-
ditions - clearly, a goal that is already true in the en-
vironment does not have to be achieved. In the process
of this backward chaining, the interpreter constructs a
stack that holds the goals and supergoals of the current
action. In other words, the interpreter traverses part of
a goal tree (Figure 1). Although the interpreter makes
a bee-line from the root node of the goal tree down a
single path, it is much more enlightening to see the goal
tree as a whole. An equivalent decision tree is shown in
Figure 2. Neither the goal tree nor the decision tree ever
exist in their entirety; they are merely pedagogical tools.
The Universal Plans interpreter uses its knowledge of the
domain to behave as if it were executing a decision tree.

Notice that the goal tree and the equivalent decision
tree are tree Schemas, containing unbound variables (in
the Prolog convention logical variables begin with an
upper case letter). This is important in allowing us

|on(A,B)l

LOWER

|box(B)| Immm |holding(A)| |over(B)|

|clear(A)|

e;lear(A)| | grip(wide)] |over(A)|

holding(X)?|
OPEN LRTERRL

I
ÖntX;T^| |at(top)|

eleartaf | [g~rip(wide)| [over(Y)| RAISE

holding(Z)?
OPEN LRTERRL

, T , T
\mtzm\ |at(toP)|

RAISE

Figure 1: Part of the Universal Plan for STACK(a,b).

on(A,B) ?
T) NO-OP
F) box(B) ?

T) clear(B) ?
T) holding(A) ?

T) over(B) ?
T) LOWER
F) at(top) ?

T) LATERAL
F) RAISE

F) [subplan to GRASP A]
F) [subplan to CLEAROFF B]

F) FAIL

Figure 2: Decision Tree Equivalent of the STACK(A,B)
Plan.

491

to invoke the plan (tree) with whatever parameters we
want. Instead of invoking the plan to achieve on(a,b) -
thus supposedly identifying particular blocks by means
of unique atomic designators a and b - we may want
to invoke the plan to achieve on("a","b"), with the in-
tention that the plan should stack any one of the blocks
labelled "a" onto any one of the blocks labelled "b". More
explicitly, we might invoke the plan to achieve on(pl,p2)
where pi and p2 were descriptors, with pi describing (for
example) "a thing that is a cubical block and is red and
is labelled 'a'". That Universal Plans are plan Schemas
turned out to be very useful for our experiment.

3 Fundamentals of Indexical/Functional
Reference

Now suppose we pose the goal on(pl,p2), where pi and
p2 are both (indefinite) descriptions of "any red cubi-
cal block labelled "a"'. This goal might appear prob-
lematic, but need not be: if the world has several red
cubical blocks labelled "a", the goal may be interpreted
as meaning that we want one such block stacked atop
another. If, furthermore, all red cubical blocks labelled
"a" are identical, the goal can still mean the same thing.
Why, then, have all planners to date resorted to cre-
ating such artificial distinctions as unique names? The
problem is caused in part by the god's-eye view, the
ability to identify every object, assumed by the prevail-
ing logical formalisms, and in part by their "mentalism"
[AGRE, 1988] - their inability to establish causal rela-
tionships with objects outside the representation itself.
By posing the goal with descriptions rather than with
names of blocks, we have already avoided the god's-eye
view, and have thus opened a door to the possibility that
a conventional plan representation might be capable of
manipulating several identical blocks at once. Consider
that in a constraint posting system, two variables may
be identically constrained, yet may be bound differently.
Similarly, two descriptions of blocks may be identical,
and yet the two descriptions might apply to different
blocks.

Clearly there is more to the issue than the binding
of variables; the other half of the problem is the ability
to establish causal relationships with objects outside the
representation. Classically assembled plans merely name
or describe objects, leaving the relationship between the
object's representation and the object itself to the imag-
ination of some human. Agre and Chapman built PENGI
to interact with objects, and although it did so only in
simulation, it seems plausible that PENGI could interact
with real objects. If that capability is assumed, then
PENGI could also interact with several identical real ob-
jects, and could do so without either making artificial
distinctions or getting the objects confused.

We have already noted that two identical descriptions
can (in principle) refer to different plan objects. Since
Agre and Chapman push past plan objects to real ob-
jects, the problem for us becomes, how identical descrip-
tions in a plan might be made to refer to different physi-
cal objects when the plan is executed, even if the objects
themselves are perceptually identical. We solved that

problem as follows.
Throughout the experiment we dealt with two soft-

ware systems that had to communicate with each other.
One system was a simulated robot arm in a simulated
Blocks World. The arm could perform RAISE, LOWER,

GRASP, OPEN and LATERAL actions, and the simula-
tor would see to it that blocks moved with the arm as
appropriate. The other system was a simulated agent,
equipped with a database in which the agent could store
any beliefs about the state of the simulated world, and
controlled by a Universal Plan. The Universal Plan was
the one of Figure 2. The two systems are shown in Figure
3; arrows represent flow of information.

a)

b)

sim.agent i
perception '
H>*. action
.. . selection"

C)

sim.world

■ sim.action —► sim.data ■ perception«

sim.agent

■ action
■ selection"

d)

Figure 3: Steps Toward Indexical/Functional Reference.

In order to get the systems working together we began
by cheating: we allowed the agent to examine the simu-
lator's world model directly. The resulting flow of infor-
mation is shown in Figure 3a, is exceedingly common in
systems that make use of simulations, and is entirely pre-

492

posterous. To determine whether the condition on(a,b)
is true or false, the agent must know what a and b refer
to in the (simulated) world. Unfortunately, a is only a
symbol, and this becomes obvious as soon as one tries
to write code to evaluate on(a,b). That code must tra-
verse the simulator's data structures looking for a model
of a block that has the label a. But the real world has
no list of all known blocks! An alternative approach is
to somehow map the symbol a into the machine-memory
address of a data structure in the simulator. But again,
no physical object in the real world is accessible via a
machine-memory address!

To achieve a more plausible information flow from the
(simulated) world to the agent, we constructed a per-
ceptual interface and insisted that the agent could know
nothing of the state of the (simulated) world except by
using that perceptual interface (Figure 3b). We wrote
code to implement some sensors, such as a camera, con-
tact sensors on the agent's hand, and position sensors in
the agent's arm. Naturally, those sensors had to have
access to the simulator's data structures, so one might
argue that the sensors did nothing to answer the crit-
icisms of the previous paragraph. Nevertheless, there
was a crucial difference. On the assumption that no-one
will quarrel with any agent's ability to read contact and
position sensors, let us consider our agent's use of its
camera. We defined the camera as an effector that had
to be controlled by the agent. The code that evaluated
the agent's plan's conditions was thereby completely un-
able to make any use of the symbol a - what does a mean
to a camera platform? Instead, the agent was forced to
point its camera in some specified direction such that
the camera's field of view included the location of the
block being referred to as a. With the camera so posi-
tioned, the agent was then allowed to examine the image
to determine whether the block being viewed looked as
expected. The test of on(a,b) thus became a compar-
ison of the spatial coordinates of two blocks. With all
three types of sensors just mentioned - contact, position
and camera - we were able to implement all of the tests
needed for the Universal Plan.

There immediately arose a problem of how to map the
plan symbol a to the location of some block. At the start
of the agent's activities it knew nothing at all about the
state of the (simulated) world. To solve this problem we
implemented a camera movement procedure that sys-
tematically scanned the table until the camera viewed
a block having the desired label. This whole scanning
procedure was controlled by means of camera position-
ing coordinates.

Now when we executed the Universal Plan, we saw the
camera scanning the table every time the plan needed to
know anything about any block - numerous times per
block per action. Worse, when we executed the Univer-
sal Plan using the non-unique block labels, the agent
regularly got confused about which block labelled "a" it
was working with.

This sad state of affairs was what we had been expect-
ing. Clearly, when a plan representation refers to one of
many identical blocks by means of a non-specific descrip-
tion, something must be added to that description to de-

scriminate a particular one of the candidate blocks. The
traditional solution had been to create unique names,
but once one takes seriously the idea that the thing being
named is out in the physical world and is not displaying
its unique name in any way, that solution is seen to be
bankrupt.

We repaired the agent's behavior by allowing percep-
tion to store beliefs about the positions of blocks, and
to make use of existing beliefs to re-find blocks (Figure
3c). This use of beliefs solved two problems at once, a
performance problem and a competence problem:

• It short-circuited the scan for blocks having a de-
sired label, because the presence of beliefs about lo-
cations of previously found labels allowed the cam-
era to find those labels again (if they were still
there).

• It facilitated the tracking of specific blocks through
time, even when several available blocks had the
same desired label, because the location of the par-
ticular block being manipulated was enough to dis-
tinguish that block from other identical blocks.

Consequently, when perception was allowed to utilize be-
liefs, the agent could stack blocks, despite the presence
of duplicates.

Although the perception component remembered
where it last saw the blocks of interest, it made no as-
sumption that blocks would actually be found where
they were last seen. If a belief turned out to be sig-
nificantly wrong, the agent would resort to scanning to
find another block having the desired label, would deter-
mine the next action based on the location of that newly
found block, and would continue with plan execution
from there. Conversely, even if a belief about a block's
location turned out to be approximately right, the be-
lieved location would still be updated. Beliefs used for
perception purposes might more appropriately be called
"expectations", a labelling that underscores both their
dependence on the past, and their defeasibility.

Our agent could now interact with one specific mem-
ber of a set of identical blocks, but could not achieve
goals such as on("a","a") which require the agent to in-
teract with two identical blocks. The problem was that
although the agent's beliefs could properly distinguish
(by their positions) two blocks both labelled "a", the
plan itself made no such distinction, leaving the percep-
tion component confused about which block was meant
when the plan referred to the label "a".

Our solution was to turn the plan's parameters - the
descriptions of the relevant objects - into record struc-
tures that contained a slot for the location of the de-
scribed block, and to have the perception component up-
date the location slots. In this way the block descriptions
being used by the plan were unambiguously associated
with the perception component's knowledge about the
actual blocks. We had thus completed the agent's abil-
ity to unambiguously refer to (and manipulate) physical
blocks, even when two or more of the blocks being ma-
nipulated were perceptually identical.

Since the descriptor records were a natural place to
put all descriptive information, we endowed them with
slots for block label, color and shape, and made them

493

fully general. This meant that the agent's perception
component could track blocks not by using descriptions
to access beliefs, but by accessing and updating the de-
scriptors themselves (Figure 3d). This eliminated the
need for beliefs as literals in a database.

Although our use of descriptor records (or perhaps,
distinct pointers to initially identical descriptions) might
be regarded as "creating an artificial distinction", it was
not nearly the same thing as forcing domain theories to
give every block a different name. In our case the "artifi-
cial distinction" existed only between the blocks the plan
was manipulating at the time, not between all blocks
that could ever be in view. Our distinction might be re-
garded as a dynamically made one, whereas the logico-
objective name distinction is a statically made one.

It remained only to assure ourselves that the set of
capabilities provided by Agre's marker control opera-
tors [AGRE, 1988, p.220ff] could be emulated within our
framework. These capabilities fell into five groups (ac-
cording to Agre): marker comparison, marker inspec-
tion, marker assignment, indexing, and object compar-
ison. Marker comparison and inspection operators pro-
vided such abilities as thresholding the distance between
two tracked objects, testing whether two objects were
approaching each other, and testing whether two mark-
ers referred to the same object. These tests could clearly
be emulated by examining the location slots of our de-
scriptors. The indexing and assignment operators caused
markers to pick out objects of a specified type, or to pick
out objects having a specified position relative to an-
other object already being tracked. Again, we could em-
ulate these either by manipulating the camera directly,
or by manipulating the location slots of our descriptors.
The object comparison operators checked whether ob-
jects were adjacent, whether objects were separated by
empty space, and whether they were in given directions
from each other. Consequently we are confident that we
have captured the complete range of indexical/functional
reference capabilities.

4 Further Developments

4.1 Treating Descriptions as Goals

Despite its being tidy and convenient, our generalization
of descriptors to include slots for label, shape and color
was soon felt to be a mistake. Remember that the pre-
conditions of stacking one block on another include the
requirement that the lower block must be a box, and
that that precondition appears in the plan as a goal.
Yet, when we asked the plan to stack one box-block on
another, that very same condition would be part of the
plan parameter, i.e. of the descriptor record. In both
cases the condition would have to be checked percep-
tually. We considered it undesirable to be imposing the
same condition in two different ways. And so we came to
regard the conditions established by satisfying an object
description as being "of one cloth" with the conditions
established by goal achievement, and came to regard de-
scriptions as goals. Then, when we wanted the plan to
put any red sphere on any blue box, we would pose the
goal

color(X,red) A shape(X,sphere) A
color(Y,blue) A shape(Y,box) A

on(X,Y)

and regarded it as part of goal achievement to find suit-
able objects for X and Y to refer to.

This change in viewpoint is not as strange as it may at
first seem. If we were to augment the agent's capabilities
by introducing a painting action, the above goal might
induce the agent to paint things, an appropriate behav-
ior that could not arise if object color was left purely as
a slot in a description record. At the same time, one way
of satisfying a color goal is to search out an object that
already has the desired color; indeed, that is the only
way to achieve a color goal when there is no painting ac-
tion. Thus we came to regard painting and scanning as
alternative ways of achieving color goals (like the build-
or-buy choice in the constraint-based planner MOLGEN
[STEFIK, 1981]), and came to regard scanning and ver-
ification as first-class actions that changed the agent's
mental state:

SCANNING(X) == true +> known located(X)

COLORCHECK(X.C) ==
located(X) +> known-whether color(X,C)

(The plan executor achieves known-whether P when-
ever it wants to know the truth value of any predicate
P. See [SCHOPPERS, Sep 1990] for details.)

As a result of our removing label, color and shape in-
formation from the plan's description-record parameters,
those records came to contain nothing but spatial loca-
tion information. In the simulated Blocks World, the
location of a block was a Cartesian coordinate triple (we
had a three-dimensional world). In our application of in-
dexical/functional reference to the NASA EVA Retriever
robot, the location of an external object is specified by
azimuth and elevation measured relative to the robot's
body axes [SCHOPPERS, Sep 1990] we may yet decide
to add distance information).

4.2 Conjunctive Descriptions and Perceptual
Searching

When object descriptions are
conjunctive, e.g. color(X,red) A shape(X,sphere),
it is likely that an object found to satisfy one constraint
will not satisfy the other. Thus the search for a red ob-
ject will have succeeded and stopped, before the object's
shape is examined. In our implementation, such failures
lead to behavior that is at once backtracking and a re-
sumption of visual scanning. The location of the last
object to fail the conjoined goals becomes the starting
point of the resumed visual scan.

If there is ultimately no object that satisfies a descrip-
tion, the plan executor resorts to normal backtracking,
trying to achieve the goal by means of other actions.
Our plan executor always performs a perceptual search
first. In general there is a decision to be made for each
constraint in a description: how long to try finding a
suitable object readymade, or how much effort to spend
on coercing an unsuitable object until it suits.

494

4.3 Creating and Constraining Variables
Dynamically

Imagine a situation where the goal is to put a red box
onto a blue box, but there is a green pyramid on the
red box. The pyramid must be removed and put down
elsewhere. Notice that according to the block stacking
plan of Figure 1, the block to be moved must be clear,
which may require removal of the block on top of it. The
unwanted block is an object variable (Y) in the plan and
does not appear in the goal, so is dynamically created
by the plan executor. The newly created variable is then
made to indexically/functionally refer to the green pyra-
mid when the plan executor tries to achieve known-
whether on(Y,A) with the action

L00K0N(A,Y) ==
located(A) +> known-whether on(Y,A) .

Iff there is an object on A, the LOOKON action will
cause Y to refer to the space above A and will return
true. (Note, incidentally, that LOOKON need not scan
for Y but can look directly at the space above A, whose
location must be known.)

Now imagine a situation where the goal is once again
to put one block on another, but the robot hand is al-
ready holding a green pyramid. The pyramid must be
put down on something. That "something" is another
object variable in the plan, and also does not appear in
the goal. It is however constrained by the LOWER-
ING action, which insists that only box-shaped blocks
can function as supports for other blocks. Since the new
object variable does not initially specify the location of a
particular box, the plan executor performs a visual scan
for any box-shaped object, and when one is found, de-
posits the green pyramid thereon. Thus the plan execu-
tor has dynamically created an object variable (and/or
marker), has dynamically constrained the desired object
to be any box, and has used the constrained variable to
establish an indexical/functional reference in the usual
way.

4.4 A Recursive Plan for Block Tower
Dismantling

The mechanism described in the preceding subsection
also allows a Universal Plan of fixed size to dismantle
block towers containing an arbitrary number of blocks.
Suppose the plan executor were given a goal to stack
a red box onto a blue box, and it happened that the
only red box was on the bottom of a tall tower of
blocks. The plan executor would dynamically create
an object variable for the block on top of the red box,
then would try to remove it, and would realize that it
too needed to be cleared first, thus calling the block-
clearing plan recursively, and ultimately creating new
object variables on-the-fly for each of the blocks in the
tower. This behavior is similar to the recursive plan de-
rived by [MANNA and WALDINGER, 1987], augmented
with indexical/functional references to physical rather
than represented objects.

The use of variables and recursion means that the size
of the block tower affects not the size of the plan itself,
but only the planning time, the plan execution time, and

the size of the plan execution stack. As in BLOCKHEAD
[CHAPMAN, 1989], our use of variables conclusively an-
swers the plan-size objections raised by [GINSBERG,
1989]. The essential ingredient is an ability to dynam-
ically create and bind variables to objects; the binding
need not involve indexical/functional reference. (A Uni-
versal Plan of fixed size can also construct block towers
of arbitrary size, but we cannot explain that here due to
space limitations.)

4.5 Consequences for Serendipity Detection

We were surprised by indexical/functional reference in
only one respect, namely that it seemed to completely
thwart the ability of Universal Plans to detect serendip-
itous events. If we instructed the plan to stack any
red box on any blue box, and we then put our own
red box onto the blue box picked out by the plan, the
plan would remove our red box so as to put its own
red box on the blue box! While not exactly wrong, this
behavior is inefficient and would be warranted only if
we pointed out a particular red box and told the plan
to put that red box on a blue box. We conclude that
indexical/functional reference represents an extreme of
firmness of purpose, and intend to explore mechanisms
for automatically restoring the ability to detect serendip-
itous circumstances.

5 Conclusions

All the system designs of Figure 3 require the agent's
plan predicates to take parameters that somehow indi-
cate the objects to be examined. The arrangement of
Figure 3b allowed the agent to manipulate objects ex-
ternal to it, but only if the objects were non-identical.
The step from Figure 3b to Figure 3c gave the agent a
tracking capability, which allowed the agent to manip-
ulate a particular one of several identical objects. The
step from Figure 3c to Figure 3d allowed the agent to ma-
nipulate several identical objects simultaneously. These
steps show that indexical/functional reference is a con-
fluence of: 1) the use of indefinite descriptions of target
objects, e.g. "any red sphere"; 2) the ability to percep-
tually pick out and spatially locate candidate objects,
e.g. "that thing"; 3) tracking (when perception is vi-
sual), e.g. "that thing" (when it is one of several, or
happens to be moving); 4) an unambiguous association
between plan objects and perceived object locations; and
5) the ability to perceptually examine tracked objects,
e.g. "is <tracked-object< red and a sphere". Indexi-
cal/functional reference falls naturally out of this com-
bination, e.g. "that red sphere".

It may be of some interest that our block stacking
plan acquired the ability to manipulate multiple identi-
cal blocks without being modified in any way that would
have required indexical reasoning on the planner's part.
For example, the constraints on objects were indefinite
descriptions, or in logical terms, existentially quantified
formulae. This means that for the planner, object vari-
ables could have logico-objective semantics, while for the
plan executor they could have indexical/functional se-
mantics. Is this possible difference of semantics between
planner and plan executor a deficiency or an advantage?

495

Finally, our implementation of indexical/functional
reference within a symbolic framework extended the for-
mer by providing the ability to dynamically create, con-
strain and assign references.

References

[Agre and Chapman, 1987] P. AGRE and D. CHAP-
MAN. Pengi: an implementation of a theory of ac-
tivity. In Proc AAAI, pages 268-272, 1987.

[Agre, 1988] P. AGRE. The Dynamic Structure of Ev-
eryday Life. Tech rept, AI Lab, MIT, 1988.

[Chapman, 1989] D. CHAPMAN. Penguins can make
cake. AI Magazine, 10:4:45-50, 1989.

[Ginsberg, 1989] M. GINSBERG. Universal planning:
an (almost) universally bad idea. AI Magazine,
10:4:40-44, 1989.

[Manna and Waldinger, 1987]
Z. MANNA and R. WALDINGER. How to clear a
block: a theory of plans. Journal of Automated Rea-
soning, 3:4:343-377, 1987.

[Schoppers, 1989] M. SCHOPPERS. Representation
and Automatic Synthesis of Reaction Plans. Report,
Dept of Computer Science, University of Illinois at
Urbana-Champaign, 1989.

[Schoppers, Sep 1990] M. SCHOPPERS. Automatic
synthesis of perception driven discrete event control
laws. In Proc 5th IEEE Internat'I Symp on Intelligent
Control, page XX, Sep 1990.

[Stefik, 1981] M. STEFIK. Molgen part 1: planning
with constraints. Artificial Intelligence, 16:141ff, 1981.

[Subramanian and Woodfill, 1989] D. SUBRAMA-
NIAN and J. WOODFILL. Making situation calculus
indexical. In Proc 1st Internat! Conf on Principles
of Knowledge Rep'n and Reasoning, pages 467-474.
Morgan Kaufman, Los Altos, 1989.

496

OPIS: An Integrated Framework for
Generating and Revising Factory Schedules1

Stephen F. Smith, Peng Si Ow2,
Nicola Muscettola, Jean-Yves Potvin3 and Dirk C. Matthys

Center for Integrated Manufacturing Decision Systems
The Robotics Institute

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

Practical solutions to the production scheduling problem
must provide two broad capabilities: (1) an ability to
efficiently generate schedules that reflect the actual
constraints and objectives of the manufacturing
environment, and (2) an ability to incrementally revise
these schedules over time in response to unexpected
executional circumstances. In this paper, we advocate a
common view of predictive and reactive scheduling as an
incremental problem solving process that is
opportunistically focused by characteristics of the current
solution constraints. We describe the architecture of OPIS
(Opportunistic Intelligent Scheduler), which defines a
general framework for configuring scheduling systems
according to this view. We then examine the scheduling
knowledge (e.g. analysis and scheduling methods,
schedule generation/revision strategies) that is exploited
within this architecture by the current OPIS scheduler.
Experimental studies with the OPIS scheduler have
demonstrated the potential of this constraint-directed
scheduling methodology in both predictive and reactive
scheduling contexts. 4

1
This paper previously appeared in Journal of the Operational Research

Society, Vol. 41, No. 6, pp. 539-552 (1990). It is reprinted here by
permission.

Current Address: IBM Entry Systems Division, Austin, Texas.

3Current Address: Centre de Recherche sur les Transports, Universite
de Montreal, Canada.

"This research was supported in part by the Air Force Office of
Scientific Research under contract F49620-82-K-0017, International
Business Machines Inc. under contract number 71223046, and by the
CMU Robotics Institute. Additional support was provided to Jean-Yves
Potvin by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

1. Introduction
The broad goal of production scheduling is to produce a

factory behavior where parts are produced in a timely and
cost-effective manner. In most manufacturing
environments, achievement of this goal is confounded by
two factors: the complexity of operational level decision-
making and the unpredictability of factory operations.
Problem complexity derives from the need to determine
assignments of shared resources (machines, operators,
transport devices) to the manufacturing activities of many
competing production processes over time which are both
feasible from the standpoint of temporal process
restrictions and resource capacity limitations, and
satisfactory in the sense that they result in good overall
factory performance. This latter requirement typically
involves compromise among a diverse and conflicting set
of production objectives (e.g. meeting deadlines,
minimizing work-in-process, etc.). Problem complexity
argues strongly for the advance development of production
schedules. This provides a basis for anticipating constraint
interactions (in particular, resource contention) and
minimizing their harmful effects on factory performance.
At the same time, the factory floor is typically a
dynamically changing environment Machines break
down, raw materials fail to arrive on time, partially
manufactured parts fail to meet quality control standards
and require rework, operators call in sick, etc. Thus, even
an ability to produce advance schedules that accurately
reflect the constraints and objectives of the production
environment is likely to be of limited practical utility
without a companion ability to reactively manage these
schedules in response to changing circumstances. The
reactive scheduling problem raises additional requirements.
In addition to maintaining the quality of the schedule from
the standpoint of production objectives, it is also important
to maintain a degree of stability in planned operations
(since of a schedule sets a large number of interdependent
processes in motion) and to produce results within
acceptable response time constraints (to keep the
manufacturing system operating).

497

Historically, the production scheduling problem has been
treated stricüy from either a global optimization
perspective or a local control perspective. One body of
work (e.g. [Graves 81]) has focused on the development of
optimal solutions to various classes of scheduling
problems. Unfortunately, such results have been obtainable
only under very restrictive problem assumptions, which
bear little relationship to actual manufacturing
environments. Other research has focused on the
development of local dispatch priority
heuristics [Panwalker&Iskander 77]. These approaches do
provide a robust basis for operational decision-making in
the face of an unpredictable environment. However, the
ability of such local decision-making to effectively
optimize overall performance depends on the sensitivity of
the decision rule to the dynamics of the manufacturing
system, and again the simplifying assumptions made in
most of this work are not reflective of most actual
manufacturing environments. Scheduling techniques used
in practice typically provide only rough guidance for
operational decision-making, and there is no support for
reactively revising this guidance as unexpected events
occur. Often, predictive plans are based on artificial
constraints (e.g. standard lead times) that accommodate
factory floor inefficiencies, in essence advocating
predictable factory results as a substitute for good factory
results.

More recent work in knowledge-based scheduling [Fox
83,Fox&Smith 84, Smith&Ow 85, Smith et. al. 86] has
attempted to provide more effective solutions to the
production scheduling problem, emphasizing the use of
heuristic scheduling techniques that are directed by
knowledge of the active constraints and objectives in the
target production environment This work has led to an
integrative view of predictive and reactive scheduling as an
opportunistic problem solving process [Ow&Smith 88, Ow
et. al. 88], which forms the basis of the OPIS
(Opportunistic Intelligent Scheduler) factory scheduling
system. The term opportunistic reasoning has been used to
characterize a problem solving process whereby activity is
consistently directed toward those actions that appear most
promising in terms of furthering the current problem
solving state. In the case of OPIS, it refers to an
incremental scheduling methodology where characteristics
of current solution constraints (e.g. likely areas of resource
contention, schedule conflicts resulting from unanticipated
external events) are used to dynamically focus attention on
the most critical decisions that remain to be made/revised.

OPIS implements this approach to scheduling via a
"blackboard style" system organization [Erman et. al. 80],
wherein a set of distinct methods, referred to as knowledge
sources (KSs), are selectively employed to generate, revise
or analyze specific components of the overall schedule.
Scheduling methods vary in the types of subproblems they

can solve (i.e. the problem decomposition assumptions they
are based on), and in the types of constraints and objectives
that are emphasized. A control cycle that combines
constraint propagation and consistency maintenance
techniques with heuristics for subproblem formulation is
used to coordinate overall scheduling activity.
Experimental results with the OPIS scheduler in the context
of realistic production scheduling problems have
demonstrated the potential of this approach in both
predictive and reactive scheduling contexts.

In this paper, we describe the structure and operation of
the OPIS scheduler. First, we consider the basic principles
that motivate our approach. Next we describe the principal
components of the OPIS scheduling architecture and the
framework it provides for opportunistic constraint-directed
scheduling. We then examine the scheduling knowledge
(i.e. analysis and scheduling methods, schedule generation
and revision strategies) that is exploited within this
architecture by the current OPIS scheduler, and summarize
experimental results that have been obtained. We conclude
with a discussion of the directions of our current research.

2. Opportunistic, Constraint-Directed
Scheduling
The generation of an assignment of resources, start times

and end times to operations that satisfies temporal process
and resource capacity constraints and effectively balances a
set of conflicting objectives is a combinatorial search
problem. To manage the complexity of this search, it is
necessary to make heuristic assumptions about how the
problem is to be decomposed and where search effort is to
be concentrated. Such assumptions, however, do affect the
quality of the result. In dispatch-based scheduling
approaches, for example, the problem is decomposed
principally in an event-based fashion (i.e., scheduling
decisions are made in chronological order), and secondarily
into a set of local resource scheduling problems. Thus,
search is confined to the operations that are eligible to
acquire a free resource at a given point in time. On the
other hand, the ability to optimize overall performance
objectives is limited by the lack of a view of the future
consequences of the scheduling decisions that are made. A
decision made at a given point in time may unnecessarily
restrict alternatives for critical future decisions which
eventually leads to otherwise avoidable problems (e.g.
unnecessary downstream congestion).

In simplest terms, OPIS advocates an approach to
incremental scheduling wherein the order and manner in
which decisions are made (or revised) is not fixed a priori
but are instead determined dynamically according to the
structure of the constraints implied by the current solution
state. The approach is motivated by the desire to
circumvent the inherent limitations of any fixed

498

decomposition strategy with respect to optimization of
various scheduling objectives while retaining an efficient
search process. Two basic types of problem decomposition
strategies (or local scheduling perspectives) are considered
within OPIS as a basis for heuristically structuring the
scheduling process: resource-based and order-based. Each
offers distinct advantages and disadvantages from the
standpoint of addressing various scheduling objectives. A
resource-based approach yields subproblems that localize
attention to the schedule of a specific resource, and
promotes optimal resolution of conflicts involving the set
of operations that are competing for that resource (e.g.,
scheduling decisions that minimize setups and overall order
tardiness). At the same time, interactions among operations
belonging to the same order due to precedence constraints
cut across several subproblems, and cannot be effectively
addressed. An order-based approach provides an
orthogonal viewpoint Here, each subproblem relates to the
schedule of a particular order, and optimal resolution of
conflicts involving the operations that must be performed
to produce a given order (e.g. scheduling decisions that
minimize work-in-process time) is promoted. But
interactions among operations competing for the same
resource are now fall outside of any one subproblem.

Opportunistic use of multiple local scheduling
perspectives raises a number of difficult issues with respect
to overall control of the scheduling process: What is the
most appropriate way to approach the problem at any
point? What is the most important subproblem to solve? In
what manner is a given problem most effectively solved?
How does one resolve inconsistencies that arise, due either
to interactions between different solved subproblems or to
unexpected results that occur on the factory floor? As
suggested above, OPIS relies on repeated analysis of the
characteristics of current solution constraints to guide this
decision-making. For example, if analysis of initial
problem constraints indicates resources that are highly
contended for, then schedule generation will proceed by
first constructing candidate schedules for these bottleneck
resources. These decisions can be seen as most critical to
the quality of the overall solution, and also represent the
subproblems with the fewest scheduling alternatives (since
there is no reason to consider insertion of idle time in
bottleneck resource schedules). These candidate bottleneck
schedules then anchor the search by constraining
alternatives for the decisions that remain to be made.

Similarly, analysis of the constraints that comprise
inconsistent solution states provides information relating to
the criticality of revising various scheduling decisions and
the opportunities (flexibilities) that exist for efficient
reaction. In this case, analysis is centered around the actual
conflicts that exist in the current schedule, and subproblem
formulation heuristics are directed at local resolution of
these conflicts. Depending on the nature of the formulated

subproblem, it is quite possible that subproblem solution
will lead to the introduction of additional conflicts that
must be subsequently responded to. For example,
indication of an unexpected machine failure might
necessitate considerable rescheduling of other substitutable
machines, which, in turn, is likely to have disruptive effects
on the downstream activities of rescheduled orders. Given
the tightly coupled nature of scheduling decisions, it is
extremely difficult (if not impossible) to predict the effects
(i.e. the ripple effect) of a given local reaction. In the
absence of an understanding of the behavior of the
manufacturing environment, there is little alternative to
such an opportunistic approach.

3. The OPIS Scheduling Architecture
The OPIS scheduling system can be seen at two levels.

At one level, it defines a specific (albeit complex) heuristic
procedure for generating and revising factory schedules
opportunistically. At another level, it defines a general
framework, or scheduling architecture, for organizing and
applying scheduling heuristics in an opportunistic,
constraint-directed fashion. The OPIS scheduling
architecture thus provides a structure for developing other
opportunistic scheduling procedures [Potvin&Smith 89].
In this section, we describe OPIS from an architectural
standpoint. In later sections, we turn attention to the
currently implemented OPIS scheduler.

As indicated at the outset, The OPIS scheduling
architecture incorporates principles of standard blackboard
style architectures and similarly assumes an organization
comprised of a number of knowledge sources (KSs) that
extend, revise and analyze a globally accessible solution (in
this case the factory schedule). Within OPIS, two types of
KSs are distinguished: Analysis KSs, which examine
specific components of the global schedule and build
abstract characterizations of the current solution state, and
Scheduling KSs, which constitute alternative methods for
manipulating the global schedule. Scheduling KSs
implement the different local scheduling perspectives that
might be adopted.

In support of opportunistic schedule generation and
revision, the OPIS scheduling architecture combines two
principal components: a schedule maintenance subsystem,
for incrementally maintaining a representation of current
solution constraints, and an event-driven control cycle, for
coordinating the use of scheduling and analysis KSs. The
former provides both a basis for analyzing aspects of the
current scheduling state and a means for communicating
scheduling constraints among different formulated
subproblems. The latter provides a structure for specifying
and a mechanism for applying the control knowledge
necessary to effectively employ various KSs.

499

3.1. Schedule Maintenance
At the core of the system is an incrementally maintained

representation of the current schedule. This representation
is defined and maintained relative a hierarchical model of
the constraints of the production environment. In this
model, production plans for various part types are
represented as hierarchies of operations, with aggregate
operations designating either more detailed sub-processes
or sets of exclusive alternatives. Operation precedence and
duration constraints are embedded in these hierarchies, as
well as specifications of required resources. Individual
resources are grouped into successively larger work areas
to provide resource descriptions at each level of abstraction
in the production plans, and constraints on resource
allocation (e.g. capacity, hours of operation) are specified
at each level. A utility-based preference representation is
used to encode various scheduling objectives and
operational preferences (e.g. machine preferences).

This factory model provides a structure for representing
and maintaining current solution constraints at multiple
levels of abstraction. This representation includes a
specification of the current time bounds on the execution of
each manufacturing operation that has been or may be
scheduled (since some operations designate alternatives
which will become undefined as choices are made), and a
specification of the current available capacity of each
resource over time. As additional scheduling decisions are
made or the constraints implied by particular factory status
updates are introduced, the schedule maintenance system
combines these new constraints with the constraints
specified in the underlying factory model (e.g. order
release/due dates, operation durations, operation
precedence relations, resource requirements, resource
capacity limitations) to update the time bounds and
available capacity representations respectively of related
operations and resources at all defined levels of abstraction.
Thus, an unscheduled operation's time bounds at any point
reflect the set of allocation decisions compatible with both
the specified constraints on factory operations and any
scheduling decisions that have been made.

Constraint propagation in response to schedule changes
can lead to the detection of two types of conflicts:

• time conflicts: situations where either the time
bounds or scheduled execution times of two
operations belonging to the same order violate a
defined precedence constraint.

• capacity conflicts: situations where the resource
requirements of a set of currently scheduled
operations exceed the available capacity of a specific
resource over some interval of time.

The recognition of such conflicts signals the need for
schedule revision and provides a basis for focusing this
activity.

Details of this approach to schedule maintenance can be

found in [LePape&Smith 87]. Representation of the
underlying factory model is described in [Smith 89].

3.2. Coordinating the Scheduling Process
The use of various analysis and scheduling KSs in the

solution of specific scheduling problems is coordinated by
a designated KS called the top-level manager. This KS
implements the system's basic control cycle, which, in turn,
defines a framework for specification and organization of
the system's (heuristic) control knowledge.

Generally speaking, coordination of the scheduling effort
by the top level manager proceeds as an event-driven
process. Changes in the state of the schedule, introduced
either by internal problem-solving activity (e.g. generating
a schedule for a given order) or by external factory status
updates (e.g. notification of a machine breakdown), are
detected by the schedule maintenance system and posted as
control events to the top-level manager at the beginning of
each problem solving cycle. Three basic types of control
events can be posted: (1) an incomplete hypothesis event,
which indicates that unscheduled operations remain, (2) an
elementary conflict event, which indicates the presence of
an inconsistency in the schedule (i.e. a time or capacity
constraint violation), and an opportunity event, which
indicates the possibility for schedule improvement due to
an unexpected "loosening" of time or capacity constraints5.
On any given cycle, the set of posted events leads to the
execution of a particular scheduling action, and problem
solving continues until the set of posted control events
becomes empty. In such a case, a complete and consistent
schedule has been obtained.

Figure 3-1 depicts the top-level control cycle in more
detail, and identifies its 4 main steps. Each is briefly
summarized below.

3.2.1. Event Selection
The first step of the top-level control cycle is event

selection, which is concerned with identifying, from the set
of currently posted events, the most appropriate problem to
focus on. This is accomplished in two steps:

1. Event aggregation. It is often the case that
individual events are related in some manner and
would be better addressed simultaneously. During
event aggregation, knowledge of such relationships
(provided to the system as a set of aggregation
heuristics) is applied to the set of posted events. In
cases where specific relationships are detected,
aggregate events are created and added to the list of
posted events. The aggregation heuristics employed
in the current OPIS scheduler consider only one

opportunity events are not exploited within the current OPIS scheduler

500

Figure 3-1: The top-level control cycle

type of relationship: commonality in the resources
involved in posted elementary conflicts (e.g.
capacity conflicts involving same resource).
However, other aggregation heuristics are certainly
possible and potentially useful (e.g. commonality
of the orders involved in the conflicts, conflicts
involving high priority orders or tardy orders).

2. Event prioritization. After this preprocessing of
posted control events, prioritization heuristics are
applied to select the specific event to be responded
to in the current cycle. Within the current scheduler,
event priority is a function first of event type
(aggregate conflicts are more important than
elementary conflicts, which in turn are more
important than incomplete-hypothesis events), and
second of the urgency of the event (with the highest
priority event being the one that is closest in time to
the current time). All events other than the highest
priority event are left pending until the next cycle.

3.2.2. Event Analysis
Having identified a focal point for problem solving (as

represented by the highest priority control event), an
analysis KS is selected to examine the portion of the
current schedule "surrounding" this focal point in more
detail. The goal of this event analysis step is to summarize
essential aspects of current time and capacity constraints
(i.e. their relative looseness or tightness), providing a basis
for determining how to best respond to the event (see
action selection below). This characterization is referred to
as an analysis report. Within the current implementation,
the selection of analysis KS depends on the type of event
under consideration. In the case of an incomplete-

hypothesis event, where the problem solving focus is one
of extending the current schedule, a "capacity analysis" is
performed. In the case of a conflict event, where the focus
is schedule revision, a "conflict analysis" is performed (an
overview of these KSs is provided later).

3.23. Action Selection
The goal of action selection is to formulate the most

appropriate scheduling task to execute in response to the
control event under consideration. This requires
determination of a particular component of the overall
schedule to extend or revise, selection of a particular
scheduling KS to carry out the task, and, depending on the
KS selected, parameterization of the solution procedure.
Action selection is accomplished through application of a
set of subproblem formulation heuristics to the analysis
report produced during event analysis. These heuristics
combine knowledge of the implications of various
characteristics of current time and capacity constraints with
knowledge of the strengths and weaknesses of different
scheduling KSs, and constitute the core of the system's
theory of constraint-directed scheduling. The subproblem
formulation heuristics currently employed in the OPIS
scheduler are also described later in this paper.

3.2.4. Action Execution
The final step of the top-level control cycle is execution

of the formulated scheduling task. This yields changes to
the current schedule, and the consequences of these
changes are inferred by the schedule maintenance system.
Any detected constraint conflicts and/or unscheduled
operations are posted as control events to the top-level
manager and the control cycle repeats.

4. The OPIS Scheduler
The OPIS scheduling architecture provides a general

framework for opportunistic, constraint-directed
scheduling. We now turn attention to the specific
scheduling and analysis methods that are exploited in the
current OPIS scheduler, and the subproblem formulation
heuristics that govern their use.

4.1. Generating and Revising Scheduling Decisions
As indicated previously, scheduling KSs constitute the

actual methods available to the system for extending and
revising the current schedule. Scheduling KSs vary in the
types of scheduling subproblems they can solve (i.e. the
local scheduling perspective that is assumed) and in the
types of scheduling constraints and objectives that they
emphasize. Accordingly, each has particular strengths and
weaknesses with regard to generating and maintaining the

501

overall schedule. Table 4-1 summarizes the behavioral
characteristics of each method along different dimensions.
The entries for a given scheduling action are assigned
qualitative values in the range from 0 to 1, with 0 being the
lowest possible rating and 1 the highest. The first two rows
indicate the relative strengths of each method from the
standpoint of optimizing various scheduling objectives. The
remaining three rows characterize the disruptive behavior
of each method when used in schedule revision contexts.
Each of these scheduling KSs is summarized below.

Order Scheduler (OSC)

The Order Scheduler provides a method for generating
or revising scheduling decisions relative to some
contiguous portion of a specific order's production plan. It
implements the constraint-directed heuristic search
technique originally developed in the ISIS scheduling
system [Fox&Smith 84]. This method is characterized by
the use of a beam search to explore alternative sets of
resource assignments and execution intervals, evaluating
various alternatives with respect to how well the decisions
satisfy relevant preference constraints (e.g. meeting due
dates, work-in-process time objectives, machine
preferences, etc.). Heuristic knowledge relating to the
relative importance of different preferences and the relative
utility of the various alternatives over which each
preference is defined provides the basis for this evaluation.
In invoking OSC, resource availability constraints can be
made more or less "visible". It can either be constrained to
consider only execution intervals for which resource
capacity currently exists, which we designate as the
complete visibility (CV) OSC, or allowed to consider
capacity allocated to lower priority orders as available,
which we designate as the prioritized visibility (PV) OSC.
Since the latter case admits the possibility of introducing
additional capacity conflicts into the schedule (leading to
"bumping" of lower priority orders), a decision to invoke
the PV-OSC trades off potential additional disruption for
some ability to perform resource-based optimization (hence
the value 0.5 for this characteristic in Table 4-1). OSC can
also be parameterized to conduct its search either forward
or backward through an order's production plan from a
given start or end time anchor. In situations where resource
capacity is fairly plentiful, the search tends to lead to
minimization of work-in-process time in the direction of
the search anchor.

Resource Scheduler (RSC)

The Resource Scheduler provides a method for
generating or revising the schedule of a designated resource
or collection of substitutable resources (i.e. an aggregate
resource). The method is predicated on the assumption that
contention for the resource in question is high and, thus,
emphasizes efficient resource utilization (e.g. there is no
need to consider slack time between operations). It

generates scheduling decisions using an iterative dispatch-
based approach, adding one or more operations to the
schedule of the resource under consideration at each
dispatch cycle. A collection of dispatch heuristics are
selectively employed to provide sensitivity to different
preference constraints, the principal being Ow's Idle Time
rule [Ow 85]. Full details of this approach can be found in
[Ow&Smith 88]. When invoked in reactive contexts, an

attempt is made to retract only as many scheduling
decisions as necessary to resolve the problem at hand. This
is accomplished by assuming that a new schedule will be
generated forward in time from the point of the current
problem, but remembering the old schedule. After each
dispatch scheduling cycle, a check is performed to see if
the new schedule can be consistently merged with the
fragment of the old schedule consisting of the operations
that have yet to be placed in the new schedule.

Right Shifter (RSH)

The RSH implements a considerably less sophisticated
reactive method which simply "pushes" the scheduled
execution times of designated operations forward in time
by some designated amount. Such initial shifts can
introduce both time conflicts and capacity conflicts.
However, these conflicts are internally resolved by
propagating the shifts through resource and order schedules
to the extent necessary. Thus, the RSH will not introduce
any new conflicts into the overall schedule.

Demand Swapper (DSW)

Demand Swapping is a specialized reactive method
applicable in situations where an operation has become
unexpectedly and significantly delayed (e.g. as a result of
required rework if a part fails to meet quality standards). It
exchanges the remaining portion of the affected order's
schedule with the correspondent portion of the schedule of
another order of the same type so as to minimize their
combined tardiness. Note that the DSW is not necessarily a
conflict resolution strategy. It is more appropriately viewed
as a scheduling action that improves the character of the
conflict.

4.2. Analysis of Current Solution Constraints
Analysis of current scheduling constraints provides the

basis for differentiating between potential scheduling
actions at each point in the scheduling process. As
previously indicated, different analysis KSs are employed
within OPIS in generative and reactive scheduling contexts.
Each produces an analysis report summarizing constraint
characteristics relevant to action selection in the context it
supports.

Capacity Analysis
The Capacity Analyzer (CAN) is invoked when the

502

RSC CV-
OSC

PV-
osc

RSH DSW

resource-based
optimization

1 0 0.5 0 0.5

order-based
optimization

0 1 1 0 1

time conflict
avoidance

0 1 1 1 0.5

cap. conflict
avoidance

1 1 0 1 1

sequence
stability

0 0 0 1 0

Table 4-1: Characteristics of Scheduling KSs

scheduler's current focus is incomplete-hypothesis event
(i.e. when unscheduled manufacturing operations have
been detected). The control decision at hand in this case is
how to best extend the current schedule. To support this
decision-making, the Capacity Analyzer computes
estimates of the expected level of contention for resources
required by operations that remain to be scheduled.
Operating at an abstract level in the hierarchical model,
capacity analysis proceeds by first constructing a rough,
infinite capacity schedule that satisfies the time constraints
of all unscheduled operations (employing a general line
balancing heuristic where choices in resource assignments
exist), and then superimposing resource availability
constraints to compute resource "demand/supply" ratios
over time. These estimates are used to identify likely
bottleneck areas in the evolving schedule. An alternative,
probabilistic approach to providing this global view of
resource contention is described in [Muscettola&Smith 87].

Conflict Analysis

The Conflict Analyzer (CONAN), alternatively, is
invoked when the system's current focus is a conflict event
(indicating that one or more inconsistencies have been
introduced into the schedule). In this case, the control
decision to be made concerns how to best revise the current
schedule to restore feasibility. In contrast to the capacity
analysis, conflict analysis is concerned with characterizing
a localized set of current solution constraints. The Conflict
Analyzer computes measures that characterize the
magnitude of conflict itself (duration, number of orders
involved) as well as measures of the current flexibility (or
lack of) in the capacity and time constraints of the resource
and orders involved in the conflict (level of contention for
the resource involved, projected lateness of the orders
involved, upstream and downstream slack in these orders'
schedules, and variance in the projected lateness of all
orders). The value of each these measures has specific
implications with respect to the continuing validity of

previous scheduling decisions, the amount of disruption to
be expected by various scheduling actions, and/or the
relative emphasis that should be placed on various
scheduling objectives in resolving the conflict This
knowledge is encoded in the subproblem formulation
heuristics used to direct schedule revision (see below).
Details of the measures computed during conflict analysis
may be found in [Ow et. al. 88].

43. Subproblem formulation heuristics
In this section, we describe the subproblem formulation

heuristics used to opportunistically focus the scheduling
process. We consider, in turn, the heuristics employed for
generating and revising scheduling decisions.

In generative scheduling contexts, subproblem
formulation decisions are driven first and foremost by the
expectations regarding resource contention that are
provided by capacity analysis. If bottleneck resources are
identified, then RSC is applied to schedule the bottleneck
that is estimated to be the severe one. These decisions are
seen as most critical to the overall solution. The RSC is
repeatedly applied to any further bottlenecks that are
identified on subsequent control cycles. When the results of
capacity analysis indicate that no bottleneck resources
remain, a shift in perspective to order-based scheduling is
made.

Both the scope of order-based subproblems and the
manner in which they are prioritized and solved depend on
the state of the current partial solution. Consider the case
of a single scheduled bottleneck resource. The heuristic
used here aims at constructing order schedules outward
from these fixed points in an manner that facilitates
minimization of work-in-process time (the principal
strength of OSC). To this end, order scheduling
subproblems relating to the upstream portions of the
orders' production plans are prioritized in reserve order of
the their scheduled start times at the bottleneck resource,
and CV-OSC is applied in a backward scheduling fashion
through the upstream portion of a given order's production
plan. Conversely, order scheduling problems relating to
the downstream portions of orders' production plans are
prioritized in order of their scheduled end times on the
bottleneck resource, and CV-OSC is applied in a forward
fashion. Order scheduling subproblems relating to the
portions of production plans falling between two
bottlenecks are prioritized and solved in the same manner
as downstream subproblems, however in this case
minimizing work-in-process time is not really a concern
(i.e. there are two temporal anchors). Complete order
scheduling subproblems (i.e. in situations where there are
no bottlenecks) are prioritized according to closeness to
due date.

With respect to overall coordination of order scheduling

503

before, between, and after scheduled bottlenecks, the
strategy here is to move forward through time, solving all
subproblems upstream of all bottlenecks first, and so. The
motivation here is to recognize and respond to any conflicts
that might arise in the developing schedule as early as
possible. Given the fact that bottleneck scheduling
proceeds with only a local view of the overall problem,
incompatibilities may develop as order scheduling proceeds
(note that such problems will not occur downstream of all
bottlenecks since due dates can be relaxed). In such cases,
the heuristics described below for schedule revision
become relevant and the bottleneck schedule is revised.
The underlying propagation of time bounds, coupled with
the fact that important capacity related problems are
addressed, acts against the occurrence of such problems,
and typically the conflicts that are introduced are relatively
minor in nature.

In schedule revision contexts, characteristics of the
current conflict state provide the basis determining
appropriate scheduling actions. Figure 4-1 contains a
decision tree reflecting the set of heuristics that are
currently utilized. Interpreting this tree, we see that if the
size of the conflict is small, then RSH is advocated. This
heuristic appeals to sensitivity analysis [Bean&Birge 85],
assuming that the sequencing decisions in the current
schedule are still valid in such situations, and the
knowledge that this scheduling KS resolves conflicts
efficiently in a way that preserves existing sequencing
decisions. On the other hand, if either the conflict size, the
conflict duration or both is large, then the implication is
that some amount of resequencing is likely to be necessary.
If it is additionally the case that capacity constraints are
very tight on the resource involved in the conflict
(designated as "low fragmentation" in the figure), a
resource-based perspective is needed to ensure that the
action taken optimizes utilization of this resource.
Conversely, a highly fragmented resource schedule implies
an opportunity for order-based optimization.

If a resource-based perspective is to be taken, then a
number of different scheduling actions are possible. If the
average projected lateness of the conflicting orders is
positive, and the variance in the projected lateness of all
orders is high, then there may be an opportunity to either
resolve or reduce the conflict using DSW. This action is
applied whenever possible, and then removed from
consideration for the next control cycle. If, alternatively,
the above conditions are not met, then the likelihood that
DSW will yield productive results is low since either there
is no need for pair-wise minimization of tardiness
(conflicting orders are early) or there is little opportunity
(all orders are equally early or late). In this case, either
RSC or PV-OSC (with its scope limited to just the
conflicting operations) are possible actions. If either the
number of conflicting operations is high or there is

upstream slack that can be exploited for resequencing
purposes, then RSC is the most efficient and effective
reactive action that can be taken. This follows from its
strength in optimizing the utilization of a particular
resource. However, if only one or two conflicting
operations are present and there is little upstream slack,
then PV-OSC may be sufficient. In this case the
resequencing problem is constrained to one of simply
repositioning the conflicting operation(s) within the focal
point resource's schedule.

If we presume instead that an order-based perspective is
appropriate (i.e., fragmentation is high), the projected
average lateness of conflicting orders provides a basis for
differentiating among possible actions. If there is
considerable slack in meeting the due dates of orders
involved in the conflict, the CV-OSC is preferable as it
minimizes disruption to the existing schedule without threat
of the order being tardy. If, however, order tardiness is a
concern, then a more aggressive approach to order
scheduling is needed. When there is a high variance in the
projected lateness of jobs, an opportunity may exist to swap
demands with DSW. If not, PV-OSC provides a consistent,
more aggressive approach to order scheduling.

DSW PV-OSC DSW OSW

PV OSC RSC RSC

DSW
RSC

PV-OSC

□ Tiolrcat'onoUchedul

Figure 4-1: Revising Schedules

One aspect of the reactive scheduling heuristics which is
not reflected in figure 4-1 is the scope of the formulated
subproblem. In the case of resource-based reactions, the

504

scope is naturally the resource involved in the conflict.
However, in the case of order-based reactions, the scope
depends on the extent of resource contention further
downstream. Specifically, if downstream slack is high
(indicating the presence of downstream bottleneck
resources), then the scope of an order-based scheduling
action is limited to the portion of the order's production
plan that precedes the first downstream bottleneck
operation. This provides the opportunity to take full
advantage of the strengths of resource-based scheduling
actions for downstream bottlenecks.

5. Experimental Results
An experimental study previously reported [Ow&Smith

88] has demonstrated the utility of the "bottlenecks first"
generative scheduling strategy described in the previous
section in the case of a single fixed bottleneck problem.
This study conducted an comparative analysis of an earlier
version of OPIS (employing OSC and RSC) with both the
predecessor ISIS scheduling system (a order-based
scheduler), and a dispatch-based simulation approach. The
context of this study was a scaled down model of an actual
job shop consisting of 30 machines organized into various
work areas (with 7 machines in the bottleneck area). Six
product types were included in the model, each with linear
production plans ranging from 4 to 6 operations. The
schedules generated by each system were evaluated with
respect to tardiness costs, work-in-process time, and
number of machine setups.

The analysis involved solution, by each system, of 22
test problems, 20 requiring 120 orders to be scheduled and
2 requiring on 75. Test problems were defined by
manipulating 4 parameters: the pattern of order releases,
the number of orders released simultaneously, the product
mix, and the setting of due dates. The problem set was
grouped into 18 categories, representing different shop
conditions and load factors ranging from 70% to 120% of
the capacity of the bottleneck area.

With respect to all three performance metrics, OPIS
outperformed the other two systems across all experiments.
As expected, ISIS performed well with respect to
minimizing WTP time (given its order-based perspective),
but its performance with respect to tardiness costs suffered
because of its inability to effectively manage resource
contention. ISIS schedules contained close to twice the
number of setups as did the OPIS schedules. Relative to
the dispatch-based approach, OPIS schedules exhibited >
25% improvement in tardiness costs in 70% of the
experiments (>10% improvement over all experiments) and
> 50% improvement in average WIP time over all
experiments. A complete account of this study may be
found in [Ow&Smith 88].

More recently, a preliminary experimental analysis was

performed to assess the performance of the reactive
decision-making model described above (hereafter referred
to simply as the tree model). This study was carried out in
the context of a specific computer board assembly and test
line. At the level of detail modeled, the line consisted of 11
"sectors", each possessing the capacity to simultaneously
process a number of boards. Board process routings varied
in length from 12 to 30 operations and included both
planned and unplanned looping through various sectors. In
the following, we summarize the experimental design and
the overall results obtained.

The performance of the tree model was contrasted with
that of the set of simpler reactive strategies that are defined
by assuming that a particular OPIS KS is unconditionally
applied as the first reaction to any conflict that arises. In
cases where the designated first action did not define a
complete reactive strategy (e.g. the resource scheduler may
introduce additional conflicts into the schedule which must
be subsequently resolved), the tree model was used as a
basis for selection of subsequent actions. A "random"
decision model was also defined to provide a final point of
comparison. Within this model, the choice of specific
actions was biased by the relative frequencies with which
actions were used following the tree strategy in solving the
test problems. The point of the random model was to verify
that the knowledge encoded in the decision tree was in fact
significant. Each alternative reactive strategy was applied
to a series of 26 test problems. Each reflected the
occurrence of machine breakdowns and/or quality control
failures (implying order rework) in the midst of executing a
pre-generated schedule. Conflict points in the current
schedule were chosen so as to include circumstances that
covered a large number of branches in the tree model.

The results of these experiments were analyzed with
respect to the following six performance criteria,
combining schedule quality and scheduling disruption
objectives. With respect to schedule quality, change in total
tardiness time (Tardy/min) , change in the number of tardy
orders (#OrdTardy), and change in total work-in-process
time (ChgWTP) were measured. With respect to schedule
disruption, number of resources with changed schedules
(#ResChg), number of orders with changed schedules
(#OrdChg), and average time change per rescheduled
operation (Chg/res) were measured. To provide a basis for
comparison, the set of performance values obtained for
each strategy i in test problem £,were normalized according
to the following formula:

vßjjc) =
v(ij,k)-V(j)

where V(/) is the grand mean value for that criterion
obtained for all strategies over all experiments, and a(f) is

505

the grand standard deviation. A score for each strategy in
each experiment was then computed as follows:

S(ijc) = £ wQ)vfijJc)
je Perf.Criteria

where w(j) is the weight associated with performance
criterion j.

Strategies were evaluated with the following distribution
of weights: [tardy/min = 0.6, chgWIP = 0.05, #OrdTardy =
0.1, #OrdChg = 0.1, #ResChg = 0.05, Chg/res = 0.1] which
reflect the assumptions on which the tree model is based.
The following results were obtained. First, the action
prescribed by the tree model produced the best S(ijc) in
60% of the test problems. Furthermore, the action
prescribed by the tree produced a S(ijc) that was either best
or second best in 88% of experiments. The overall
behavior of each strategy is characterized in Table 5-1.

TREE RSC PV-
OSC

cv-
osc

RSH RDM

Ave. -0.327 -0.205 -0.123 -0.021 0.170 0.178

Std.
Dev.

0.447 0.397 0.753 0.799 0.799 1.089

Table 5-1: Overall behavior of
alternative reactive strategies

While it is not possible to draw any general conclusions
from these preliminary experimental results, there are a
couple of observations that can be made:

• With respect to average overall performance, the tree
model did perform better than all competing
approaches. The "resource scheduler first" strategy
(RSC) was the second best performer. This is in fact
the most similar model to the tree model, since it
nearly always incorporates decisions from the tree
model to complete the schedule revision.

• The right shifter first strategy (which is a complete
strategy) was found to perform as poorly as the
random model. This is interesting given the fact that
right shifting is essentially equivalent to not reacting
and just delaying production. This result suggests the
value of more sophisticated reactive decision-
making.

• Finally, we found the relative overall performance of
the tree model to be insensitive to 5% changes in the
weights of individual criteria.

6. Conclusions
In this paper, we have presented an approach to

coordinating production activities that advocates a common
view of predictive and reactive scheduling as an
opportunistic constraint-directed process. Accordingly, the
OPIS scheduling architecture is intended to provide a
framework that integrates periodic expansion/refinement of
predictive schedules with incremental revision in response
to conflicts that are introduced as a result of factory
operation.

Our current research builds on this work and is
concerned with the following issues:

• Understanding the multiplicative effects of
incremental revisions to the schedule over time - Our
current model for conflict analysis and reaction
selection is based on the assumption that a new
solution in the "neighborhood" of the old solution is
desirable (or somewhat equivalently that the starting
schedule is a good one). We currently have little
understanding as to whether (and at what rate) the
quality of the schedule can be expected to degrade
over time. Our goal here is development of a
methodology for recognizing when more global
rescheduling is warranted.

• Reacting to opportunities - A second point regarding
schedule revision is the incompleteness of our
current reactive model. If factory floor decision-
making is to be driven by predictive guidance (a
schedule) then schedule revision must be driven by
opportunities (e.g. unanticipated resource capacity)
as well as conflicts. We are currently extending the
reactive model in this regard.

• What level of predictive guidance is appropriate -
This issue concerns the nature of the constraints
imposed by the schedule (e.g. level of detail,
temporal precision, etc.), and the extent to which
execution-time decision-making is assumed.
Knowledge of the sources and degrees of
unpredictability (and regularity for that matter) in
any particular manufacturing environment should
dictate the level of detail of different aspects of the
maintained schedule, both in terms of imposing
constraints on factory floor decision making and in
terms of establishing system expectations against
which the need for reactive scheduling action can be
gauged. This implies some amount of execution-time
decision making in most manufacturing
environments. We are investigating methods for
representing and exploiting knowledge of the sources
of unpredictability within the scheduler, and the
development of control policies that interpret the
schedule at execution time with knowledge of the
scheduler's uncertainty assumptions. More generally,
we are interested in understanding how the
characteristics and constraints of a given
manufacturing environment (e.g. extent of process
unpredictability, demand patterns) should influence

506

decisions as to level of predictive guidance.
1 Decentralization - Finally, we recognize that
effective coordination of production schedules
requires planning and reaction at different levels.
Decisions made at higher levels (e.g. decisions
regarding manpower requirements and shifts of
operation in different areas of the factory) provide
constraints on the more detailed decisions that must
be made at lower levels (e.g. decisions regarding the
short term schedule for a particular area in the
factory). Similarly, the results of factory operation
necessitate reactive actions that may involve
decision-making at several different levels. Given
both the complexity of this overall process and the
concurrency of manufacturing activities, we view
decentralization of coordination responsibility as a
central component of any practical framework for
production management.

References

[Bean&Birge 85] Bean, J.C., and J.R. Birge.
Match-Up Real-Time Scheduling.
Technical Report 85-22, Univ. of

Michigan, Dept. of Industrial and
Operations Engineering,

June, 1985.

[Erman et. al. 80] Erman, L.D., F. Hayes-Roth, V.R.
Lesser and D.R. Reddy.
The Hearsay-II Speech Understanding

System: Integrating Knowledge to
Resolve Uncertainty.

Computing Surveys 12:213-253,1980.

[Fox 83] Fox, M.S.
Constraint-Directed Search: A Case

Study of Job Shop Scheduling.
PhD thesis, Computer Science

Department, CMU, 1983.

[Fox&Smith 84] Fox, M.S., and S.F. Smith.
ISIS: A Knowledge-Based System for

Factory Scheduling.
Expert Systemsl(l):25-49, July, 1984.

[Graves 81] Graves, S.C.
A Review of Production Scheduling.
Operations Research29(4):646-675,

July-August, 1981.

[LePape&Smith 87]
LePape, C. and S.F. Smith.
Management of Temporal Constraints

for Factory Scheduling.
Technical Report TR-CMU-RI-87-13,

The Robotics Institute, CMU,
June, 1987.

[Muscettola&Smith 87]
Muscettola, N. and S.F. Smith.
A Probabilistic Framework for

Resource-Constrained Multi- Agent
Planning.

In Proceedings IJCAI-87, Milano, Italy,
August, 1987.

[Ow85] Ow.P.S.
Focused Scheduling in Proportionate

Flowshops.
Management Science31(7), 1985.

[Ow et. al. 88] Ow, P.S., S.F. Smith, and A. Thiriez.
Reactive Plan Revision.
In Proceedings AAAI-88, St. Paul,

Minn., August, 1988.

[Ow&Smith 88] Ow, P.S. and S.F. Smith.
Viewing Scheduling as an Opportunistic

Problem Solving Process.
Annals of Operations

Researchl2:$5-m, 1988.

[Panwalker&Iskander 77]
Pan walker, S.S. and W. Iskander.
A Survey of Scheduling Rules.
Operations Research25:45-6l, 1977.

[Potvin&Smith 89]
Potvin, J.Y. and S.F. Smith.
Flexible Systems for the Design of

Heuristic Algorithms in Complex
OR Domains.

In Publications in Operations Research.
Volume 9: Impacts of Recent
Computer Advances on Operations
Research, pages 332-344. North-
Holland, 1989.

[Smith 89] Smith, S.F.
The OPIS Framework for Modeling

Manufacturing Systems.
Technical Report TR-CMU-RI-89-30,

The Robotics Institute, CMU,
December, 1989.

[Smith et. al. 86] Smith, S.F., M.S. Fox, and P.S. Ow,
Constructing and Maintaining Detailed

Production Plans: Investigations into
the Development of Knowledge-
Based Factory Scheduling Systems.

AI Magazine!, 1986.

[Smith&Ow 85] Smith, S.F. and P.S. Ow.
The Use of Multiple Problem

Decompositions in Time-
Constrained Planning Tasks.

In Proc. IJCAI-85, Pages 1013-1015.
Los Angeles, CA, August, 1985.

507

